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Abstract

We consider here antemas that could be usefid as part of a fize radar for penetrating
munitions. The concept requires radiating an ultra-short pulse using an antenna with maximum
gain and a compact design. Both lens and reflector Impulse Radiating Antennas (IRAs) are
recommended as suitable candidates for this purpose. We summarize the properties of these
antennas, and we describe two measurement techniques for determining their characteristics. The
first technique involves a single antenna and a large planar reflector; the second technique uses
two identical antennas. We have built a pair of reflector IRAs with F/D= 0.25 and diameter =
46 cm and measurements were performed using both of the techniques described. In addition,
since propagation issues will also be important to such a radar system we sketch out some of the
available analytical and numerical models of pulse propagation through frequency-dependent
dielectric media. IVnally, we suggest experimental configurations for measuring these propagation
characteristics.
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L Introduction

The purpose of this project is to analyze and test some candidate antennas which could be
o

usefhl for Ultra-Short Pulse fking applications. Such antennas would be used to locate
underground targets for penetrating munitions. The general goal here is to design and test small

antennas that have the highest possible ga and which can radiate a pulse less than 100 ps in
duration.

We begin by describing three reasonable candidate antema designs, the reflector Impulse
Radiating Antenna (IRA) the lens IRA and the solid dielectric lens IRA. We provide estimates of
their response, and we show how to use their characteristics in an antenna equation. We describe
two methods for measuring the performance of these antennas. We provide signal processing
algorithms for extracting the antenna characteristic fkom the measured data. Two copies of a
reflector IRA were constructed and tested using the algorithms and experiments proposed here.
Satisfactory agreement was found between theory and measurement.

Finally, we describe how one might measure the dielectric properties of various materials,
such as soil, sand, and concrete. We also outline some basic analytic and numerical techniques for
calculating the attenuation of short pulses as they propagate through these media. We begin now
with a description of the candidate antennas.
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0 IL Candidate Antennas

-.
If one is to radiate a short pulse into the esrthj one would normally want to have a planar

phase front, in order to achieve optimal gain for a given aperture size. We consider here three
antennas capable of radiating a fast pulse with a planar phase front. They include a reflector
Impulse Radiating antenna (IRA) [1,2], a lens IRA[2], and a solid dielectric lens II@ We
consider first the reflector IRA.

A. Reflector IRA

The reflector IRA consists of a paraboloidal reflector fed by a conical TEM feed. An
example of such an antenna is shown in Figure 2.1, along with an example of the expected
radiated field when driven by a smooth step-fbnction voltage with a fast risetime. The feed arms
are normally flat plates that lie in the vertical plane, in order to reduce feed blockage. The feed
impedance of a single pair of arms is typically 400 S2.

o

Instead of a using just a single pair of arms, one would normally want to include a second
pair of arms in the horizontal plane (Figure 2.2). This second pair of arms does not disturb the
field of the first pair, but it has the effect of reducing the input impedance of the antenna from
400 Q to 200 Q. The dominant radiated field is then polarized at an angle of 45 degrees to the
vertical, as shown in Figure 2.2. Note that if the impedance of the feed cable is 50 Q, then one
can build a balun that converts a 50 Q impedance to a 200 Q impedance with standard balun
designs.
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Figure 2.1. An example of a reflector IRA (left) and the radiated electric field on boresite when
the antenna is driven by a fast, smooth step-fi.mction voltage (right).
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Figure 2.2. Reflector IRA configurations with two and four arms.

h approximate theory for the radiated field is well established for dominant polarizatio~
when the observer is on boresight and in the far field. We assume here we drive a single pair of
arms. If a second pair of arms is used, it is trivial to add their effect by superposition. The
radiated field for a single pair of arms is approximately [1,2]

E(r, t)=
D

[

dv(l - 2F /c)

4ncfgr dt
-J&(t)- V(t - 2F /c)]1 (2.1)

where the feed impedance of a single pair of arms is expressed as fg, where fg = Zfee~Zo, and
2.=376.727 Q is the impedance of free space. Furthermore, D is the reflector diameter, F is the o
focal length of the reflector, and r is the distance out the to the observer. This expression is

approximately valid for feed impedances of 400 Q or greater for a single pair of arms. It will
become convenient later to express this as a convolution of an antema fimction with the
derivative of the driving voltage. Thus, we have

E(r, t) = 1 h(t) o
Wjnc(t)

27rcfgr dt

h(t) =
[

; aa(t-2F/c)-— Z;[w- U(t- 2F/c)] 1
(2.2)

where da(t)is an approximation to the Dirac delta fimctio~ u(t) is the Heaviside step fimction and
the “o” operator indicates a convolution. The approximate delta fbnction becomes a true delta
fi.mction in the limit as the distance from the antenna to the obsetver approaches infinity. It will
be seen later that the h(t) finction for the IRA (or any antema) is sufficient to speci& its behavior
in either transmission or reception. Note the very simple form for h(t) for the reflector IRA.

It wilI also be usefil to provide information concerning how to design the feed arms to
achieve a given feed impedance. We define here three angles which must be specified, as shown
in Figure 2.3. The angle ~ is determined simply by the F/D ratio of the parabola. If we define
fd = F/D, then we have from the equation of a parabola

*
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P = arctan
[

1

2Jd -1/(8 jd) )

Furthermore, the feed impedance of TEM feed is [3]

fg = ‘(m)
K(l -m)

(2.3)

(2.4)

where K(m) is the complete elliptic integral of the first kind. If one wants a certain f~
impedance, one must solve the above equation for m. For the usual case of the feed impedance
being 400 Q we have m=O.565291. Having solved for m and P, one then finds the remaining
angles as [3]

/?~ = 2arctan
[

ml’4 tan@/ 2)]

[flz = 2 ~ctan m-114

(2.5)
tan(fl/ 2)]

This completely specifies all the relevant angles for the feed.

Figure 2.3. Angles for specifjring the feed arm configuration.

B. Lens IRA

A second candidate antenna for the present application is a lens IRA. This consists of a
TEM horn made out of sections of a circular cone, with a lens in front to flatten the phase fkont.
A sketch of the antenna is shown in Figure 2.4, along with an approximate radiated field on
boresight.
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A lens IRA can have both advantages and disadvantages over a reflector m depending
on the situation. On the one hand, there is no feed blockage with a lens IR4. On the other hand,
lenses can be quite heavy if the aperture is large. For the present application the aperture will not

o

be large. However, the lens is still somewhat cumbersome (and expensive) to build. A parabolic
reflector with the correct specifications is much easier to obtain. For this reaso~ our

measurements for this project concentrate on the reflector design. We provide here design data
for the lens design since it maybe needed for later work.
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Figure 2.4. A lens IRA (Iefl), and a typical radiated field when the antenna is driven by a fast,
smooth step-fimction voltage (right). o

An approximate theory of operation for a lens B is available. The radiated field on
boresight in the far field is [4]

ha r

[

dv(t) c ~
—-fi[ (t)-?ql-2t/c)]E(r, t)= Zncfgr dt 1

(2.6)

where 1 is the length of the horn, r is the distance out to the observer, and ha is an effective height

fimction that depends upon feed impedance (Q. For optimal radiatio~ Zfied is Z~2 = 377/2 Q.
At this feed impedance, each arm of the TEM horn has an angular width of 90 degrees, and
ha -0.85 x radius of aperture. Note also that r is the voltage transmission coefficient through the
lens. For &r= 2.2 (the dielectric constant of polyethylene), r= 0.96, so there is little loss in
transmission through the lens.

