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Abstract

A critical component of a high-voltage Half Impulse Radiating Antenna (HIRA) is the
lens, which is located at the feed point. This lens is used to match an electrically large coaxial
waveguide to the feed arms of a Half IR4. It consists of a prolate spheroidal surface at one
interface, and a quartic surface on the other interface. We describe here the design principles of
this lens, and we provide example solutions.
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I* Introduction

The availability of single-ended high-voltage pulsers has led to the demand for suitable
antennas to radiate the signal. A candidate antenna for this application is the Half Impulse
Radiating Antenna (HIRA). This antenna was first proposed in [1], and a variation of this was
described in [2].

Probably the most complicated part of this antenna design is the lens. This lens is used to
convert a plane wave in a coaxial waveguide to a spherical wave which is launched onto the
conical feed arms. Normally, one would want to keep this region electrically small, but high
voltages preclude that possibility. An idealized version of the lens was proposed in [3], but this
version required a material whose dielectric constant could be varied continuously throughout the
medium. This design also required guiding conductors spaced close together, on sheets of
constant thet~ to guide the waves. In this paper we propose a lens that is built with a simple
homogeneous dielectric material, so it will be more practicaf to build.

An example of a typical HIM is sketched in Figure 1.1. It consists of an oil-fiiied coaxial
feed, which transitions into the feed arms of the antema. The antenna itself consists of two
conical feed arms feeding half a reflector. We assume an F/D ratio of 0.25, in order to maintain
rotational symmetry. The input impedance to the feed arms is typically 100 Q in air, or about
67 Q in the oil-filled coaxial feed. This particular sketch includes an oil cap above the ground
plane, but other designs are available without the oil cap. The outer edge of the oil cap is a
spherical polyethylene shell, which has a dielectric constant close to oil, so it does not change the
direction of the field. o

For the purposes of our calculations, we assume a lens feed and antenna with a single
conical arm, Normally, one will want to split the center conductor into two arms, but we can only
solve the problem if it is rotationally symmetric. The solution to the rotationally symmetric case
provides a good approximation to the more difficult three-dimensional problem.

Sketches of two possibie lens designs are shown in Figure 1.2. The first sketch shows a
design which includes an oil cap. We will refer to this as an oil-lens-oil design, The second
design has no oil cap and it simply has air or SF6 at its output. We refer to this design as the oil-
lens-air design. The equations for both designs are quite similar, and we provide equations
general enough to include both.

The net effect of the lens is to convert a plane wave in a coaxial geometry to a spherical
wave in a conical geometry. The focus of the spherical wave is on the ground plane, at the center
of the coaxial feed, and at the focus of the paraboloid.

In this paper we provide a complete derivation of the lens equations. We also provide
design principles, and we show some examples. Let us begin now with derivations of the lens
equations,
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Figure 1.1 A sketch of the Half ~ shown here with an oil cap.
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Figure 1.2. Two lens designs, including an oil cap (top) and without an oil cap (bottom).



II. Lens Equations

To design the lens, it is first necessary to derive the equations for the two interfaces,
Interface #1 and Interface #2, as shown in Figure 1.2. The first interface is a simple prolate
spheroid, and the second is a quartic surface, which is just a fourth-order polynomial. Although
these were derived earlier in [4], we provide here derivations that are sornew-hat
special case,

A. Equations for the Interface #1: Plane Wave to Spherical Wave

The first interface converts an incident plane wave to a spherical wave.

simpler for our

It is a txolate.
spheroid [4, Section 3], or ellipse of revolution. A diagram of the relevant parameters is shown in
Figure 2.1. In the Y-z plane the equation of the sutiace is derived from transit-time
considerations as

&(/-r) = &(-z) (2.1)

This is just another way of saying that the ray through the center and an offset ray both must
arrive at the circle at the same time. Let us make the substitution

q = J&@~ , q<l (2.2)
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Figure 2,1. Geometry for Interface #1: Prolate spheroidal interface for converting a plane wave
to a spherical wave.
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In additio~ we expand r into its z and Ycomponents as

9
r2 = (1+ Z)2+Y2 (2.3)

where Y is the radial cylindrical coordinate. (Note that Y is sometimes represented by other
authors asp.) CombMng the above three equations we find

(1+2)2 +Y2 = (4+qz)2 (2,4)

This is the equation to be solved.

