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Abstract

This paper explores the design of dielectric lenses with nonuniform (but isotropic) permittivity
and uniform permeability (such as 1,). These lenses are exact in the sense that they propagate nondis-
persive TEM waves (and hence pulses) through a lens region which can be used to bend the direction of
propagation through some angle of interest, here taken as the azimuthal angle ¢ appropriate to a portion
of a body of revolution. Limitations associated with some of the boundaries of the lens region are pointed
out. Four examples of this class of lenses are discussed.
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1. Introduction

Searching for “exact” dielectric lenses, i.e., ones which support the propagation of dispersionless
TEM waves which satisfy the Maxwell equations for all frequencies in the lens region, there are examples
in [1, 2, 4]. By a dielectric lens, let us here mean one comprised of a scalar (isotropic) permittivity &
which is real and frequency independent (dispersionless) with £ 2 ¢, (in the region of interest, the lens
region), but which may be a function of position (i.e., inhomogeneous). Furthermore, the permeability u
is assumed real and frequency independent with u 2 u, as well as spatially independent (i.e.,
homogeneous). As a practical matter, one may often take u = u, (free-space permeability).

The general purpose of such a transient lens is to propagate transient EM waves with minimal
pulse distortion while changing the direction of propagation (hence, transient lenses). Such might be a
transition between two cylindrical transmission lines propagating waves in different directions, or one of
these might be adjoined to a conical transmission line supporting a spherical TEM mode. Here let us
restrict our attention to the very practical case of a purely dielectric lens, albeit inhomogeneous, so that it

may need to be approximated by layers of dielectric material of various permittivities.

In the present paper we consider a class of such lenses as portions of a dielectric body of revolu-
tion (BOR) with propagation in the azimuthal (¢) direction. Such a lens is appropriate as a bending lens.
As we shall see, there is an E-plane lens as in [1, 2], with circular cylindrical conducting boundaries, an H-
plane lens as in [4] with planar conducting boundaries, and new examples with circular conical or spheri-

cal conducting boundaries.



2. Body-of-Revolution Coordinates

Begin with Cartesian coordinates (x, y, z) on which we base the usual cylindrical coordinates (‘¢,
¢, 2) with

x = Yeos(¢) , y = Wsin(¢) 1)

and spherical coordinates (r, 6, ¢) with

z = Ycos(6) , ¥ = rsin(6) @2)

x = rsin(8) cos(¢) , y = rsin(8)sin(p) |
The dielectric BOR is defined to have the z axis as the symmetry axis. This is C..; Symmetry indicating
invariance to rotation (variation of ¢) with all axial planes (containing the z axis) as symmetry planes
(noting that ¢ is scalar, besides being ¢ independent) [5].

For our BOR, let us define an orthogonal curvilinear coordinate system (&1, &, §3) where we

choose

&3 = ¢ = propagation coordinate 2.3)

and &; and &, will be used for orientations of the electric and magnetic fields. Surfaces of constant &3
are planes and surfaces of constant &; as well as surfaces of constant &, are BORs. Of course all three
types of surfaces intersect at right angles (except at possible singularities). Cylindrical and spherical
coordinates (above) are examples of such orthogonal curvilinear systems. Later, similar to the technique
in [2], we will use (u;, uy , u3) orthogonal curvilinear coordinates where each u,, is only a function of

&n. Constant &, surfaces are then also constant u,, surfaces.

Considering a plane of constant &3, then & and &, are orthogonal curvilinear coordinates on
this surface. Then one can base the & and & coordinates on a conformal transformation involving the

complex variables

§=6 *j&
E=z4+ ¥ (24)
&({) = analytic function = conformal transformation

(See [4 (Appendix A 5)].)



Consider next one of the BOR surfaces, say one specified by constant ;. Then §5 and &3 are
orthogonal curvilinear coordinates on this surface. Such surfaces have important properties as discussed
in [3 (Section 46)]. Lines of constant &3 are plane curves (i.e., lie in a plane of constant §3) and are called
meridians. (On a sphere, these are lines of longitude.) Lines of constant &; are circles (and hence plane
curves lying in planes of constant z) and are called parallels. (On a sphere, these are lines of latitude.) One
can also base the & and &3 coordinates on a conformal transformation as before. The other set of BOR
surfaces, specified by constant &;, have all the same properties, with now lines of constant &3 still the

meridians, but lines of constant & as the parallels.