Again, it is usefil to convert the above expression to a convolution operator. Thus we
have
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E(r, t) =
1 ~t) ~ ‘itm(t)

2zcfgr dt

h(t) =
[

ha r aa(t) - ;[u(t)- U(I-24 / c)]1
(2.7)

where Yin=(t)is the incident voltage launched across the plates. Note the very strong similarity
between the h(t) fimctions for the lens W (above) and for the reflector IIL4 (eqn. 2.2).

C. Solid Dielectric Lens IRA

A third antema design, the solid dielectric lens IRA is also being considered. It is similar
to a lens ~ with the exception that all the material between the plates is a solid dielectric. The
end is terminated as before in a lens that maintains a flat phase front. An example of such an
antenna is shown in Figure 2.5, along with a sample of its expected output.

This antenna is being considered because it may be more mechanically stable than the
other designs when hit by a severe shock. The compromise we make is that the feed structure is
not strictly 1%~ so the signal may spread out (increasing the risetime) as it progresses along the
feed.
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Figure 2.5. A solid dielectric lens IRA (left) and an example of its output

Time

(right).

The theo~ of this antenna has not yet been developed filly, however we expect it to
behave similar to the regular lens IRA. The potential loss in risetime is difficult to analyze using
simple techniques. However, this effect can be reduced somewhat by surrounding a portion of the

● apex with the dielectric material. This maintains a TEM structure part of the way out onto the
antenna.
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III. Time Domain Antenna Equations and Signal Processing

A. Antenna Equations

In order to understand the data we are measuring, it is important to identfi the equations
that describe antennas in the time domain. In particular, it is necessary to establish a relationship
between the antema’s behavior in transmission and reception.

In the experiments that we carry out later, we characterize an antenna by using two
identical antennas. The simplest way of doing this is shown in Figure 3.1. We describe here how
to extract an antema’s characteristic fimctio~ h(t) horn this experimental test setup. We also
show here how this characteristic fimction can be used to predict the antenna’s response in both
transmission and reception.

A second method of measuring the antenna’s characteristics is to use a single antema and
measure the field reflected from a large conducting sheet. This second method is most
appropriate for small antennas, because the sheet otherwise has to be too large. Later, we
measure our antemas using both techniques. The signal processing is essentially the same using
the two techniques, to within a minus sign. The only difference is that when using a single
antenna with a reflector, one must subtract out the background noise, whereas when using two
identical antennas, the background noise is less of a problem and can usually be ignored.

When describing the theory of these antemas, we express the various signals on the
antenna in terms of voltage waves, much in the same spirit as S-parameters are used in microwave o
network theory. This does not introduce any ambiguity because almost all UW13 antemas have a
TEM feed, in order to maintain the risetime. Thus, voltage measurements are all made with
matched loads.

Vine(t)

3,

\
Zc

Pad(t)

Vrec(t)

i-l-=
3

Zc
Einc (t)

Zc = j-g 377 fz

Figure 3.1. The relevant quantities for specifying antenna performance in the time domain for
transmission (left) and reception (right).
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In transmission we express the radiated field (on boresight for dominant polarization) as

[2,5]

J@(r, t) = : F(t) o vi’’=(t)
(3.1)

Note that it is trivial to extend the above relationships to other polarizations and other angles. It
is perhaps more helpfil, at this point, to keep the expressions as simple as possible. When the
same antenna is used in receive mode, we have [2,5]

Vrec(o= w -incw (3.2)

where we now see the h(t)fimction that we first saw in Section II of this report. There is a simple
relationship between the transmission finctio~ F(t), and the reception finctio~ h(t). Thus, we
have [2,5]

(3.3)

o This is the essential relationship required to establish the antenna as a reciprocal device. Thus, we
see that if one knows the h(t) and feed impedance for a given antenn~ then the antenna is
completely characterized. It is interesting to note that the units of h(t)must be meters/second,in
order to maintain the correct units in the above equations.

So for our problem we must take into account radiation from the antenna, reflection from
the plate, and reception of the antema. After possibly subtracting out a background signal, we
measure

(3.4)

where r is the distance between the transmit and receive antennas, and V’(t) is the source voltage.
We now need to determine h(~) and h(t)from the above measured voltage. To do so, we must
convert to the Fourier domain. Thus, we find.

and h(t) can be found with an inverse Fourier transform.

(3.5)
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B. Phase Unwrap

In the final step of the above analysis, one must take the square root of a complex transfer
o

fiction. This must be done with care, bezause the square root of a complex number has two
values, and the correct value must be chosen at each frequency point. (Another way of saying this
is one must use the correct branch cut.) A sketch of a typical phase plot is shown on the lefi in
Figure 3.2. If one takes the square root of a fimction whose phase is wrapped, then one would
simply dkide the phase by two. This results in a finction that is constrained to have a phase
between +90° and -90°. This is clearly nonphysical, since the algorithm must work for arbitrary
antenna finctions.

Conceptually, the simplest way of solving this problem is to subtract N x 360° horn the
phase of each point, where N is an integer chosen to make the phase cume smooth. This is shown
on the right in Figure 3.2. One would then take the square root by dividing the phase by two, and
taking the square root of the magnitude. However, it is numerically clumsy to find the number of
phase wraps for each point that will make the phase curve smooth so we have to find another
way.

A better approach is to multiply the frequency domain waveform by a suitable time delay,

ejdd E one chooses td correctly, one can eliminate most of the phase wraps, leaving few or
none to repair. One then needs to have a suitable way of finding td. There is probably some art to
this. However, we propose to use a td equal to the time from the beginning of the waveform to
its peak. Thus, before taking the square root, we convert the waveform to the time domain and
note the time between the beginning of the waveform and its peak and use this value for td in the o—
phase unwrap algorithm.

+180°

0°

-180° x

00

360°

Frequency

Figure 3.2. Illustration of phase unwrap before (left) and after (right).
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To just@ this rather simple algorit~ we note that the Fourier transform of a delta

fimction with a time delay, t$(t – td ), is just e-J~d. Thus, to remove the phase wraps in the

“~d will exactly remove all phase variations.frequency domai~ multiplying by our factor of e~
While our measured data are not as simple as a delta finctioL the algorithm seems to unwrap
satisfactorily most of the signal, as we will see in our later examples.

Note that it is actually simpler to carry out the phase shift in the time domain. If one is
carefbl about how the FFT is implemented, a translation in the time domain is exactly equivalent
to a phase shifi in the frequency domain. This is due to the “circular convolution” property of a
discrete FFT.

After unwrapping using the phase shift, there can be a few wraps left in the data. For this
second part of the phase unwrap we propose using the following simple algorithm for our phase
unwrap. If the rfh frequency point has a phase between –90° and –180°, and the (n+l)rh
frequency point has a phase between 90° and 180°, then we decide that a phase wrap has
occurred. When a phase wrap occurs, we subtract 360° from the phase of all points after the
wrap. While this algorithm was never implemented during this project, it seems reasonable to try
in fbture work.

C. Filters

● When dealing with real data there is always noise which must be filtered. We typically
apply a lowpass filter to our data as required, and the filter is of the form

G(f) =
1

l+(J/j-o)2N
(3.6)

wherejO is the cutoff frequency and N is some integer greater than or equal to 1. For a fifth-order
filter, we use N = 5 in the above equation. A typical example with JO = 20 GHz is shown in
Figure 3.3.