By expanding and simpli&ing the above equation, we can find a simpler expression. After
completing the square, we find

zz+~z+=.o
l+q pqz

()

.!2+Y2 12
z+— —

I+q l–qz = (1+ q)z

If we now make the substitutions

(2.5)

-e
/

l–q
a— bt—=

= l-+-q ‘ I+q

we arrive at the final equation

(2.6)

(z+a)2 + & = ~
ci2 b2

(2.7)

This is immediately recognizable as a simple ellipse with major and minor axes of a and b,
respectively, and offset in the z direction by -a. Note also that all rays in the second medium
originate at one of the focuses of the ellipse.

B. Equations for Interface #2: Spherical Wave to Another Spherical Wave

The second interface converts a spherical wave centered at (–11, O) to another spherical
wave centered at (–/2, O). A diagram of the rays to be traced is shown in Figure 2.2. Once again,
from transit time considerations, we have

(2.8)

*



4

.

This was derived by enforcing the condition that a ray through the center and a ray through an
off-center path must arrive at the circle at the same time. This simplifies firther as

J%2 (Cl -~1) = (~2 -12)

‘r2 = &2/&3

We can now expand rl and r2 in terms of their z and Ycomponents as

(2.9)

q = J(1I+Z)2 + Y2

r2 = J’-

(2.10)

Combining the above two equations, we now have the quartic equation that describes the sutiace,

(2.11)

This corresponds to [4, equation 4.9]. To generate a curve from the above equatio~ we choose a
set of Y values, and solve for z numerically. An explicit form of the surface is also available
in [4].
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Figure 2.2. Geometry for Interface #2, a quartic surface for converting a spherical wave centered

at (–11, O)to another spherical wave centered at (–12, O).
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III. Lens Design Equations

We now begin the derivation of the overall lens equations. As a starting point, we express
the equations of the two interfaces in a shifted coordinate system, as shown in Figure 3.1.
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Figure 3.1. Lens design parameters.

The equations of the ellipse (prolate spheroid when rotated about the z axis) are

d = 4a2-b2

Note that we used to represent the focal distance instead of c, to avoid a conflct with the symbol
for the speed of light. From (2.6) we know the dimensions of the ellipse are described by

b~a=w~ dfa=~ 7 ‘r~”’2J’~ (3.2)

Furthermore, the equation for the quartic surface is
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(3.3)

This is our starting point in the procedure.

To design the lens, we choose &2and A6j as parameters, Typically we already know the
relative dielectric constants G1and S3,because it has been decided in advance that oil will be at the
input (S1= 2.2) and either oil or air will be at the output (S3 = 2.2 or 1). Once these choices have
been made, one can only adjust S2and A@l. The dielectric constant of the lens is controlled by the
choice of material from which it is machined. Thus, the design equations will be expressed in
terms of S2 and AO1. We will also provide assistance in choosing these two parameters, and then
solve some examples.

In fact, the solution process is a bit simpler if one chooses S2 and /2//1 (instead of&2 and
A@l) as parameters. We solved the problem this way originally, but we found more physical
insight when A191is a parameter, because this is the angle the extreme ray is bent at Interlace #1.

Finally, we note that the notation is a bit complicated, so we review the definitions of the
dielectric constants. There are three relative dielectric constants, .E1,S2, and S3, representing the
regions before, inside and afier the lens, respectively. In additio~ since all of our equations are
dependent only upon a ratio of dielectric constants between adjoining regions, we have defined
two dielectric constant ratios as

‘rl = &21&l , &rl > 1

&r2 = &21E3 , Er2 > I
(3.4)

These can easily be remembered if one recalls that E2 is the highest dielectric constant of the three,
and each of our dielectric constant ratios is just the ratio of the high dielectric constant to the low
dielectric constant at the first and second interface.

A. Design of Interface #1

The first step in the analysis is to find Y_l,as shown in Figure 3.1, based on dielectric
breakdown considerations. In a typical problem, one might have to allow the coax to be large
enough to carry a certain peak power, without exceeding some limit on the electric field on the
center conductor. The procedure for doing so has already been described in [5].

