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Abstract

The differential gwmetV scaling method is used to cleve]ops~thesis pr~~ures for lenses with variable

permittivity, but constant permeability. This applies to two-dimensional geometries for bending the

direction of propagation of waves between parallel Perfmt]y conducting sheets in the sense of an E-plane

bend. The general procedure is related to conforrnal transformations. An example is given in which the

TEM wave is made to propagate in the azimuthal direction in the usual Cylindrical coordinates with sur-

faces of constant cylindrical radius as the guiding Perfectly<onducting boundaries.
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Abstract

Between .

The differential geometry scaling method is used to develop sfithesis procedures for lenses with variable ,

permittivity, but constant permeability. This applies to twodimensional geometries for bending the

direction of propagation of waves between parallel perfectly conducting sheets in the sense of an E-plane

bend. The general procedure is related to confonnal transformations. An example is given in which the

TEM wave is made to propagate in the azimuthal direction in the usual cylindrical coordinates with sur-

faces of constant cylindrical radius as the guiding perfectly-conducting boundaries.
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1. Introduction

In guiding fast-rising TEM waves between perfectly conducting parallel plates {say of separation

d, but sufficiently wide to be approximated as infinitely wide), one has the probkm of how to bend such a

waveguide while pnz+rving the TEM character of a wave with arbitrarily small risetime fy,with

a

(1.1)V=”[ue]+=speed of propagation

y = guide permeability
s = guide permittivity

where M and e are assumed real and frequency independent with

(1.2)

In this paper, E-plane bends in such a wav~ide are considered with appropriate dielectric lenses in the

bend region. Previous papers have considered a dielqtric wedge [1] and arrays of parallel conducting

sheets [2] for accomplishing this purpose. .*

The present paper extends the differential&ornetry scaling method for such two-dimensional

lenses [5 (Section 2.5 and Appendix F)] to the present pro~lem of such E-plane bends. A general form

related to conformal transformations is developed and a simple example is given,
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o 2. Two-dimensional lenses with constant permeability for E waves

Surnrnarizing from [51 we have the (uI, u2, u3) orthogonal curvilinear coordinate system related

to the usual Cartesian (x, y, z) system via the wale factors

giving the line element

32(d/) = ~~ (dun)*
n=l ,

(2.1)

(2.2)

For our present purposes, let us take

U3=Z, ‘3=1 (2.3)

reducing the problem to a two-dimensional one in the (x, y) and (u1, u2) planes. Furthermore let us take

e
UI as the propagatkm direction with formal fields with the only com~nents as

,( ) ()”E~o t-~,H5 = MO / +

1

[1

PA5,C,
-T = [@j]+ (2.4)
&2

real and positive constant formal permeability and permittivity

This describes a simple uniform plane wave with the magnetic field in the z direction, Note that it is a

uniform plane TEM wave in general only with respect to the Un coordinates. In the Cartesian coordinates

the wave is still TEM but in general neither plane nor uniform. The propagation direction varies as the

wave progresses along the U1 coordimte. Since the magnetic field is fixed along the z direction, but the

electric field can turn in the x, y plane the wave as referenced to the Cartesian coordimtes, thereby .

describing in general an E (or T’M) wave. It is this @of wave we can use for an E-plane bend, surfaces

of constant U2being chosen for the perfectly conducting guiding cylindrical sheets.

The formal fields are related to usual fields via



(2.5)

.,

The formal constitutive parameter are related to the usual ones via

H’
& = (&m) “ %’● (an,m)-l, 7’=(Pnrm)● 2 ● (afi,m)-l (2.6)

and if the ? and ~ are diagonal we have

(Tn,m) = Q3n,m}● (an,m)-l = (an,m)-l ● (jI;,m)

(2.7) e*00

H
3200

‘1 hl

o ?l#lJo=o~, o
h2 ‘2

o + O 0 lqh2

=

,,

Note the simplifications that occur in the two-dimensional problem die to the removal of h3 from’ (2.3).

Furthermore, with E~ and H~ as the only non-zero formal-field components, then c~ and ~~ are the

only relevant components of the formal permittivity and permeability dyadics (assumed diagonal in the

(UI, UZ,u3) coordinate system). This allows us to take

(2.8)

,’I so that the medium is isotropic. The electric and magn~c fields then take the form

(2.9) .

*
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where the 1 n are unit vectors pointing in the direction of increasing Un. In component form this is

(2.10)

where E2 is an actual electric-field component (V/m), but oriented in the 72 direction.

In [5] such an E-wave is considered for the case of constant e but variable p. Here we consider

the converse, i.e.

P = constant, 2 ~ (2.11)

may be set to ~ for many practical applications. For convenience we set

P= Pi, (2.12)

* .’
implying from (2.7)

hlhj=l

leaving only one scale factor to determine.’ For the permittivity this implies

Constraining for convenience

&~in = &~

where &minis the minimum value of e in the domain of interest, giving

= hl
e — Emk = hl &min = h; &min

h2
hl<l, hz>l

(2.13)

(2.14)

(2.15)

,$

(2.16)

in tie lens domain.
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In the domain of concern (the lens domain) there is some minimum acceptable value of s as
9

&2&&2&~ (2.17)

which is related to physical realizability. The lens dotin is restricted to values of U2as

lqfi < U2 < Uzmx (2.18)

where the minimum and maximum values correqmnd to the perfectly conducting sheets guiding the E-

wave. Further restriction may be based on whether some (u], UZ)values have negligible fields or the lens

is truncated for various practical reasons. Note also that

as required, The local wave speed is

Defining

then we have

Cwscwmsc.

in the lens domain. Similarly for the local wave impedance we have

. . .

