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Abstract

This paper explores the design of dielectric lenses with nonuniform (but isotropic) permittivity

and uniform permeability (such as p.J. These lenses are exact in the sense that they propagate nondis-

persive TEM waves (and hence pulses) through a lens region which can be used to bend the direction of

propagation through some angle of interest, here taken as the azimuthal angle # appropriate to a portion

of a body of revolution. Limitations associated with some of the boundaries of the lens region are pointed

out. Four examples of this class of lenses are di=ussed.
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1. Introduction
a

a
Searching for “exwt” dielectric lenses, i.e., ones which support the propagation of diqxxsionless

TEM waves which satisfy the Maxwell equations for all frequencies in the lens region, there are emmples

in [1, 2, 4]. By a dielectric lens, let us here mean one comprised of a scalar (isotropic) permittivity &

which is real and frequency independent (dispersionless) with & 2 &o(in the region of interest, the lens

region), but which may be a function of position (i.e., inhomogeneous). Furthermore, the permeability p

is assumed real and frequency independent with u 2 ILOas well as spatially independent (i.e.,

homogeneous). As a practiml matter, one may often take p = ILO(free-space permeability).

The general purpose of such a transient lens is to propagate transient EM waves with mitirnal

pulse distortion while changing the direction of propagation (hence, transient lenses). Such might be a

transition between two cylindrical transmission lines propagating waves in different directions, or one of

these might be adpined to a conical transmission line supporting a spherical TEM mode. Here let us

restrict our attention to the very practical case of a purely dielectric lens, albeit inhomogeneous, so that it

may n~ to be approximated by layers of dielectric material of various permittivities.

In the present pa~r we consider a class of such lenses as portions of a dielectric body of mvohl-

tion (BOR) with propagation in the azimuthal (~) direction. Such a lens is appropriate as a bending lens.
m

As we shall see, there is an E-plane lens as in [1, 2], with circular cylindrical conducting boundaries, an H-

plane lens as in [4] with plamr conducting boundaries, and new examples with circular conical or spher-

icalconducting boundaries.
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2. Body-of-Revolution Coordinates

a
Begin with Cartesian coordinates (x, y, z) on which we base the usual cylindrical coordinates (Y,

#, z) with

x = Ycc+) , y = Ysin(@ (2.1)

and spherical coordinates (r, 8, # with

z = Ycos(0) , Y = r sin(f))
(2.2)

x = r sin(0) cos(~) , y = r sin(0) sin(~)

The dielectric EOR is defined to have the z axis as the symmetxy axis. This is C- symmetry indicating

invariance to rotation (variation of ~) with all axial planes (containing the z axis) as symmetry planes

(noting that &is Scalar,besides being @ independent) [5].

For our BOR, let us define an orthogoml curvilinear coordinate system ( & , ~2 , ~3) where we

choose

#3 = # = propagation coordinate (2.3)

and & and ~2 will be used for orientations of the electric and magnetic fields. Surfaces of constant ~3

are planes and surfaces of constant ~1 as well as surfaces of constant ~2 are BORS. Of course all three

types of surfaces intersect at right angles (except at possible singularities). Cylindrical and spherical

coordimtes (above) are examples of such orthogoml curvilinear systems. Later, similar to the technique

in [2], we will use ( ul , U2 , U3) orthogoml curvilinear coordinates where each Unis only a function of

~fl. Constant & surfaces are then also constant ~ surfaces.

Considering a plane of constant ~3, then & and ~2 are orthogoml curvilinear coordinates on

this surface. Then one can base the & and ~2 coordinates on a conformal transformation involving the

complex variables

(2.4)

*
(SEW[4 (Appendix A5)I.)
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Consider next one of the BOR surfaces, say one specified by constant gl. Then ~2 and ~3 are
m

orthogonal cuwilinear coordimtes on this surface. Such surfaces have important properties as diwussed

in [3 (Won 46)]. Lines of constant ~3 are plane curves (i.e., lie in a plane of constant ~3) and am callai

nwridians. (On a sphere, these are lines of longitude.) Unes of constant ~2 are circles (and hence plane

curves lying in planes of mnstant z) and am called pzralleb. (On a sphere, these are lines of latitude.) One

can also base the ~2 and {3 coordinates on a conforrnal transformation as kfore. The other set of BOR

surfaces, specified by constant ~2, have all the same properties, with now lines of constant ~3 still the

meridians, but lines of constant ~1as the parallels.