Next, we have to find a/ YI for the given parameters of Erl and Ael. Starting ilom (3.1),
we substitute (z, Y) = (zl, Yl) and rearrange to find
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(3.5)

where we have used d = 4 a2 – 32 in the final step. Substituting the value of b/a from (3.2),

we have

i )
2

erl+al
cot(AOl) = a –— ——

~ &rl – 1 Y1 &
(3.6)

Next, we shift the final term on the right to the left side, and square both sides. After simpli~lng,
we find

()
2

a + 2&

0[

er12 + s~~

~
—cot(A@l ~ – 1cot2(A01) = O (3.7)
&rl – 1 Y~ (sr~ – 1)2 &rl – 1

This can be solved for (a/ Y1) since it is just a quadratic equation. Mer doing so, and after

applying the trigonometric identity cot2(~) + 1= CSC2(6),the result simplifies to o

(3.8)

This is the result we needed. Since WI has already been determined, one can find a from (3.8),
and b and d fkom (3.2). Note that the solution to the quadratic equation actually generates a
solution with a “+” sign in fi-ont of the cosecant term above. But the minus sign makes no
physical sense, because a/ !iV1cannot be negative.

At this point, the absolute size and shape of the ellipse is defined, but its location on the z
axis is still unknown. For this, we need to solve the quartic equation.
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B. Design of Interface #2

The ultimate goal in the design of the quartic surface is to calculate 12/11, or equivalently
41/12. To do so, we begin by substituting (z, Y)= (O,Y2) into the quartic equatio~ (3.3). After

dividing both sides by 11, we find

(3.9)

We now need to solve for Y2/11. To do so, we shift the second term on the left side to the right
side, and square both sides. After much rearranging, and after solving a quadratic equatio% we
find

We now need to get Y2/11into a form that is related to AO1. To do so, we know

(3.11)

Combining the above two equations, we find

[)(&rZ-l) 1-$

cot(A6j) =

!2

(1

lz
2

-q+&+& (2–&r2) —
()

12

II
+ 2(&r2–~–1) — + 1

11

(3.12)

The orIIyunknown in this equation is /2/11. The simplest method to obtain it is to solve the above
equation numerically for /2//1. For the cases we tried, convergence was easily obtained starting
from any reasonable initial guess, It is, however, possible to solve this equation analytically.
After a bit ofworlq we find

@(~-l) cot2(AOl)[l-sec(Adl)] - (@+l)cot(A@l) + (..2 -1) (3 ,3)

(&,z -1) CSC2(AO~) -2 cot(A6j)
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Note that the term in square brackets above is actually found to be [1+ sec(At?l)], which comes
from two solutions to a quadratic equation. By experimenting with both signs, and after e
comparing to the numerical solution of (3.12), we find the minus sign is correct.

M that is lefl is to specifi Y2, and it turns out that there is some flexibility in choosing
this parameter. The only restriction is that it must be large enough so that the two interfaces do
not intersect near the center. To etiorce this, we see by inspecting F@re 3.1 that

Now, using the fact that d/a = 1/~, we rearrange to find a lower bound on Y2 of

(3.14)

(3.15)

where al Y1 is provided in (3.8) and Y2/11is provided in (3.10). This is alternatively expressed as

Thus, any value of Y2 greater than Y2minis acceptable. Note that a slightly smaller
acceptable if there is a center conductor, because the two interfaces first touch at
conductor.

(3.16) *

Y2 will be
the center

Since we now have a value for Y2, we can use (3.10), to solve for !P’2/fl. This leads to

.41,and since l?l/12is know we have 12 as well. Thus, the entire problem is solved, for the given
set of parameters &2and A61, and assuming el and .53are already chosen. In the section that
follows, we provide assistance in choosing ~ and A@l.
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IV. Limits on Ael

Having calculated the two surfaces in terms of the dielectric constants and A@l,we now
explore how to choose these values intelligently. Assuming that S1 and &3are already choseq
then for a given S2, one can identi~ both maximum and minimum limits on the values of A@l. In
additio~ one can rule out values of S2 below a minimum value, because no solution is possible
there.

A. Maximum AEll Based on Grazing Incidence at Interface #1

Let us consider the maximum possible bend at Interface #1 for a given Srl = S2/s1.
Theoretically, one can bend the extreme ray by the greatest angle if it is incident at grazing angle,
or Oil = 900. Of course, this is not a good choice, because the E-field transmission coefficient is
zero there. But it does place an absolute limit on how large A01 can be. For this case, the
transmitted angle is

e~~ = arcsin(l / ~ (4.1)

So the maximum bend one can achieve at Interface #1 is

Ae~~m = 90° – arcsin(l / ~) (4.2)

For a given Srl = S2/S1,this limits the choice of A(?1 We will plot this fl.mction later, when we
also have a minimum value of A81. Because we assume here grazing incidence, this is a loose
upper bound, and one must avoid i; in practice.