The above filter is related to a standard Butterworth filter, in that it has an amplitude
dependence that is the square of a Butterworth filter [12]. This filter has the characteristic that its
inverse transform is real, since G~ = G*(-j). However, this filter is difllerent from standard
Butterworth filters in that the phase is zero for all frequencies. Thus, the filter is umeakable
from circuit elements. This is not a strict requirement for filters when implemented on a
computer, but it does render the filter noncausal. We believe that this does not produce a
problem, because the filter has the intended effect on the data, as we shall see. Nevertheless, it
will be of interest in fiture work to experiment with other forms of the above filter.

Throughout this report, the above filter will be referred to as a “modified Butterworth
filter,” for purposes of clarity.

o
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Figure 3.3. A fifth order modified Butterworth filter withjo = 20 GHz.
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o IV. Reflector Size and Distance Considerations

When making measurements, it is important to be in the far field. Furthermore, when
using a singie antenna with a reflecting plate, the size of the plate must be large enough not to
introduce error. We consider here both of these issues.

One of the dficulties here is that the term “fw field” is not rigorously defined in the time
domain. We propose here a simple working definition that may be adequate for our purposes.
We propose that one is in the far field of an antenna when a ray from the outer edge of the
antenna arrives no later 1/3 Ir after the ray arriving from the center of the antenna. Here we use tr
as either the risetime of the driving signal, or approximately the Full Width Half Max of the
radiated field. The geomet~ is shown in Figure 4.1 for the case of a single antenna with a
reflecting plate. Note that the plate must be in the far field of the rmtenn% since the same antenna
is used for both transmission and reception. For the configuration with two identical facing
antennas, one would need to separate the two antennas by 2d1, since both antennas are electrically
large. If an electrically small B-dot or D-dot probe were used, it could be placed at a distance of
cfl in fkont of the antenna.

T
a

&

Reflecting plate

Figure 4.1. Far field calculation.

Thus, to be in the far field, the clear time between the arrival of the closest ray and the
arrival of the outermost ray should satisfj

7dz–dl = dl +a –dl <ct,13 (4.1)

In the usual case, a << dl, so

13
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d~(l+a2 /2d12)-dl SCtr /3

3 a2
dl>—

2ctr

.

(4.2) e

K, for example, a =23 cw and tr = 100 ps, then dl must be larger than 2.6 m. We must
emphasize that this is an approximation, and that there is as yet no universal agreement on the
definition of far field in the time domain.

We must also calculate the size of the plate necessary to prevent scattering from the plate
edges from contaminating the data. Thus, we propose that it is necessary to maintain a clear time
tcin order to prevent edge effects from entering into the time window of the measurement. The
configuration is shown in Figure 4.2. From this diagrw we require

c tc > 2(d3 - dl) = 2~d12 + &z2 - 2d1

Solving for Aa, we find

(4.3)

/( )
2

Aa>dl
Ctc
—+1 –1
2d1

(4.4)

K, for example, a = 23 cm 2C= 2 ns and dl = 2.6 ~ then Aa = 1.28 m. The overall radius of the *
reflecting plate is then the sum of a + Aa, or 1.54 m. This will provide a clean signal out to 2 ns.

Figure 4.2. Calculation for determining the size of the reflecting plate.
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‘o V. Effect of the Balun and the Second Pair of Arms

All of our theory for the radiated fields has been calculated for a certain voltage across a
single pair of arms. In practice, for the reflector IIQ there will be a balun and two pairs of arms.
It is important to understand how the voltage on the feed line relates to the voltage across a single
pair of arms. The balun we use here was first described by C. E. Baum, in [6], and is shown in
Figure 5.1.

+/

+

Figure 5.1. A 50 Q to 200 Q balun for a reflector IRA.

To analyze the balu~ we use the configuration sketched in Figure 5.2. It consists of two
100 Q line sections that are connected in parallel at the input end (giving 50 Ohms) and in series
at the output end, giving 200 Ohms. The net effect is that a 1 V signal on the feed line is
transformed into a 2 V signal across each pair of orthogonal feed arms. Note that the 200 Q
length of line is included for clarity in the diagram but it is not needed, nor is it used in the actual
balun.

Feed Line Balun Feed Arms

One 50 Q line, Two 100 Q lines. One 200 Q Two 400 Q lines,
lV lV each line, 2 V 2V each

Figure 5.2. The voltages and feed impedances of the geometry at various points along the feed.
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The consequences of this model areas follows. All of the equations developed thus fm to m
describe the radiated field are expressed in terms of the feed voltage across a single pair of feed
arms. There is a factor of 2 difference between the feed line voltage and the feed arm voltage.
Furthermore, if we have two pairs of arms at 45° instead of a single pair of arms, the radiated field

must be multiplied by an additional fhctor of W. Thus, for our configuratio~ if the source
voltage in our equations is the voltage on the feed line, then the radiated field must be multiplied

by a factor of 2~. In receptio~ one must divide by the same factor of 2fi.

16
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9 VL Predictions of Fields and Voltages

We provide here predictions for the radiated field and the received voltage for a reflector
R in front of a large reflecting plate. It is assumed that we have a single reflector IRA with F’/D
= 0.25 or 0.667. The reflector has a radius of 23 c- and the reflecting plate is 2.5 m in front of
the antenna. The smooth-step source has a peak voltage of 200 mV, with a risetime of 100 ps.

The driving voltage is assumed to be an integrated Gaussian of the form [7]

dv(t) = ~ @t/td)2
9 t~J.f = 0.940 td

dt td
(6.1)

J
t ‘(t’) dt,v(t) = —
* dt’ ‘

tlO_~ = 1.023 td (6.2)

where t~ is the Full Width Half Max of dvldt, and tlo.go is the 1O-9OVOrisetime of v(t).

These waveforms are plotted in Figure 6.1. Recall the definition of the derivative risetime of a
waveform is

td =
max (v(t))

(6.3)
max(dv(t) / dt)

m
Thus, the derivative risetime is inversely proportional to the maximum derivative of the driving
voltage. This is a usefid property, since the peak of the radiated field is proportional to the peak
of the derivative of the voltage. Note also that for the integrated Gaussian wavefo~ the
derivative risetime td is within two percent of the 10-90% risetime, 110-90. In our case V =
200 mV, and td = 100 ps. A plot of the driving voltage with the correct scaling is shown in
Figure 6.2.

Using eqns. (6.1) and (2.1-2.2), we find the radiated field shown in Figure 6.3 This is the
field found after the field radiates from the antem~ reflects off the plate, and returns to the same
antenna for reception (after traveling 2 x 2.5 meters). Note that the 200 mV driving voltage

refers to the voltage on the 50-Ohm feed line, so we have included an extra factor of 2fi as
described in the previous section. The received voltages are shown in Figure 6.4. This is the
voltage as measured on the 50-ohm output cable.

