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L Introduction

9
When designing TEM horns and lens IRA for radiating a transient signal, it is unclear

how best to choose the feed impedance to provide optimal pefiormance. Normally, one has a
fixed amount of aperture area within which to build. the antenn~ and one can choose any
impedance one wants within this aperture. This paper addresses this problem for a number of
configurations related to TEM horns and lens IRAs, as shown in Figure 1.1. We calculate here
the feed impedances that produce the optimal radiation for a given input power, with the aperture
constrained to a circle of a given radius.

This paper builds upon the work of [1], which treated the same problem with respect to
reflector IRAs. The present problem is in some ways easier than the reflector IRA probleq since
there is no need to consider aperture blockage due to the feed arms, as there was in [1].

We first treat the case of a TEM horn with flat, long plates, and with an inflite aperture.
The plates are confined to a circular aperture of constant radius. Antenna gains are calculated as
a finction of impedance, and the feed impedances which achieve optimal gain are determined.
This theory is then modified for the case where only the fields between the plates are allowed to
radiate. This second case is usefil in lens IRA design, in which only the fields between the plates
are focused. Note that reflections from the dielectric lens are ignored, however, the error
introduced by this effect is typically only a few percent, We then repeat the same calculations for
a TEM horn built with curved plates, again treating the cases of an inilnite aperture and a blocked
aperture.

Let us begin now with the case of a TEM horn built from flat plates
(D.

Lens

Figure 1.1. A lens Ill.& or without a lens, a TEM horn.
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II. Optimization of a TEM horn with Flat Plates

The problem we wish to solve is shown in Figure 2.1. While keeping the flat plates within
a circle of radius ao, we determine how to choose b/a in such a way that optimizes the radiated
field, for a given input power. This configuration is essentially what one would see if one looked
at the front of a long TEM horn.

There are actually two problems that will be addressed. First, we assume an infinite
aperture, as shown on the left in Figure 2.2. This is an approximation to a long TEM horn with
no lens. Second, we consider the case where only the aperture fields between the plates are
allowed to radiate. This would apply to a lens ~ in which only a
focused. It would also apply to an antenna that must be located behind
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Figure 2.1, Configuration to be optimized.
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Figure 2.2. Two cases for optimizing the radiated field of a flat TEM horn, infhite aperture (left). .
and blocked aperture (right).
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First, wespeci~the characteristic impedance of the feed. Theimpedance is determined
fkom [2,3] *

K(ml)
fg=~, ml=l-m

a
= ~[K(m)E(@ojm) -E(m) F(#olm)]

F?r
(2.1)

sin(f$o) = j=

where K(m) and E(m) are the complete elliptic integrals of the first and second kind, and F($alm)
and E(@Olm)metheincomplete elfiptic integrals of the first andsecondtind. Asusual, fE=ZJZO,
where Z. = 376.727 Q
set of equations. Since
and &is expressed as

To findfg for a given value of b/a, one must solve numerically;he above
the aperture is constrained to be of radius ao, the relationship between a

To obtain the radiated fields, we must find the fields in the aperture.
find a potential finction in the form

<=x+jy

w(<) = u(<)+ j v(O

x, y, u, and ~’are all real

When cast into this form, the aperture field and feed impedance are [2, 3]

I(O a(x, y)
Ey(x, y) = -—-

Au 8Y

fg=$

(2.2)

Thus, we need to

(2.3)

(2.4)

where Au is the change in u fi-om one conductor to the other, and Av is the change in v as one
goes around one conductor. We now need a suitable complex mapping to fit the problem.

The potential finction that describes the aperture is [2, eqn. 2.15]



(2.5)

This is the simplest form. Another form is used in [3,4], but it is less convenient because the
conductors are located on surfaces of constant v instead of the more customary constant u. AS a
cautionary note, we point out that most numerical packages expect the first argument of the
incomplete elliptic fimctio~ 17(w@),to be in the form of an angle. Thus, the incomplete elliptic
integral has to be cast into the form of E(am(wlm)lrn), where am(wlm) = arcsin(sn(wlm)) is the
Jacobian amplitude iimction. A plot of the resulting complex mapping appears in Figure 2,3.
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Figure 2,3. Complex potential map of the parallel plate configuration, for ZC= 100 Q.

5



?

Next, the impedance was calculated using (2.1), and this is plotted as a fimction of b/a in
Figure 2.4. Note that we have used a low-frequency asymptotic form of the impedance [3], o

fg =
bfa

1+ %’+%)]
This form was used for b/a c 0.3.