Given some initial choice of the &, we will scale them as un(&). For this purpose, we will need

the scale factors

which give the line element

(d4)2= ~h@n)2
n=l

Noting that U3 is a function of only@ we have

he =Y= rsin(t)) , h3 = Y *
du3

(25)

(2.6) a

(2.7)
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3. Electromagnetic Plane Waves Propagating in the # Dir@ion

* —
Consider a homogeneous TEM wave as expxmsed in terms of the formal fields with the form

[4 (Section 2.5)]

(3.1)

where these are the only two non-zero field components. This is an important restriction in that it gives

us more flexibility in the selwtion of our coordinate systems than in the case of inhomogeneous TEM

waves (1 and 2 components for both electric and magnetic fields [4 (S&tion 2.4)1).

For diagoml ~ and ~, the formal constitutive parameters are related to the usual ones via

F* ()‘Yn,m”yr V = (Yn,m) “ Z

H
h2h3 ~ ~

hl

()
h31q ~

Yn,m = O —h2
lqh2oo—
h~

Since we only have El and H2 components to consider, this reduces to

Since we are assuming that p is homogeneous we have, for convenience

jl=j.f’>~,%=l
h2

hl_— ‘=h;2&’ , &’ 2&o
E – h2h3 E

noting that both p’ and E’ are real and frequency independent by hypothesis.

(3.2)

(3.3)

(3.4)

The propagation speeds are
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c’= [p+ , Cw = [PEJ; = h3 c’= lewd W.”, sped

Noting that e and hence Cwis independent of @ we have U3proportional to@ as

where Ymw is the largest Y of interest for the lens region. Then we have

()Y2max&—= &* , &m~ = &’
Y

Y
c~=—

v=
c’Sc’<cfor Y<Y~x

w

(3.5) a

(3.6)

(3.7)

So Ymm is an important parameter where & = &minand CWis at its maximum so as to meet realizability

conditions in the lens region. Note also that the local wave impedance is

z,= [$}. [&p= formal wave impedance

(3.8) o

and ~ is minimum at Y = Y-. The above parameters apply to all the examples which follow. Note

in particular that h2 / lq is Y/ Ymax for all these examples; we need to find factored forms for h2 / hl so

that U1and U2 are mutually orthogoml coordimtes to construct such examples.

The above results concern only the U3 coordinate and the implications that the lens is part of a

BOR. This is enough to specify &and a range of acceptable cylindrical radius Y. This leaves our choice

of U1and U2to give various lens geometries. While this is not critical to the discussion we can regard the

lens region as limited to

h~4s#2,0<@2-#l<2z (3.9)

While our examples have boundaries which may be functions of z and Y, these boundaries are in turn

contained in regions limited by

6



O< YS Y-, Z1SZSZ2, Z1’CZ2 (3.10)

A general result that applies to homogeneous formal TEM waves as in (3.1) concerns transmis-

sion-line characteristic impedance Zc. If we have a lens region given by

xl) , u~2) = electric boundaries

(1) (2)U2 #U2 - magnetic boundaries

then the TEM wave can be considered as

impedance

(3.11)

a TEM mode on a transmission line with characteristic

J%
(2)u,

J,
(2)Ill

(]) % h % ~(l) Ei%

Zc=+
(2)

=

J
U*

J
(2)

(1) H2 h2 du2 :, H$ du2
%? U2

(3.12)

U(2)
. z; #! . z;~

us _ u~l)

Note that the line element for the integration of the fields along each Un is hn Un as in (2.6).