Finally, we note that it is possible to correct for feed blockage using a factor calculated in
[13, Figure 5.5]. For a 400 S2 feed (single pair of arms), one would multiply the entire waveform
by a factor of 0.92 for a single pass through the antenn~ or by a factor of (0.92)2= 0.85 for two
passes through the antenna. This correction is based on the fast portion of the wavefo~ so it is
actually an approximation to apply this to both the fast and slow portions of the waveform. Our
calculations in this section have not used this correction factor, but calculations in Sections VIII
and IX of this note will use this factor.
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Figure 6.2. Dtiting voltage scaled tothepwmeters of thecument problem.
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Figure 6.3. The radiated field at the location where it is received by the antenna under test, for
F/D = 0.25 (top) and F/D= 0.667 (bottom).
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Figure 6.4. The received voltage for F/D= 0.25 (top) and F/D= 0.667 (bottom).
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VII. Antenna and Balun Construction and Preliminary Measurements

We consider here the construction of the reflector IRA and the integrated balun. We
o

provide measurements of the balun’s performance, and we demonstrate compensation for the
cables in the balun. Finally, we measure a TDR at the antema input, which leads after some
processing to a flequency domain return loss. We begin with the antenna and balun construction.

A. Antenna and Balun Construction

Two 46 cm diameter reflector IRAs were built with lWl of 0.25. The four feed arms were
constructed using the “coplanar plate geometry,” meaning that they were constructed from two
flat sheets of metal oriented perpendicular to the aperture plane to minimize feed blockage. With
Ml= 0.25 and 2== 400 Q the arms were perfectly vertical with a 16.3° angular width. More
precisely, using the angles described in Figure 2.3, P= 90°, fll = 98.1°, and fll = 81.8°. The feed
arms were shorted to the reflector. A sketch of the antema as built appears is Figure 7.1.

A balun was integrated into the antenna as shown in Figure 5.1. The balun assembly
consists of a 12.1 cm length of 0.085 inch diameter, 50-ohrn semi-rigid input cable, joined to two
parallel 37-cm lengths of 0.141 inch diameter semi-rigid 100-ohm cable. The equal-length
100-ohrn cables were connected in series at the feed point. The cable dielectric is PTFE with a
dielectric constant of 2.01. The 50 ohm to 100 ohm junction in the balun was encased in a
molded epoxy housing for physical support. This had no effect on the electrical properties of the
unit, which are excellent, with less than 5°/0 reflection coefficient for 40 picosecond resolution
TDR. o

A trade-off between risetime and voltage hold-off capability is made at the feed point. A
spacing of approximately 6 mm is maintained at the feed point to allow voltages of several
kilovolts without dielectric breakdown. The loss in risetime from the spacing appears to be
acceptable, since the measured response of the antenna is well below the 100 ps requirement.
Some fine tuning of the feed geometry was required to optimize the system risetime. A set screw
and sliding mechanism allowed adjustment of the feed point location over a distance of +1 cm.
The antenna is mounted on a 1.2 meter tripod, which allows accurate adjustment of azimuth and
elevation. This is essential due to the narrow beam width.
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B. Balun Measurements

We measured fist the effect that the balun has on the overall system pefiormance. This
o

was accomplished by shorting out the far end of the balun at the apex of the anteq and
comparing the reflected pulse to the incident pulse.

The test sewp is shown in Figure 7.2. The step pulse was generated by the HP model
1106B tunnel diode pulser, which provides a transition between two dc levels. The transition
amplitude is approximately 220 mV and the transition time less than 20 picosecond ( 10°/0 to
90%). The tunnel diode pulser is mated directly to the 28 ps risetime sampling head, HP model
1817A using APC-7 connectors. The combined response of the tunnel diode pulser and sampling
head was confirmed to be less than 40 picosecond by terminating the pulse directly at the head in
a HP model 909A precision termination with APC-7 connectors. For antenna testing, the

termination was removed and a metrology grade adapter from APC-7 to SMA was connected to a
61-cm length of Gore-Tex port cable. This high quality cable uses foamed Teflon dielectric and is
mode free to 33 GHz. The cable is comected to the 50 ohm input of the IRA antenna.

Tunnel Diode Sampling Head
Step Generator HP1817

HP1106B tr <28 ps
tr <20 ps II

I 58 cm I

Pos&ible 1-rl
Port Cable /’

Oscilloscope
Inn

Mainframe
HP 182C/1815

L I

short
circuit

Anti-Aliasing
Filter

Figure 7.2. The experimental configuration used to test the frequency response of the balun and
also used to measure the TDR of the IRA radiating into free space.

The sampling head was controlled by an HP 1815 sampling plug-in in a model 182C
mainfi-ame. The sampling plug-in allowed variable sweep speed and vertical gain. The analog
output of the sampling plug-in was passed through a low pass filter with RC = 4 msec to a 10 bit
ADC which was sampled at
controlled by an 80386 based
system is highly oversarnpled.

the rate of 120 samples per second. The data acquisition was
laptop computer and data was streamed directly to the disk. This

Q
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We were careful to perform accurate calibration of time and amplitude. Time calibration

was accomplished with a calibration fixture consisting of a short length of 100 ohm cable
mismatched to the 50 ohm system. The fixture was connected in place of the antema and excited
by the tunnel diode pulser to produce a stairstep waveform with a characteristic time of 1.47 ns.
The amplitude calibration was accomplished by reference to a low-impedance DC source read-out
on a 4 digit digital volt meter for accurate calibration of the tunnel diode amplitude. We then used
a precision microwave variable attenuator to adjust the tunnel diode pulser voltage for calibration
of the more sensitive ranges and to characterize linearity. With these procedures, time and
amplitude calibrations are believed to be accurate to +3°/0 over the fill range of experimental
parameters.

The measurements and data processing proceeded as follows. We first measured the
output of the source dwectly, as shown in Figure 7.3. Next, we measured the reflection from the
balun with the apex short circuited. The reflection from the short is shown in Figure 7.4.

The derivatives of the source and the reflection from the short are shown in Figures 7.5
and 7.6, respectively. Note that we have filtered both sets of data with a fifth-order modified
Butterworth low-pass filter with a cutoff frequency of 20 GHz. Note also that we show only the
portion of the derivative waveforms near the impulse, for clarity. Ideally, one would expect these
two waveforms to be approximately equal, however, there is some loss and dispersion through the
48-cm balun cables and the 61-cm port cable. The t~ of the pulse goes fkom 38.5 ps to 51.7
ps after being reflected. Furthermore, the area of this derivative pulse goes from 0.225 to 0.197

0
V. Finally, the peak magnitude at the input goes from 5.61 V/ns to 3.34 V/ns. Clearly, it will be
important to account for cable losses to obtain good agreement between theory and
measurements.

Finally, we characterized the losses in the frequency domain. We did so by calculating the
frequency domain ratio of the derivative of the reflection from the short (Figure 7.6) to the
derivative of the source voltage (Figure 7.5). Note that we retained the data over a 10 ps time
window when taking the Fourier transform. The result is shown in Figure 7.7. As expected, the
losses are relatively low at low frequencies, increasing somewhat at higher frequencies. This plot
is probably valid only up to 10 GHz or so, but we include data up to 20 GHz to allow the reader
to decide.
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Figure 7.7. Ratio of the derivative of the reflection from the short to the derivative of the source.
The data is probably valid only up to 10 GHz.