(2.6)

The figure of merit we use for the radiated field is the transient power gain (normalized to
constant input power), as defined in [1,5,6]. Thus, we have

where ha is the normalized integraI over the aperture field [7],

ha =
-i% W,Y’)A’Wo

(2.8)

and Sa is the total surface over which radiation occurs. This integral will be calculated for the two
configurations as a function of ZC.

*

Let us pause for a moment, to consider whether the figure of merit, GP, makes sense. To
see why our expression of gain in {2.7) is reasonabk, we recall that the fast part of the field
radiated from an aperture on boresight is [6]

(iv(t)
Era~(t) = - ‘a —

2zrcfg dt
.

qw) j J.fg)
Erad(t) = – Z:c

dt

Furthermore, the received voltage for an incident field on boresight is

V&(t) = -ha Einc(f)

Vrec(t)

r =-Gp Efnc(t)
g

(2.9)

(2.10)

Thus, both the radiated field and the received voltage are proportional to power gain. Note atso

that the voltage is cast into the form of square root of power, by dividing by m. On this basis,

our definition seems reasonable.
@
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Figure 2.4. Impedance of two parallel plates.



A. Fiat Plates with Infinite Aperture

o
We now calculate ha and Gp for two cases. First, we consider the case of an infinite

aperture, as shown on the left in Figure 2.2. In this case, it is particularly simple to calculate ha,
since it can alternatively be expressed in terms of the dipole moment of the charge in the aperture
[7]. Thus,

h = J’J’9(%Y)Y~
a Jjdw)w

(2.11)

where q(x, y) is the charge density on the conductors, and the integrals are carried out over all the
conductors in the aperture. Since all the charge is located at y = * b, the value of ha is calculated
trivially as

h~=b (2.12)

We have plotted h~ao as a finction of ZC in Figure 2.5. As expected, at high impedances it
approaches unity asymptotically. This is the expected result because for a pair of thin wires, we
know from [7] that ha= ao.

Finally, we have plotted the power gain, Gp

at 2== 242.3 Q, where the power gain is 1.09 x ao,

= ha /W, in Figure 2.6. The peak occurs

At this point, b/a= 1.82. @
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B. Flat Plates with Blocked Aperture

Next, we calculate ha for the case of a blocked aperture, as shown on the right in Figure
2.2. This is the normal case of interest to the antema designer. Only a portion of the aperture
field is included in the aperture integral, because only that portion is focused.

To calculate ha, we express it as a contour integral [1,6,7], i.e.,

where Av is the change in v around a conductor. In addhion, Ca is a contour integral over one
quadrant of the exposed portion of the aperture, as shown in Figure 2.7. To calculate this
integral, we note that the integrals over Cl and C3 are identically O, since there is no change in y.
Furthermore, the integral over C4 is also zero, because v = O there. Therefore, we need only
calculate the integral over C2.

Y
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C4

,1
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x

Figure 2.7. Definition of the contour Ca.

Calculating the integral over C2 presents us with a challenge, because there is no easy way
to calculate v(Q. Normaily, one would find v from the complex contour mapping, i.e., equation
(2.5). But in the present case there is no simp~eway to invert the contour mapping to find v in
terms of< Thus, one would have to solve (2.5) numerically for v(O at each location on the arc.
Since we must also calculate the integral along this pat~ this becomes computationally expensive.

A simpler method is to just assume that the contour Cz is along a contour of constant v.
This is rigorously true in the limit of high impedances, b / a + m, because the conductors become
thin wires at that point, Since we know the optimal values
b/a, the approximation is reasonable. Thus, we search

10
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v

intersects the circle at (x,y) = (aO,O),and use that for our contour of constant Vo, From (2.5), we
solve numerically the following for VO,

2J [~(~) E( j ~. I%=_

b
[m) + jvo x (E(m) - K(m))]

n

After finding Vo,and using the fact that Av = 2K(m), we find the aperture height to be

2bvo
ha = -—

K(m)

(2.14)

(2.15)

Note that V. is a negative number, so ha is positive, as it must be. We estimate the error in this
procedure to be a few percent. A catalog of contour maps (like those of Figure 2,3) with various
values of b/a is available in [8]. From these contour maps, one can veri$ our estimate of the
accuracy of the method.

The results for ha are plotted in Figure 2.8, and the power gain is plotted in Figure 2.9.
The peak gain occurs at Zc = 203.7 Q where the power gain is 1.16 x ao. At this point, b/a =
1.28.