B. Minimum A91

If one experiments

Based on 12/fl = Oin the Quartic Equation

with the quartic equation a bit, one sees readily that it is difficult to
decrease A131as much as one would like. For a given Sr2= &21&3,one obtains the minimum Ael
in the limit as 12 //1 + O. One can then calculate the resulting A@lwith the understanding that

this is the maximum achievable for a given Sr2,

To see the effect, we substitute (z, ~ = (O,
take the limit as ./2 //1 + O by substituting/2= O.

4’GJ7=7-

!#2)into the quartic equation, (3.3). We then
From this we find

(4.3)

We move the second term to the right hand side, square both sides and simplifi, to find

(4.4)
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Now, A61 is determined from

+

11– tz
cot(A@lMn ) =

Y2 12=()

Combining the above two equations, we have a minimum A8Lof

%wn [)&F’2– 1
= arccot

2&

7

a
(4.5)

(4.6)

We now have minimum and maximum values for A@las a fimction of S2.

We can plot the minimum and maximum values of A@las a finction of &2for two specific
cases. The two cases we consider are the oil-lens-oil design and the oil-lens-air desig~ and the
results are shown in Figure 4.1. In both designs, there is a crossover, below which no solution is
possible. For the oil-air-oil design, the crossover occurs at S2 = 7.44, and for the oil-lens-air
design this occurs at S2= 4.97. Below the crossover values, the lens has a dielectric constant too
low to bend the rays sufficiently. Thus, to allow some design flexibility, one will want to use
somewhat higher values of Sr than the minimum values.

Note that there appears to be no particular penalty for being too close to the minimum
value of A@l,for a given S2. In this case, /2/11 is zero, but that does not affect lens performance. 0,

In fact, imposing .12/4?1= O may have some advantage, if one wants to keep the lens thin at its
center, This can happen if one wants to keep the feed arm attachment outside the lens. On the
other hand, having a A61 near the maximum implies gr~ing incidence for the extreme ray at
Interface #1. Thus, the maximum value of A@lmust be avoided. This implies that one must use
an &2somewhat higher than the crossover value.

When comparing the two plots, we find that the oil-lens-air design has a lower crossover
than the oil-lens-oil design. This implies that a lower dielectric constant can be used for the lens.
This is an advantage, because a lower dielectric constant leads to less reflection loss.
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Figure 4.1. Minimum and maximum values of At91for the oil-lens-oil case (top) and the
oil-lens-air case (bottom). Oil is assumed to have a dielectric constant of 2.2.
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V. Some Examples

Let us now consider an example in which an oil-filled coaxial structure is used to feed a -
100 Q HDQ with a lens of dielectric constant 11. A Mher assumption is that one can sustain a
peak electric field in oil of 1 MV/cm on the center conductor without breakdown (approximately
valid for pulses -1 ns in duration). We calculate the lens shape for two different configurations,
an oil-lens-oil configuration and an oil-lens-air configuration.

First, we calculate the parameters for the feed line, which is shown in Figure 5.1. Since
the antenna impedance in air is 100 Q the impedance of the coaxial feed in oil is 67 Q, assuming
the conductors are continuous at the interface. We find the peak voltage using

and we find a maximum voltage of 2.6 MV. To find the outer radius, we use [5, eqn. 4.5]

77

z~fgg
E

e
norm =

%fgfi

(5.1)

(5.2)

where fg = ZJ(376.727 Cl) and W1 is the outer radius, so Enor,n is found to 3.2 at 67 Q.
Assuming a maximum electric field in oil of Emm = 1 MV/cm, we then find an outer radius of
8.3 cm. Finally, the radius of the center conductor is calculated from

(5.3)

where ~0 is the inner radius. Thus, forfg = 67/377 and el = 2.2, we have Y1/YO= 5.2. Thus, a
reasonable feed geometry is Yl = 8.5 cm and Y. = 1.62 cm, for the inner and outer conductors,
respectively.

Next, we choose the lens dielectric constant and At?l in a manner ;onsistent with the
known limitations. We would like to choose values that wil~work with both the oil-lens-oil and
the oil-lens-air configurations. After consulting Figure 4.1, it is found that the values of S2= 11
and A@l= 50° are consistent with the known limitations for both cases, so we use these values.