C. Antenna TDR and Return Loss

Next, using the same test setup as in Figure 7.2, we removed the short from the antenna
apex to measure the TDR of the antenna radiating into free space. The input voltage is shown in
Figure 7.8, and the reflection from the antenna is shown in Figure 7.9. Derivatives of these two
waveforms are shown in Figures 7.10 and 7.11. Note that these have been filtered with a Mh-
order modified Butterworth filter with a cutoff frequency of 20 GHz. As expected, we find the
reflected pulse to be lacking in high-frequency content, because it has been radiated. The tmM

of the pulse goes from 39.2 ps to 338 ps after being reflected. Furthermore, the area of this
derivative pulse goes from 0.222 V to 0.213 V after being reflected. Finally, the peak magnitude
at the input goes from 5.40 V/ns to 0.451 V/ns. It is interesting to note that the peak and the
t~ have each degraded by about a factor of te~ but the area has remained approximately
constant.

Finally we calculate the frequency domain return loss of the IRA. This is calculated by
taking the frequency domain ratio of the derivative of the reflected pulse (Figure 7.11) to the
derivative of the input voltage waveform (Figure 7.10). Note that we retained a 10 ps time
window when taking the Fourier transform. The result is shown in Figure 7.12. Although we
have displayed data as high as 20 GHz, the data is probably only valid up to about 10 GH.z. We
find that over a large part of the mid-band, roughly 1-10 GHz, this ratio is below 0.2. Thus, there
is less than 4°A (0.22) power reflection over a decade of bandwidth. This is excellent bandwidth
performance for a high-gain antenna.

o
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VIII Indoor Antenna Measurement with aLarge Reflector Plate

Wem-sured theantema's radiation chwa~etistics using Womethods. Redescribe here e

the indoor measurements, which used a single antenna and a large reflector plate. The second
method, using two identical antennas, is described in Section IX. The test setup is shown in
Figure 8.1. By measuring the return from the reflector, after the signal has passed through the
antenna twice, we extract the one-way antenna characteristic fimctionj h(t), using the data analysis
of Section III.

The IRA antenna was set on a tripod 1.2 meters above the floor in the laboratory
environment and beamed down a long hallway to a 1.2 m x 2.4 m reflector plate which could be
moved to control the antenna-reflector distance. Reflections from objects in the laboratory were
clearly visible in the waveform, but were subtracted out by taking background data with no
reflector present. It was seen that by subtracting the two waveforms virtually all the reflections
disappeared except the desired signal from the

) 1 b 1

reflector plate.

-1.6 m
<

58 cm
Port Cable

Antenna
Oscilloscope Under Test

Mainframe
HP 182C/1815

ANMliasing Reflector

Filter Plate
1.2x2.4m 1

1o-BitADc 386 Laptop
120 Sarnpletsec — Computer

Figure 8.1. The experimental configuration used to measure the IRA’s radiated field, using a
single antenna with a large reflecting plate.

We began by measuring the background waveform (without the reflector plate), and then
we measured the received voltage with the reflector plate in place, as shown in Figures 8.2 and
8.3. This data is highly oversampled, with a time step of 0.8 ps. In order to subtract the
background from the received voltage, it was necessary to shift the data in time so their time
scales would line up correctly. There are two bumps in the data sets near 3 ns and 4.2 ns, which
we can use to align the data. From the bump at 4.2 ns, we find the shift to be 38 time steps, or
30.4 ps. After performing the shift, and subtracting the background, the result is shown in
Figure 8.4. Note that the two bumps have essentially disappeared.
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The data was then reduced by averaging every three points, and then the data was

truncated at either end to give the data set in Figure 8.5. The data is now sampled at once every
2.4 ps with 2048 total points. Even tier averaging, the data was still noisy, so we converted the
data to the frequency domain and applied a 20th-order modified Butterworth filter whose cutoff
frequency is 20 GHz. The frequency response of the filter is shown in Figure 8.6, and the
resulting time domain waveform is shown in Figure 8.7. This is our final result for the measured
received voltage. A close-up of the impulse is shown in Figure 8.8, where one can see the t~
is about 70 ps for the pulse.

We now use theoretical models developed in Sections II and VI of this report to predict
what the received voltage waveform should be. As we have shown in the previous sectiom there
is some degradation in the signal as it passes (twice) through the balun and the 58-cm port cable.
For this reason we use for our source the voltage reflected from the shorted apex. The voltage
reflected from the short is shown in Figure 8.9, and its derivative is shown in F@re 8.10. A
close-up of this waveform near its peak is shown in Figure 8.11. It is noisy, but it can be filtered
using the twentieth-order 20 GHz modified Butterworth filter used earlier. The result after
filtering is shown in Figure 8.12. It has a t~ of 47 ps, and a peak dvldt of 3.4 Vlns.
Although the waveshape is not exactly Gaussia% we can approximate it as such to estimate the
received voltage for our model. To do so, we use the relationships in equation (6.1) and (6.2)
that t~ = 0.940 td, and max(dv/dt)= vm~td. Thus, we find the maximum vokage of the
integrated Gaussian is 170 mV for a 50 ps td.

*

Using the V’m and td of the voltage reflected from the short, we calculate in Figure 8.7 an
expected theoretical received voltage corrected for aperture blockage, as discussed in Section VI.
This should be compared to the experimental received waveform of Figure 8.7. The magnitude of
the prepulse is about 75’% of the predicted value, while the peak magnitude of the impulse is
substantially lower than the expected value. We believe the primary reason for this is that the
reflector is not in the far field. To veri~ this, we go back to our equation for determining the
location of the far field, equation (4.2). For a 70 ps pulse and a 23 cm radius, we estimate a
distance of 3.8 meters is required, instead of the 1.6 meters which we used here. The field
radiated from a focused aperture generally remains constant out to the beginning of the far field,
and then decays as I/r. If we are still within the near-field region where the field is constant, our
fhr-field theory tends to predict too high a value.

Finally, we extract h(t)fkom the measured data using equation (3.5). Before taking the
complex square root, a linear phase shift is introduced to remove most of the phase wraps. The
result of this phase shitl is shown in Figure 8.14. We can see that we have removed all the phase
wraps at mid-band. Phase wraps at high frequencies are probably unavoidable, however, they are
not important because the magnitude is very small there. There remains a single phase wrap at the
low frequencies, but that probably does not introduce much error into the result.

The resulting antema step response is shown in Figure 8.15. The iimction that is plotted
is h(t)lfg1’2. Recall that equation (2.2) predicts that this should be a negative polarity step
fimctio~ followed by a delta fimction with positive polarity. The resemblance to this is quite

o
reasonable.

33

—



,.. - ..---—

?

volts (V)

volts (v)

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

0 2 4 6 8

Time (ns)
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Figure 8.3. The raw received voltage (with the reflector plate in place), in the presence of a
background.
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IX. Outdoor Antenna Measurement with Two Identical Antennas

A second experiment was performed to measure the performance of the IRA without the
reflecting plate. While the technique with a reflecting plate is valid for small antennas, our
antennas with 23 cm radius are too large to allow a convenient measurement in the fti field.
Furthermore, while the background subtraction method worked well in removing primary
reflections, we were concerned that there could be secondary reflections in the confined indoor
environment that could not be removed in processing. Finally, it will eventually be necessary to
make measurements on the penetration of short impulses through slabs of lossy materials. For all
these reasons, we made measurements outdoors with two identical antennas using a higher power
source.