Given some initial choice of the §,, we will scale them as u,(&,). For this purpose, we will need

the scale factors

2 2 2
=) @) -3
== +[3Z]| +|=— 25)
() () (&
which give the line element

(de)? = ih,z,(du,,)z 2.6)

n=1

Noting that u3 is a function of only ¢ we have

hy = ¥ = rsin(6) , hy = ¥|2L @7
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3. Electromagnetic Plane Waves Propagating in the ¢ Direction

Consider a homogeneous TEM wave as expressed in terms of the formal fields with the form
[4 (Section 2.5)]

3.1)

where these are the only two non-zero field components. This is an important restriction in that it gives
us more flexibility in the selection of our coordinate systems than in the case of inhomogeneous TEM
waves (1 and 2 components for both electric and magnetic fields [4 (Section 2.4)]).

For diagonal € and 7, the formal constitutive parameters are related to the usual ones via

e = ('Yn,m) - T, ‘ﬁy = (Yn,m) -2
hohy 0 0
. i M 3.2)
('Yn,m) = 0 ? hl(;
0 o h32

Since we only have Ej and Hj components to consider, this reduces to

. _ hh3
h

- h3h1
hy

€ E , U u (3.3)

Since we are assuming that 4z is homogeneous we have, for convenience

, h
m= 2y, 2—h1=1

" 22 34
e=%e’=h§ e , £€2¢g

noting that both 4’ and ¢’ are real and frequency independent by hypothesis.

. The propagation speeds are



1 1
¢=[wel2 , cw=[ne] 2 = b3 ¢ = local wave speed (3.5

Noting that £ and hence cy is independent of ¢ we have u3 proportional to ¢ as

u3=‘l’max¢ ’ h3=l.=ﬁ2. 3.6)

¥max h

where Wp, 4 is the largest ¥ of interest for the lens region. Then we have
2

€= (‘I’an) Emin ; Emin = €

- 3.7
Cw = ¢ sc¢ <cfor ¥ < Whax
‘I’max

So ¥max is an important parameter where £ = £;n and ¢y, is at its maximum so as to meet realizability

conditions in the lens region. Note also that the local wave impedance is

E-l_h_z ¥

= =L = Z, = hqa Z! = Z;
Zy Hy hl 0 3 Lo ¥ 0
1 1 (3.8)
Zy = [i,]i = [L]z = formal wave impedance

and Z;, isminimum at ¥ = Wp,x. The above parameters apply to all the examples which follow. Note
in particular that hy /Iy is ¥/ ¥pax for all these examples; we need to find factored forms for hy /by so

that u1 and u; are mutually orthogonal coordinates to construct such examples.

The above results concern only the u3 coordinate and the implications that the lens is part of a
BOR. This is enough to specify & and a range of acceptable cylindrical radius ¥. This leaves our choice
of u1 and u2 to give various lens geometries. While this is not critical to the discussion we can regard the

lens region as limited to

$1<¢<¢p , 0<¢p - <2z (3.9

While our examples have boundaries which may be functions of z and ‘¥, these boundaries are in turn
contained in regions limited by



0<W<SWnax » 21S2<2y)y , 21<2) (3.10)

A general result that applies to homogeneous formal TEM waves as in (3.1) concerns transmis-

sion-line characteristic impedance Z.. If we have a lens region given by

ugl) Su < u?) ’ u(zl) Su S ugz)

u{l) ,ugz) = electric boundaries (3.11)
ug) ’u(22) = magnetic boundaries

then the TEM wave can be considered as a TEM mode on a transmission line with characteristic

impedance
(2) (2
| “1 ",
Ethd Eid
v j u1(1) 1M aug L?) 1 4u1
c = T E =
1 D @
2 “27 e
Hj hy dup H5 duy (3.12)
1 1
J‘.‘g) Lg )
_z u§2)—u§1) -z Auy
e ol

Note that the line element for the integration of the fields along each u,, is hy un asin (2.6).