At this point we can check the validity of our numerical approximations. In particular, we
check the validity of our assumption that the edge of the circular aperture is approximated by a
line of constant v. A plot of. the contour map for the optimal value of b/a= 1.28 is shown in
Figure 2.10. Also plotted on the map is the circular arc that defines the aperture. Based on this
plot, the error estimate of a few percent seems reasonable. Note also that our estimates of ha and
GP are lower than their actual values, so we are slightly underestimating the true power gain of
this configuration.

It is interesting to compare the results for the blocked aperture to those with the infinite
aperture. One might expect that an infinitely large aperture would have better performance, but
that is not the case. The blocked aperture actually has a slightly better power gain, with a value of
1.16 x ao, compared to 1.09 x a. for the infinite aperture. The likely reason for this is that we
have blocked out fields that have a negative contribution to the total radiated field, just above the
top plate and just below the bottom plate. Therefore, if one wanted to improve the performance
of a simple long TEM how one would block out a portion of the field just above and below the
top and bottom plates.
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III. Optimization of a TEM horn with Curved Plates

e
We now repeat the calculations of the previous section using curved plates, instead of flat

plates. The configuration is shown in Figure 3.1. To solve this problem we now must determine
the optimal angle a for the plates. Once agai~ both the infinite aperture and the blocked aperture
will be considered, as shown in Figure 3.2.

As before, we fist establish the characteristic impedance and the aperture field. The
characteristic impedance of the configuration is ZC= ZO&, where [9]

-V’2’’’;*:’r=-
Figure 3.1. Configuration to be optimized.

Figure 3.2. Two cases for optimizing the radiated field, infinite aperture (left) and blocked
aperture (right).
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K(m)
fg=~’ ‘1 = l–m

and

[11- sin(a) 4
m= tan(a) = ljm~~

Cos(a) ‘

We have plotted ZCas a fimction of czin Figure 3.3.
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Figure 3.3. Impedance of curved plates as a Ihction of cz.

The potential fimction describing this configuration is [9]

[

1 (</ao)-l
w = arcsn — 1 c 1+ j m%sn(w m)

jm%(</Uo)+l ‘ ~ = l-jmfisn(w m)

(3.1)

(3.2)

(3.3)

where sn(wi m) is one of the Jacobian elliptic fimctions [10], and arcsn is its inverse, This
complex potential is plotted in Figure 3.4.

0
With these preliminaries established, we now calculate for our two cases the values of ha

and Gp, as already defined in (2.7) and (2.8),
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Curved Plates with Blocked Aperture

Of the two cases we treat in this section, the simplest is when the aperture is blocked, as
shown on the right in Figure 3.2, In this case, one can use the circuiar aperture theory of[11] to
find ha. It was shown there that the step-response radiated field on boresight due to any analytic
field contained within a circu~araperture is simply

a’
E(r, t) = E. & da(t) (3.4)

o
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where EOis the field at the center of a circular aperture of radius ao, and ~a(t) is an approximation
to the delta fi..mction[7]. On the other hand, the radiated field can also be expressed as

E(?’, t) = -~
ha

da(t)
r 23rc Jg

Combining the above two equations leads to

hQ=-
nao2 fg E.

V*

For the current configuratio~ the electric field at the center of the aperture is [9]

E. = -~
1

a. K(m)(l + #)

Combining the above two equations, and using (3. 1) for~g, the aperture height is just

(3.5)

(3.6)

(3,7)

ha = - ‘Uo
K(ml)(l + m%)

Note that as m +1, the plate width becomes very small,
ha + ao, as we know h must.

(3,8)

Furthermore, K(ml ) + z / 2 and

One might question the validity of the circular aperture theory used here, because of the
singularity in the fields at the edge of the curved plates. Recall that one of the requirements
imposed on the solution in [11] is that there must be no field singularities in the aperture, since a
singularity cannot be represented by a Fourier expansion of circular harmonics. But our
singularity occurs at the edge of the aperture, and one can take a boundary around the aperture
that is some s inside the previous boundary. In doing so, one can eliminate the singularity, and in
the limit as s + O, the aperture integral is the same as it would have been with no singularity on
the edge. Thus, the circular aperture theory of[11 ] is valid for our configuration.