The electric boundaries can be realized by approximately perfectly conducting sheets. If the U2

coordinate encircles a conductor so that Au2 represents the change in U2 around the conductor, then the

field continuity through the common surface defined by both u!) and u\2) satisfies the properties

required of a magnetic boundary. (This gives a jacket as in [4 (Chapter 5)].) If we have

O < Aul << Au2 (3.13)

so that Zc is a low impedance, then we can have the case that magnetic-field lines do not close in the lens

‘1) and u~2)as distinct surfaces. Then the energy in the fringe fields (by definition outsideregion with U2

the lens region) is small compared to the energy in the lens region, and can be neglected in a limiting

sense. Such is the case for clo~ly spaced conducting sheets (compared to their width) as in a strip line.

The later examples will have to be considered with this in mind.
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4. Examples Based on Cylindrical Coordinates

M us first cast two previous solutions based on cylindrical coordinates in the present format. m

4.1 H-Plane Bend

IZI[4 (Appendix F)] the case of constant A corresponds to an H-plane bend with perfecdY

conducting boundaries on planes of constant z, say ZI and zz as illustrated in fig. 4.1. Putting this in the

context of our present cylindrical coordinates for a BOR lens gives

;=

U1 =

U2 =

h2 =

U2 =

+
El~z,ii =H2iY, ll=7z, i2=7y
z, hl=l

U2(Y)

HdV Y
du2

=h1h3=T
max

(4.1)

where the integration constants have been chosen for convenience with the constraint that the Un forma

right-handd system. The fields then take the form

E~

()
E1=—=E; f-:

4

H2 = ~=k% t.u
Y z;f( )c’

●
(4.2)

Note that El is uniform with respect to z and Y while H2 varies as Y1.

The lens domain is limited as

O< YlSYSY2SYm~
(4.3)

fis#s~,zlszsz2

While ZI and 22 are realizable as approximately perfectly conducting boundaries, WI and Y2 are ideally

magnetic boundaries which are difficult to realize. As a practical matter, one can choose

Z2 - 21 << Y2 – ‘Ij (4.4)

to give a low-im~ance configuration in which the effect of the fringe fields can be reduced.
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Fig. 4.1. H-Plane Bend
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u
42 E-Plane Bend

In [2] we have the u of an E-planebend with perfectly conducting boundaries on circular
m

cylinders of constant Y, say ‘PI and ‘3’2,as illustrated in fig. 4.2. In our present context, this gives

;= -El?w ,;=
+ + +

H2 72 , 11 s-iv, 12=12

U2=Z, h2=l

lq = U1(Y)

hl =
t---i

(w . ?!2 . ‘max
dul h3 V

(45)

Y2
Iq = –—

2Yma

Again, the integration constants are chosen for convenience with the Un forming a right-handed system.

The fields then take the form

(4.6)

a

In this case H2 is uniform with reqwct to z and Y while El vanes as Y (maximum at the outerboundary

Y2).

The lens domain is limited as

(4.7)

While ‘PI and ‘P2 are realizable as approximately perfectly conducting boundaries, Z1and 22 are ideally

magnetic boundaries. Choosing

V2 - Yl<zz–zl (4.8)

gives a low-impedance configuration which minimizes the effect of fringe fields.

10
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Fig. 4.2. E-Plane Bend
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5. Exampl= Based on Spheriml Coordinates

..

Now let us exhlit two new solutions based on spherical coordinates. These are neither E- nor H-

pkme bends but might be neferred to as mixed bends. Boundaries are circular-conical and spherical

surface segments. The two cases are based on letting UI and U2each be functions of r or 8 alone in some

order.

5.1 Circular Conical Conducting Boundaries

For this case refer to fig. 5.1 with the choices of field orientations

2= +
-E&,ii=H27r, 11= -ie , i2 s YT

U1 = q(e) , U2 = q(r)

From

h2 Y _ ?’ sin(e) . r sin(0).=—
hl Ym= Ym r- sin(6H)

and noting that the line element in the 0 direction is rd8 (i.e., he= r) we can select

H r Sin(Omm)
hl=;:=—

h2=H=i7fe)

T’hisdOWS 2/1 and q to be salved as

U1 = rma
Cos(o)

Sin(emu)

2
‘maxU2 = -—

r

where the integration constants have been chosen for convenience. The fields then take the form

12

(5.1)

(5.2)

(5.3)

(5.4)
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Fig. 5.1. Mixed Bend with Circular Conical Conducting Boundaries
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Thelensdomainis limitedas

(5.5)

Now @ and @am the electric boundaries, while the magnetic lx)undaries are given by rl and r2. In line

with previous considerations one can choose

~[e~-el]<<?prJ (5.6)

to give a low-impedance cordigurationandsmallfringefieldeffects.