The test configuration is shown in Figure 9.1. The receiving antenn% sampling scope, and
computer acquisition were located on a wooden platform. The receiving antema (IRA-2) on its
1.2-meter tripod had a total height above the surrounding terrain of 4 meters. The 9-volt step
pulser was located with the transmit antema. The transmit antenna (IRA-1), also on a 1.2-meter
tripod, was located on an uphill slope, giving a height above the intervening terrain of
approximately 2.4 meters. This combination, together with the 9.1 -meter antenna separatio~
gave approximately 5 ns of transit time isolation before the first reflected signal. Because of this
large transit time isolation, background subtraction in the signal processing was not necessary.

9 V Step Pulser
Avtek
AVP-AV-lN
tr<60 PS

T’

IRA- 1

4

6dB

58 cm GoreTex
Port Cable

9.1 m path

Al 50n
58cm GoreTex Term.
Port Cable

15.2 m RG-214 Trigger Cable
1-V Trigger Pulse

140/1425/1411

PRF=50kHz

386
Laptop

10-Bit ADC

Computer
120 smp/sec

Figure 9.1. Outdoor Antenna Measurement Setup
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The transmit and receive antennas (IRA-1 and IRA-2) were each 46 cm in diameter with
F’/D = 0.25 and with an integrated balun. The IRA-1 used as the transmit antenna was excited by

o

the AVTEK model AVP-AV-1-N step pulse generator. This generator has variable amplitude
and pulse width and can produce a step pulse up to 9 volts and a risetirne <60 ps. This level is
approximately 50 times higher than the tumel diode puker used for the indoor test. The higher
level gives much better signal-to-noise ratio for the outdoor test. A 6 dB 18 GHz attenuating pad
(ARRA model 9412-6) was used to absorb back reflections fkom the antema. A 58 cm length of
Goretex microwave port cable transmitted the step pulse from the pulse generator to the antenna.
This arrangement gave approximately a 4-volt signal at the antenna input connector. The
AVTEK pulse generator was operated in a slave mode and was triggered by the 1 volt trigger
output signal from the sampling oscilloscope through a 15.3 meter length of type RG-214 trigger
cable.

The output from the IRA-2 receiving antema was transferred through a 58 cm length of
Goretex microwave port cable to the Hewlett Packard (HP) model 1430C sampling head, which
had a risetime of less than 20 ps. The sampling head was controlled by an HP model 140
sampling oscilloscope mainfkune with HP model 1425A sampling time base and HP model 1411A
sampling vertical amplifier. The time base was operated in free run mode giving a pulse repetition
frequency of 50 kHz. The trigger output from the time base triggered the AVTEK generator.
The analog scope outputs from the sampling vertical amplifier were passed through a low pass
titer to a 10 bit analog-to-digital converter (ADC) operated at 120 sarnples.kec. The analog-to-
digital converter was controlled and recorded by the 80386 portable laptop computer, and the
data was streamed directly to disk for later analysis. The HP140 sampling system was used rather o
than the portable HP 182 TDR system used for the indoor test, due to equipment failure. The
HI?140 actually has superior performance, with a risetime of< 20 ps, but it is a heavy unit and
dficult to transport. The complete system was calibrated as described in Section VII using a
tunnel diode pulser to excite the 1.47 ns timing standard for timebase calibratio~ and a DC
transfer standard for amplitude calibration. The antema response was measured on 3 sweep
speeds of 200 pddiv, 500 ps/div, and 1000 ps/div at 5 mV/div vertical sensitivity. A clean
prepulse followed by a reverse polarity impulse of approximately 50 mV amplitude was observed.

The input signal was characterized by bringing the AVTEK pulse generator to the location
of the sampling head and recording its signal attenuated by a 20 dB pad (ARRA model 9412-20).
With this method both Goretex cables were in the loop. The calibration of the antenna relative to
the input pulse thus compensated for both port cables, but not the baluns and cables internal to the
antennas. Thus, with this method of calibration, we are including the balun as part of the antenna.
In principle, we could use the data from Figure 7.6 to de-embed the effect of these cables.
Although that was not done in this test, it will probably be necessary in fhture tests to obtain
better agreement between theory and measurement. Since we are not including balun losses in
our theory, we expect our theory to overestimate the received voltage somewhat.

The data and signal processing proceeded as follows. The source pulse waveform is
shown in Figure 9.2. This is data taken at the faster sweep speed of 0.25 pshmple. After
filtering at 20 GHz with a 5th-order modified Buttenvorth filter, then taking the derivative, a

o
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9 close-up of the impulse is shown in Figure 9.3. This impulse has a peak dV/dt of61 V/ns, and a
t~ of 59 ps. If we fit an integrated Gaussian step fimction to these parameters, we find a
peak magnitude of 3.5 V and a derivative risetime of 57 ps.

The source parameters are then used to predict the received voltage when the signal is
passed through both antemas. The expected received voltage, with a correction for aperture
blockage, is shown in Figure 9.4. This can be compared to the experimental received voltage in
Figure 9.5. This is data is taken at a sampling rate of 0.46 pshample. Note that we are predkting
reasonably well the magnitude and duration of the prepulse. On the other hand, the measured
magnitude of the impulse is about 28% of what our model predicted.

Let us consider now whether our results are reasonable. Frost, we note that the signal
passes through the antenna twice, so for one-way transmission we are measuring 0.28X = 0.53
times what we expect for a single pass through the antema. Fufihermore, we note that our
predktion does not take into account cable losses in the balu~ and we have shown in Section VII
that cable losses are important. If we take cable losses into account, our measurement would be
reasonably close to the predicted value. Note also that there appears to be a small amount of
clipping in the raw received voltage in Figure 9.5, which also tends to reduce our measured
values. Thus, given all these factors, we consider our agreement with the theory to be reasonable.

We now process the received voltage to obtain h(t)/Jg%,using the processing techniques
of Section III. The corresponding source voltage is shown in Figure 9.6, sampled at a rate of

o
0.46 pskunple. This is essentially the same as Figure 9.2, but with a different sampling rate.
Note that the polarity has been inverted for clarity. Before the complex square root can be take~
the phase must be properly unwrapped. This was accomplished using the time-shifi technique
described in Section III. The magnitude and phase of #-(o)~g are shown in Figure 9.7, just
before the complex square root is taken. The phase is almost completely unwrapped, except for a
single wrap at 600 MHz. We believe that this single phase wrap at low frequencies has little
effect, but in fiture work we will implement a more complete algorithm to understand better its
effect. Note that the mid-band phase plot is flat, and that phase wraps at high frequencies are
unimportant because the magnitude there is small.

After taking the complex square root and converting to the time domaiq the resulting
h(t)~g% is shown in Figure 9.8, and a closeup of the peak is shown in Figure 9.9. The overall
shape is close to what we expect, i.e., a prepulse followed by an impulse. Based on equations
(2. 1-2.2), we expect the duration of the prepulse to be 770 ps, and that is about what we observe.
We expect the magnitude of the prepulse to be 0.27 rnhs, and we observe about half that. The
impulse area is predicted to be 0.206 m, and we observe an area of 0.14 m. Thus, our calculated
impulse area is 68°/0 of the predicted value. If we include balun cable losses in our theory, that
would reduce our theoretical values, so our measurements would be quite close. The fill width
half max of the impulse is 36 ps. Theoretically, the width of a delta fi.mction is zero, but real
devices always have a finite risetime. Our results suggest that the risetime of the antenna
(icluding the balun) is 36 ps, which is quite satisfactory for our purposes.
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Finally, it maybe of interest to calculate the radiated electric field on boresight when the _
antenna is driven by an ideal step-finction voltage
possible rdlated field one can get out of the antenna.
a driving voltage of VOu(t) on the 50-ohm feed line.
J?wqt) of .

with a nsetirne of zero. This is the best w
It is obtained from equation (2.1) by using
Thus, we have an optimized radiated field

V&
(9.1)E“?’t(t) = ~ ~ ‘t)

Note that we have taken into account the balun and the second pair of arms by including an

additional factor of 2~ in the above equation. Note also that the fg factor refers to the

normalized impedance of a single pair of arms ~g = 400Q/377S2 = 1.06)

We implemented the above scaling of the measured h(t) to obtain the radiated field for a
l-volt perfect step driving Iimction, scaled to a one-meter distance. The result is shown in Figure
9.10. One can use this to compare to other antennas for those situations where the pulser has a
risetime much faster than the risetime of the antema. Finally, photos of the test site are shown in
Figures 9.11 and 9.12.