Although it is not really necessa~, we note that there are other ways of calculating the
effective aperture height: In particular, one can calculate ha as a contour integral as before, as
[1,7]

ha = -; I$V(@?y
Ca

(3.9)

where Ca is the contour shown in Figure 3.5, To calculate this integral, we note that the integral
over Cl is O, since there is no change in y. The integral over C2 also zero, because v = O there.
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Finally, the integral over C4 is trivkd because it is along a contour of constant v = K(ml)/2. Thus,
the integral over C4 is just m

(3.10)

This leaves us with just the integral over C3 to calculate,

Y

Ca = Cl +C2+CS+C4

cl
I /

x

Figure 3.5. Definition of the contour Ca.

The challenging part of the contour integral is along C3. R turns out that we can calculate
this numerically, by integrating along a path where ~= a. e ~g, calculating v(Q as the imaginary
part of w(O as expressed in (3.3). Using the fact that y = a. sin(q and
have

dj = a. COS(QdO, we

(3.11)

q 7rf2-a

Combining the above three equations, and noting that .Av= 2 K(ml), we find

[

ha=aOl– 1K:m,):~[w(.’%s(o)do (3.12)

x-

There is no need to actually use the above formula im.the optimization procedure, since we can
use (3.8) much more efficiently. Nevertheless, we have compared the
with the two methods, and they are in agreement to ma,chineprecision.

18
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3

* We have calculated ha as a fi.mctionof impedance in Figure 3.6. Furthermore, the power
gain Gp,as defined earlier in (2.7), is shown in Figure 3.7. The peak occurs at ZC= 376.727/2 $2
(.&= 0.5), where the power gain is 1,20 x ao, At this point, a = 45°. Thus, there is a pleasing
symmetry in the result.
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B. Curved Plates with Infinite Aperture

Finally, we consider curved plates with an infinite aperture, or with the conducting plate
removed, as shown on the Iefi in Figure 3.2. It turns out that for this particular configuration, the
results with the blocked aperture are exactly the same as those for the infinite aperture, so there
are no additional calculations to perform. Thus, we find once again that the peak gain of
1,20 x a. occurs at~g = 0.5, where a = 45°

The reasoning for this result has to do with the properties of self-reciprocal apertures, as
developed in [12]. Briefly, it was shown there that when an infinite aperture has the property that
it is self reciprocal, the radiated field on boresight is described by the field at the center of the
aperture (equation 3.4), exactly as for circular apertures [11]. Since we just used [11] to find the
result for a blocked aperture, there is no need to repeat the calculation, .

As a check on this result, we can calculate ha using the electric dipole moment technique
in (2.11). The charge on the plates is proportional to the difference in electric fields just above
and below the plates. Thus, we modifj the formula slightly to express this, i.e.,

JE(<+) - -W-) y d9
ha = - ‘--

f E(<+) - E(<.) dO
(3.13)

where the integral is taken over the plates. Note also that E((+ ) and E(<_ ) are the electric fields
just above and below the plates, and that these fields are in the radial direction, because they must
be normal to the conductor. The electric field is expressed as [9]

E(<) = EX – jEY =
j V. 1

(3.14)
aOK(m) (1 + fi) ((l aO)4 + 2cos(2a)(~/ ao)2 + 1

where ~h = a. (1* S) e~d just above and below the plates, and s is a vanishingly small number.
We have carried out this calculation numerically, and we have found the results for ha (and hence
GP) to be the same as those calculated earlier to within machine precision.

It is interesting to compare this result to an earlier paper [9], which calculated optimal
field uniformity for the same configuration. It was found in [9] that maximum field uniformity at
the center of the aperture also occurs atjg = 0,5 and a = 45°. Since it is believed that maximum
field uniformity leads to maximum radiated field, our result appears to be quite reasonable.
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IV. Conclusions

We have found the optimal impedances for long TEM horns and lens IRAs, for the cases
of blocked apertures and infinite apertures, when the antennas are confined to remain within a
circle of a given radius. The optimal results are summarized in Table 4.1. As perhaps we might
have expected, either of the two configurations with cumed plates has the highest gaiw since they
more completely fill the available aperture. However, the flat-plate configuration with blocked
aperture is not far behind.

Table 4.1 Summary of Optimal Configurations

Figure of Merit Relevant
Configuration GP/aO & Parameter

Circular Plates, Blocked or 1.20 188.4 a = 45°
Infinite Aperture

Flat Plates, Blocked Aperture 1.16 203.7 bla= 1,28

Flat Plates, Inilnite Aperture 1.09 242.3 bfa= 1.82
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