One might think thatthissolution of the Maxwell equations has a strange form. The electric field

is proportional to rl consistent with the increasingconductorspacingfor larger r, and to sin(0)due to

the decreasing &for larger !P (and hence 0). The magnetic field is proportioml to r-2. One factorof rl

accountsfor theincreasingconductorspacingwithlargerrl; the eecondfactorof r-l accounts for spread-

ing of themagneticfluxproportionalto rd~ in some incremental d$ along the direction of propagation

(normal to ~). This is necessary to give zero divergence to ~ which is like the r2 fieIdfroma magnetic

monopoleat 7 = ~, =cept forthevariationin the @ (propagation)direction(i.e.,transittime or phase).

5.2 SphericalConductingBoundaries

For thiscase,referto fig.5.2 withthechoicesof fieldorientations

+ +
E=E1ir,~=H2~o , 11=

+ +
-7y , 12= 18

lq = ul(r) , U2 = u2(0)

From

~= w r sin($) r sin(fl)—=— ~
hl v- !Vm r- sin(flmm)

withthelineelementas rde in the 8 directionwe can select

(5.7)

(5.8)
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Fig. 5.2. Mixed Bend with Spherical Conducting Boundaries
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Hh2 = ‘do =
r sin(e)

dul r- Sin(tlm )

Hhl=dr=l
du2

This allows U1and U2 to be solved as

ul=r

U2 = ‘max Sill(Omu)

where the integration constants have been chosen for convenience. The fields then take the form

foE1.~.E; t.~
h c’

‘maxH243=— sin(Om= ) E:

h2 r f( )
~.~

sin(0) ~ c’

W E:max=— —
Y z:[)

~_~
c’

(5.9) Q

(5.10)

(5.11)

m
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6. Concluding Remarks

We have here four types of “exact” dielectric lenses for bending the direction of propagation

along the azimuthal coordimte of a BOR. All have the same dependence of the permittivity as propor-

tioml to Y2. The difference in the various lens types lies in the choice of coordinates on a meridian

plane. Noting that there are two choices for polarization, the Cartesian (z, Y) and polar (r, 6) coordinates

produce the four examples. This gives some flexibility in the lens design for a given angle of bend #2 - ~

desired.

While the Maxwell equations are satisfied for a TEM wave in the lens region, there are the

boundaries to consider. The electric boundaries can be well approximated by metal sheets. As discussed

previously, the magnetic boundaries are more problematical, but the effect of the fringe fields there can

be reduced by using low-impedance lenses. There is also the problem of matching the wave to other

waveguiding structures at ~ and ~ where some perturbation of the TEM mode may occur.

Noting that all of these examples have the same form of the perrnittivity E(W, one can consider

linear combinations of these TEM waves as also solutions of the Maxwell equations. Keeping the wave-

form ~(f- U3/ c’) the same in all cases then one can look at the orientation of the electric and magnetic

fields to determine the contours (in the V, z or r, @ plane) for the appropriate boundaries for the TEM

waveguide. Also noting that the coordinate origin can be taken anywhere along the z axis, then the

sphericalamrdinate solutions exist for any such choice of Y’ = O,giving in effect an infinite number of

spherical cases, two for each choice of coordimte origin. ‘l%usthe present cases (canonical solutions) can

lead to various other lens designs.

Here the discussion has been for constant p, but variable e. The dual problem has constant e,

but variable u, with the roles of electric and magnetic fields interchanged (as well as electric and mag-

netic boundaries interchanged). So the present examples can all be used to generate a dual set of

examples with the appropriate interchange of parameters in the equations.
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