The electric boundaries can be realized by approximately perfectly conducting sheets. If the u2
coordinate encircles a conductor so that Aup represents the change in 42 around the conductor, then the
field continuity through the common surface defined by both u(zl) and uf-,_z) satisfies the properties
required of a magnetic boundary. (This gives a jacket as in [4 (Chapter 5)].) If we have

0 < Aup << Auy (3.13)

so that Z; is a low impedance, then we can have the case that magnetic-field lines do not close in the lens
region with u(zl) and u§2) as distinct surfaces. Then the energy in the fringe fields (by definition outside
the lens region) is small compared to the energy in the lens region, and can be neglected in a limiting
sense. Such is the case for closely spaced conducting sheets (compared to their width) as in a strip line.

The later examples will have to be considered with this in mind.



4. Examples Based on Cylindrical Coordinates

Let us first cast two previous solutions based on cylindrical coordinates in the present format.

4.1 H-Plane Bend

In [4 (Appendix F)] the case of constant u corresponds to an H-Plane bend with perfectly
conducting boundaries on planes of constant z, say z1 and z), as illustrated in fig. 4.1. Putting this in the

context of our present cylindrical coordinates for a BOR lens gives

- - - - - - - -

E=E 1z , H=Hy; 1 , 11 =1z, 12 = 1%

=z , h=1

up = uy('¥) 4.1)
dv ¥

hy = =hhy = —

2 = [y 1hs = G —

¥
u3 = ¥max l”(\},

where the integration constants have been chosen for convenience with the constraint that the u, forma

right-handed system. The fields then take the form

) ) @2
- - Y B () 10)
2= ,
hy Y Z c

Note that E] is uniform with respect to z and ¥ while H varies as ¥1.
The lens domain is limited as

0<¥1 <Y <5 Y € Wnax @3)
N SoO<¢p , 212529

While z1 and 2z are realizable as approximately perfectly conducting boundaries, ‘¥1 and ¥ are ideally

magnetic boundaries which are difficult to realize. As a practical matter, one can choose

22 ~ 21 << W - ¥ 44)

to give a low-impedance configuration in which the effect of the fringe fields can be reduced.



Fig. 4.1. H-Plane Bend



42 E-Plane Bend

In [2] we have the case of an E-plane bend with perfectly conducting boundaries on circular
cylinders of constant ¥, say ‘1 and ¥, as illustrated in fig. 4.2. In our present context, this gives

- - - - - - - -
E=-Ey 1w , H=Hp 1z , 11=-1w , 12=1;
up =2z , =1
u; = u('¥) 45)
] I
duy h3 b 4
Uy = — v
LR T

Again, the integration constants are chosen for convenience with the 1, forming a right-handed system.
The fields then take the form

Ej k4 , u3)
| E; f{e-¥3
1 h‘l ‘Pmax 0 [( c

H5  E u3)
2" "7 f( ¢

In this case Hj is uniform with respect to z and ¥ while Eq varies as ¥ (maximum at the outer boundary
¥7).

4.6)

The lens domain is limited as

P <o¢<¢ , z1 £z=< 29 )

While ¥1 and W7 are realizable as approximately perfectly conducting boundaries, z1 and z3 are ideally

magnetic boundaries. Choosing
¥ - ¥ €£29 — 21 4.8)

gives a low-impedance configuration which minimizes the effect of fringe fields.
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5. Examples Based on Spherical Coordinates

Now let us exhibit two new solutions based on spherical coordinates. These are neither E- nor H-
plane bends but might be referred to as mixed bends. Boundaries are circular-conical and spherical

surface segments. The two cases are based on letting #1 and %2 each be functions of r or & alone in some
order.