(2.19)

(2.20)
*

(2.21)

(2.22)

(2.23)



3. Relation to conformal transformation

Now consider the question of how to construct orthogonal curvilinear c~rdinates (UI, u2) sub@t

to the constraints in the previous section, .pcifically from (2.13) as

hlh2=l (3.1)

In the two dimensioml cases in [5], the constraint is that hl and h2 are the same which is a conforrmd

transformation, i.e., U1and U2 are stretched/contracted the same at each location giving what is sometime

described as curvilinear squares. Here our constraint is different but we can still use confonnal transfor-

mation as an intermediate step to construct our (u1, u2) system, thereby giving a plethora of possible

solutions,

Consider the complex coordinates

~Ex+jy
(3.2)

v=vl+jv2 (VI and V2 real)

o where v(~) is the analytic function describing a conformal transformation between the (x, y) plane and

the (VI, v2) plane. The”line element is

pd2=(fix)2+ (dy)2 = 2 (dv2)2h:, (dv1)2 + ~/zvz

=
[

h: (dvl)2 + (dv2) 2]= MW2

(3.3)

Functions v(~) are the convenient way to construct (vi, v2) coordinates and many examples exist in the

literature. (See, e.g., [3, 41).

Now the scale factors for the Vn coordinates do not satisfy (3.1) so let us construct a special form

of the un as un(vn), i.e., U1 is a function of only V1 and U2 is only a function of v2, With lines of constant

VI and V2 forming curvilinear squares (equal decrements for both V1 and V2 ), then lines of constant UI

m’ and ‘u2 form curvilinear rectangles. The scale factors for the Un coordinates are now
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“‘(5)W=(%)I(%)+(*)I=(S”
which implies

h1h2 = HHdVl dv2 ~2 = *
dul du2 v

●

(3.4)
@

(3.5)

Given v(~) ~d one of the Uncoordinates, say u1(v1) (the propagation direction), then (3..5)can ~ used to

solve for u2(v2) to within an integration constant.

. *

o
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4. Concentric perfectly conducting circular cylinders guiding azimuthally propagating wave

Consider a simple example of an E-plane bend as indicated in fig. 4.1. For this we have the usual

complex coordinates

~=x+fi=w?j+ (4.1)

The lens domain is defined by h two perfectly conducting sheets on YI ~d !F2 with

Y1SYSY2 , W1<Y2 (4.2)

and some extent of consideration in tmns of # as

the difference @2- A depending on how much of a bend angle one wishes,

Define the Vncoordinates by

v = - jhgj = # - j.tn(Y) = q + jvz

VI = # ,V2= -hz(Y) = hz(Y-l)

(4.3) “

(4.4)

l%=~l=Ll=Ye-”2

This makes our wave propagate in the direction of increasing #.

Converting to Uncoordinates, choose first ,

Ul(vl) = constant times VI = constant times O (4.5)

Letting this be qwcified by the longest path length for constant Y in the lens region we have

tq =Y2$=Y2V1

9
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Fig. 4.1. Circular Cylindrical Lens for E-Plane Bend

x,’

10



On Y = Y2 this is the actual path length in meters. This is where e is its smallest; i.e., c min. Other

paths between two different values of $ are shorter, and the speed of propagation is correspondingly less

on such paths. Note now that the simple form in (4.6) gives

dul dul ~2—=— =
dvl do

hl = HdVlh .~=~
dul v Y2 Y2

= @

In the lens dormin Y < Y2 making (2.16) satisfied.

Now we find the U2cmrdinate from (3.5) as

~-2v2
IQ = *—

2Y2
+ constant

q/2
= *q + constant

(4.7)

s (4.8)

Choose .,

~2 ~-2v2
lq = “—

2Y2 = -~
,,

(4.9)

so that increasing U2corresponds to decreasing Y, making (u1, u2, z) a right-handed coordinate system.

The integration constant is taken as zero for convenience.

The requirwl permittivity is now

()Y2 2
& = h; &min = ~ &min

so that e ~ &minin the lens domain. me 10C~ WaVeS@ is

(4.10)

,,
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. (4.11) 9

The local wave impedance is

Since Hz is independent of Y this also shows that the electric field is maximum at Y = Y?~,the outer

hnd radius.
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5. Concluding Remarks

With this extension of the differential-geomehy scaling method for lens design, one can now con-

sider many possible designs for dielectric E-plane bends in parallel-plate waveguides (for large ratios of

plate width to spacing), The example in Section 4 is a simple example to illustrate this methcd of lens de-

sign. There is still the problem of how to join such a lens to parallel plate waveguides without significant

dkontinuities (e.g., at A, and ~ in fig. 4.1). One may accept some scattering at such places if it is not too

large. In the example, this would require that Y1/Y?2 be not too much less than 1. Other conformal

transformations that blend the bend region more smoothly into the parallel-plate regions (by a continu-

ous change of the plate curvatures to zero curvature on each end) may also be developed. Noting that

conforrnal transformations give solutions to the two-dimensional Laplace equation, one can construct the

‘1) and v\2) on the perfectly conducting lmundaries and numen-V2 function with boundary conditions V2

tally solve the Laplace equation to find both V2 and VI for given boundary shapes and then UI, u2, and

the corresponding e distribution. One still needs to restrict &tin in the lens domain for physically

realizabili~.

There is, of course, the dual problem with the electric field in the z direction and the magnetic

0’

field in the -u2 direction. The procedure in Section 2 then applies to the case of constant E, but variable p.

In this case, perfectly conducting boundaries are planes of constant z.
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