Now, we solve the oil-lens-oil configuration. From (3.8) we find a/Y1 = 1.16, so a ==
9.88 cm. From (3.2) we find b = 8.84 cm and d= 4.42 cm. From (3.13) we find 11/12 = 25.29.
Next, we find from (3.16) the minimum value of Y2 is 16.37 cm, so we choose Y2 = 17 cw for
which Y2/Y1 = 2.0. From (3.10) we have Y2/11= 1.145, so 11 = 14.85 cm and /2 = 0.59 cm,
Using these values, we have plotted the complete lens on the top in Figure 5.2.
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Figure 5.1. A coaxial geometry.

dielectric, &l

electric
conductor

Next, we repeat the process with the oil-lens-air design. The dimensions of the resulting
ellipse are the same as before, i.e., a = 9.88 cm, b = 8.84 cm and d = 4.42 cm. Furthermore, we
find 11//2 =4. 56, and the minimum value of Y2 is 13.30 cm. Once again, we choose !Ej = 17 crq
for which Y2/Yl = 2.0. Finally, we have !P2/11= 0.930, so .!l = 18.28 cm and 12 = 4.01 cm.
Using these values, we have plotted the complete lens on the bottom in Figure 5.2.

It is interesting to compare the two resulting lenses. In fact, they are quite similar in
shape, except that when air is used at the output, the lens is fatter in the center.

Note that we have chosen the values of S2 and A(31somewhat arbitrarily. In the case of
the oil-lens-air desig~ one can use a considerably lower lens dielectric constant, which reduces
reflections. An example of a better lens design is shown in Figure 5.3. We use here a lens
dielectric constant of 6.6 and air (or SF6) at the output. For this design, A@l= 43°, a = 10.80 c~
b = 8.82 cm and d= 6.24 cm. Furthermore, we find 11/12= 141.5, and the minimum value of Y2
is 15.77 cm. Agaiq we choose Y2 = 17 cm, for which Y2/VI = 2.0. Finally, we have
Y2/11= 0.9259, so 11 = 17.44 cm and 12= 0.123 cm.

The improved design has a number of advantages over the first two designs, besides
reduced reflections. The lens is thin at its center, so we can easily build a center conductor that
splits into two feed arms just afier the lens. If the lens is too thick the split is too far to the right
of z = O, thus destroying the conical symmetry. Another advantage is that no oil cap is required,
thus reducing feed blockage. A possible disadvantage is that there is less dielectric strength at the
output without an oil cap. But if the duration of the pulse is short enoug~ there will be
insufficient time for the pulse to cross the large gap (-15 cm) from the center conductor to the
ground plane.
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Figure 5.2. Lens design for the oil-lens-oil case (top) and the oil-lens-air case (bottom), with
A@l= 50°, and Y21YI = 2.
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o
VI. Concluding Remarks

We have provided here the design equations and some sample designs for the feed-point
lens needed to build ahigh-voltage half~. Although wehavedemonstrated solutions to the
equations, we have not yet attempted to optimize the lens to achieve a maximum transmission
coefficient. That is, we have chosen the dielectric constants and A61 somewhat arbitrarily. In a
later paper we hope to solve the optimization problem.

Acknowledgments

We would like to thank Mr. William D. Prather of Phillips Laboratory for finding portions
of this work. We would also like to thank Dr. Gary D. Sower for many helpfil discussions
relating to this work.

19



“\.
● ’

References

a
1. C. E. Bau~ Variations on the Impulse-Radiating Antenna Theme, Sensor and Simulation

Note 378, February 1995.

2. E. G. Farr and C. E. Bau~ Impulse Radiating Antennas With Two Reflecting or Refracting
Surfaces, Sensor and Simulation Note 379, May 1995.

3. C. E, Baum and A. P. Stone, Transient Lens $mthesis: Di~erentiaI Geometry in
Electromagnetic Ikeory, Appendix 1, Taylor and Francis, New Yorlq 1991.

4. C. E. BauW J. J. Sadler, and A. P. Stone, Uniform Isotropic Dielectric Equal-T~me Lenses
for Matching Combinations of Plane and Spherical Waves, Sensor and Simulation Note 352,
December 1992.

5. E. G. Farr, et al, Design Considerations for Ultra-Wideband, High-Voltage Baluns, Sensor
and Simulation Note 371, October 1994.

20