The results of the outdoor test were in good general agreement with the expected
theoretical results. Cable losses appear to be the dominant loss mechanisq and fhture work can
take this into account better by using the measurements of Section VII. Cable losses would be
reduced by placing the source and sampler at the antenna ape~ or by using a larger diameter ,b
cable. Note, however, that huger cables may have difficulty maintaining the risetime through
bends in the cable. Also, it is more difficult to build a small geometry at the feed point with larger
cables. Thus, it is clear that some tradeoffs in cable size will have to be made.

In summary, we note that the step response of the antenna, h(t), has a pulse width of just
36 ps. This is considerably faster than the 100 ps or so that we set out to achieve, so we consider
the test to be quite successful.
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Figure 9.11. The receiving IRA at the outdoor test location.

Figure 9.12. The outdoor test site, showing both the receiving W (foreground), and the
transmitting IRA (behind Dr. Frost).
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X. Propagation Theory

‘1

In order to understand Ground Penetrating Radars (GPRs), it is critical to understand the
propagation properties of the media in which the radar will operate. Toward this end, we present
an initial survey of the methods available for predkting pulse propagation through fiequency-
dependent dielectric rneda. We consider here both analytical methods and methods based on
experiments. In Section XI, we summarize briefly some numerical methods based upon the Ftite
Difference Time Domain (FDTD) method. In Section XII, we propose experimental methods for
measuring material properties.

A. Analytic Methods

A number of models of dielectric material are available. In the frequency domain, one can
express the relative permittivity as

&(a)) = &o[&m+ x(a)] (10.1)

where Em is the relative permittivity at infinite frequency, and X(O) is the frequency dependent

portion of the relative perrnittivity. Various models can be used to express the fiequency-
dependent portion of the relative permeability. The most commonly used (and simplest) is the
Debye model, which uses a single pole, and has the form [8]

x(a) = ‘s - “’”
l+j~r

(10.2) g

Thus, the perrnittivity is dependent only upon a singte relaxation time q a static (Iow-frequency)
perrn.ittivity ES, and a high-frequency permittivity Sm. & an example, the complex dielectric
constant of water is plotted as a fimction of frequency in Figure 10.1

90 r

--
-. -. ---- ---- --

0r I

o 10 20 30 60 70 80
Freque~~y (GH?z!

Figure 10.1. Complex relative permittivity of water (from [8])
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a In the time domai~ to get D(t) ftom E(t), one convolves the electric field E(t) with the
permittivity. Thus, we have

D(t) = EO[+(o 0 W)]
= &o[&mqt)+ x(t)]o E(t)

(10.3)

where the” 0 “ symbol indicates a convolutio~ and d(t) is a Dirac delta finction. If we convert
the relative permittivity to the time domaiu we find the frequency-dependent portion of the
response of a Debye medium to an impulse is just a simple decaying exponential, or

X(t) = ‘s -‘a e-tJr u(t)
‘r

(10.4)

where u(t) is the Heaviside step fi.mction. Note that the Debye model has a particularly simple
inverse Laplace transform. Other models are either more comple% or simply do not have an
analytic inverse transform.

Let us consider now some of the other forms for the frequency dependent dielectric
constant that have been used in the past. The simplest modification is to use a sum of
exponential for X(t) [9, 10]. This would normally be expressed as

x(t)= [1?a.e-pnt‘(t) (10.5)
.=1

where the an’s and fin’s are positive real numbers. Of course, this has simple inverse transform

x(s) = ~ an
n_ls+pn

This is actually a specific form of a more generaI rational fimction

The form in eqn. (10.6) has
type of RC ladder network.

x(s) =
~:=OAmsm

N>M
~:=OBnSn ‘

(10.6)

(10.7)

been developed in some detail in [9], and it corresponds to a specific
Further details can be found in [9].

Let us consider now how one might use these frequency-dependent dielectric constants to
solve a one-dimensional propagation problem. We propose first to consider a simple uniform
medium and plane-wave propagation.

e

For this case, the electric field must satis~ a Helrnholtz
equation
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(10.8)

Although we must revert back to the time domain eventually, it happens to be easier to solve the
problem in the frequency domaim and convert back to the time domain later.

This formulation allows propagation through one-dimensional layers, as shown in
Figure 10.2. This is analytically tractable through any number of layers necessary. One would
solve the problem at each frequency, and then convert back to the time domain.

Figure 10.2. Propagation through layers.

This technique can be extended to non-plane-wave propagation
transform of the Helmholtz equation in the x and y directions. First we
equation in three dimensions as

~2E 8E+(5’% Y2E . 0
—+— —–
(9X2 ay2 dz2

Y . ti~m
c

by taking the Fourier
express the Helmholtz

(10.9)

Next, we note that if we take the Fourier transform in the x and y directions, the derivatives with
respect to x and y become simplyjkx and jkp respectively. This results in
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r= II
y2 + kx2 + kY2

The solution process would begin by expressing an aperture electric field at z = O, taking its
Fourier transform in the x and y directions, and propagating the result through the layers in the
frequency domain. While this is analytically tractable, the three-dimensional Fourier transform
(two space dnensions and one time dnension) may be dficult to implement in practice. If the
problem is circularly symmetric, as would be the case for utiorm excitation over a circular patch
at z = O, then one would need only a two-dnensional transfo~ and the problem would become
more manageable.

B. Methods Based on Experiments

An equivalent way of thinking about the relaxation time is to actually look at a TDR of the
reflection of a step-fi.mction voltage from an air/dielectric interface. Sample measurements using
this technique were carried out in [11]. An example TDR is shown in Figure 10.3. From this
reflection, one can see clearly the low- and high-frequency limits of the reflection coefficient, and
the relaxation time. It is simple to convert these reflection coefficient limits to dielectric

o

constants, so one then has all the relevant tiormation to fit the Debye model of equation (10.2).

4

●*O

AUYLALCOHCI. z,%

h

-! howc
?o”l~

TluE—

Figure 10.3. Sample TDR (reflection coefficient vs. time) for a reflection from Arnyl Alcohol;
from [11].

Some sample data from the Fellner-Feldegg study [11] (F@re 10.4) plots the relaxation
times for several alkyl alcohols as a fbnction of temperature. Notice that relaxation times of a few
tens of picosecond to a hundred nanoseconds were obtained. Relaxation times, as well as

o
complex permittivity values obtained in the study of organic liquids, compared well with literature
values obtained by more traditional techniques. The parameters of the media were obtained over
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a larger frequency than would be possible with a frequency domain technique. Note that in this
study, it was necess~ to use models more complex than the simple Debye model. This points o
out the importance of having some flexibfity to apply a variety of dfierent models to the
measured data.

r

Figure 10.4. Relaxation time as a fimction of temperature
from [11].

(degrees C) for various

-103

alkyl alcohols,
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e XL Frequency-Dependent Finite Difference Time Domain Techniques

We have shown that propagation through layers of media with frequency-dependent
pennittivities is solvable in closed form. If one is faced with a more complex geometry, however,
a numerical method will be required. We consider here how to apply a Finite-Difference Time
Domain (FD’ID) algorithm to a simple Debye medium. We also consider how this might be
extended to other media. Although we consider here only a l-dmensional problem the method
can be extended to two and three dimensions.

We begin with Maxwell’s equations in the time domain. Thus we have,

a
Vxi? = –po —

dt
m–Vxg = — +OE
dt

D(t) = &O[&,(t)o W)]

(11.1)

We can specialize
directio~ so

these equations to one dimensio~ assuming that waves propagate in the x

dHz(x, t) = 1 dEy(x, t)
——

dt lJ~
dDy(x, t) dHz (x, t) ~E

dt ‘– & – y
(11.2)

Dy(t) = +(t) o Ey(t)] = SO[&~6(I)+ X(t)] o EY(I)

It is simple now to convert the first two equations to an FDTD equation. We follow the
development of [8] here. Thus,

HZn+%(i + !4) = HZn-~(i_~) - ~ [Eyn(i + 1) - Eyn(i)]

(11.3)

~Yn+l(i) = DY”(O - & [H,n+%(i+ ~)- H.n+%(i- ~)] - a At Eyn+l(i)

where the superscript n refers to the time step, and the index i refers to the position in the z
direction. The constitutive relation is expressed as a convolutio~ i.e.,

D(t) = SasO E(t)+ &OjE(t – A) x(A) dA (11.4)

o

*
which can then be discretized as
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@

(11.5)

~n = Em&o En •t-&o‘~lEn-m Xm
=

(m+l)At
xm . j X(A)d: 0

mAt

One can combme (1 1.5) with (1 1.2) by considering the expression for the dflerence in D between
two consecutive time steps, i.e. ~+’(i) –D(i). After some calculation and substituting into
(11.3), one finds [8]

EY‘+l(i) =

+

—

AXm =

Em
EYn(i)

o At
—+&m +x*
E*

1
~lEYn-m(i)AXm

o At
—+&a+XOm=O
E*

At [ 1HZn+%(i + ?4) - HZn+%(i - %)

o At
—+&m +x* &o Ax
E*

Xm – xm+~

(11.6)

This is now sufficient, in combination with (11.3), to calculate a one-dimensional fiequency-
dependent FDTD problem. The extension to two or three dimensions is straightforward.

There is a difficulty, however, in the above relationship. The convolution in the second
line of equation (11.6) is time-consuming to calculate, and it can also require considerable
memory in a three-dimensional problem to store old values ofll For some media models, such as
that for Debye media or for a sum of exponential, the convolution at a given time is simply
expressible in terms of the convolution at an earlier time step. Examples of these recursion
relationships are provided in [8]. For other media, one must carry out the complete convolution
at each time step, storing the old values of EY for later use.

A more general technique for discretizing the constitutive relation is to use the so-called
“derivative” formulation as described in [8]. This is best illustrated by an example. Assume we
must discretize the Debye constitutive relation, i.e.,

&(a)) = ~
[

&~ – &m
= &o&m+

l+joto 1 (11.7)

This is rearranged as
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o (l+joto)D(@) = jm tocOcmE(m) + JSO&~E(O) (11.8)

Noting now that the operator j~ is equivalent to a derivative in the time domm this can be
expressed as

(11.9)

This can then be discretized in the usual manner to calculate find @+l if one knows D and Eat
earlier time steps. Thus, we see that the third equation of equation (11.2) can be discretized
d~ectly, without a convolution, in certain cases.

o

It is apparent that there are several alternatives for addressing the problem of fiequency-
dependent propagation numerically. First, one has the option of looking for an efficient recursion
relationship for the convolution in equation (11.6). Second, one might implement the constitutive
relation with a derivative relationship such as that in equation (11.8). Finally, if no recursion or
derivative relationship is available, and if the problem size is small enough, it may also be possible
to cm-y out the convolution in (11.6) by brute force, storing the old values of the E-field for later
use.
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XII. Propagation Experiments

We outline here the methods that could be used to characterize frequency-dependent
dielectric rneda. To measure the characteristics of various dielectric materials, we will use a
method similar to the TDR reflection measurement of Ref [11].

A diagram of our proposed experimental test setup is shown in Figure 12.1. This is ve~
similar to the TDR antenna calibration method which was performed in Section VII, and the same
basic equipment is used. A 20 ps step pulse is generated by the tunnel diode pulser. It is passed
through the sampling head to a conical wave expansion section which allows an increase of the
coaxial transmission line dhrneter to a convenient size, without exciting non-TEM modes. The
wave propagates along the air-filled coaxial line to a planar interface with the lossy dielectric
material. A reflection from the interface travels back to the feedthrough sampling head and is
sampled with a 20 ps risetime unit, digitized by the 16-bit ADC, and recorded in the computer. It
is necessary that the material-filled line have sufficient length that relaxation occurs before the
reflection from the short at the end of the line. The reflection from the short then passes back
through the dielectric to the sampling head. An analysis of the second reflectio~ which has
passed through the dielectric twice, gives an independent measure of the transmission properties
of the dielectric. Thus, we can measure both reflection and transmission characteristics with the
same apparatus.

One can also install a second wave compression cone on the right hand side of the lossy
medi~ in order to look at the transmitted signal directly, without reflecting from a short at the end
of the line.

Diepoeable Test Sedkm

L-t
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Step Putaer
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tr=2UpLa

Feed-through I
Sampling Heed 1
HP 1430C I
tr=mps

I Ak \ ‘Samde I \

Wave
Expansion

Setilon

Sampling Swpe
Display Unit
HP182C11811A

I
AntiiAliss ~
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Interface

Ill I

1
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a

e

Figure 12.1. Experimental setup for lossy materials characterization.
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a For some materials which possess structure or orientation such as rebar-filled concrete, it
would be more appropriate to pefiorm measurements using freely propagating waves from the
impulse antennas. Small IRA antennas with a 20-cm diameter wouid be well suited to this task
because they generate short pulses with high gain. The experimental setup for this measurement
would be the same as for the antema measurements of Section z with a slab of dielectric
between the two antennas.

XIII. Conclusions

We have described here a variety of antennas that could be used as a il-ming antenna. We
have summarized antenna pefiormance parameters, and we have shown how to process the
antenna measurement data. Two copies of a reflector IRA were built, along with an integrated
balun. Measurements were made using either a single antenna with a large reflector, or with two
identical facing antennas. Good agreement with theory was achieved, and it was determined that
cable loss was a significant factor that would have to be carefidly considered in fiture

o
measurements. We achieved a step response for the ~ with a Full Width Half Max of 36 ps,
which was quite a bit faster than we set out to achieve.

Also considered here were some preliminary considerations for calculating propagation
losses through frequency dependent dielectric materials. Both analytic and numerical methods
were considered. Finally, we outlined how one might measure the material properties of various
materials.
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