5.1 Circular Conical Conducting Boundaries

For this case refer to fig. 5.1 with the choices of field orientations

- - - - - - - -
E=-EFE 1¢ , H=Hy; 1y , 11 =-1¢ , 12 =1y (5.1)
u = u(6) , up = up(r) '
From
kb ¥ _r sin(6) _ 7 sin(6)
h Ymax ¥Ymax "max sin(Bmax)

and noting that the line element in the 8 direction is rd0 (i.e., hg = r) we can select

h rd6 T Sin(emax)
1 = s
du1]l Tmax  sin(6)

(5.2)
hy = dr ( r )2

du "max

This allows u1 and up to be solved as

= i =2

max Sin(emax)

rnzmx (5.3)
up =~

where the integration constants have been chosen for convenience. The fields then take the form
B = - max s._ms%(")_)zg ,(t_.’g_)
7 6
Hy = H2 _ (er) ..EL[( _}.‘i)

r Z, c
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Fig. 5.1. Mixed Bend with Circular Conical Conducting Boundaries
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The lens domain is limited as

O<r<r<m < fnax

f1<¢<¢r , 0<6 <6<6 < Omax (5.5)

Now 6; and 8, are the electric boundaries, while the magnetic boundaries are given by r; and r2. Inline

with previous considerations one can choose
nf6 -] <«<n -n (5.6)
to give a low-impedance configuration and small fringe-field effects.

One might think that this solution of the Maxwell equations has a strange form. The electric field
is proportional to 71 consistent with the increasing conductor spacing for larger 7 , and to sin(6) due to
the decreasing ¢ for larger ¥ (and hence 6). The magnetic field is proportional to r2. One factor of 1
accounts for the increasing conductor spacing with larger r-1; the second factor of r-1 accounts for spread-
ing of the magnetic flux proportional to rd¢ in some incremental 4¢ along the direction of propagation
(normal to E ). This is necessary to give zero divergence to B which is like the 2 field from a magnetic
monopole at T = T)), except for the variation in the ¢ (propagation) direction (i.e., transit time or phase).

52 Spherical Conducting Boundaries

For this case, refer to fig. 5.2 with the choices of field orientations

- - - - - - - -
E=E 1, , H=Hy; 1¢ , 11=-1, , 12 = 1¢g 67
up = w(r) , up = uy(6)

From
b _ ¥ _r sin(6) _ r sin(6) 58)
hy ¥Ymax Wmax "max Sin(amax)

with the line element as rd8 in the 8 direction we can select
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Fig. 5.2. Mixed Bend with Spherical Conducting Boundaries

15



¥
B rd@ r sin(6)
) = = -
dr
h= duz =1

This allows ul and u2 to be solved as

)
ta"(E) (5.10)

Tmax SiIN(fmax) & ——=—~<
(=)

wp=r

“2 Bmax

2

where the integration constants have been chosen for convenience. The fields then take the form

E{ u
E = =E -—3)
1 h] 0’( CI
H{ r sin(6max) E} u
Ho = Hi _ mmax Sinmax) E; (t__3) 5.11
2 hy r sin(0) Z; f c G1D
\Pm

¥max Eo ,(t_u_s)
Y Z c .
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6. Concluding Remarks

We have here four types of “exact” dielectric lenses for bending the direction of propagation
along the azimuthal coordinate of a BOR. All have the same dependence of the permittivity as propor-
tional to ¥-2. The difference in the various lens types lies in the choice of coordinates on a meridian
plane. Noting that there are two choices for polarization, the Cartesian (z, ¥) and polar (r, 6) coordinates
produce the four examples. This gives some flexibility in the lens design for a given angle of bend ¢2 - ¢1
desired.

While the Maxwell equations are satisfied for a TEM wave in the lens region, there are the
boundaries to consider. The electric boundaries can be well approximated by metal sheets. As discussed
previously, the magnetic boundaries are more problematical, but the effect of the fringe fields there can
be reduced by using low-impedance lenses. There is also the problem of matching the wave to other

waveguiding structures at ¢1 and ¢ where some perturbation of the TEM mode may occur.

Noting that all of these examples have the same form of the permittivity £(¥), one can consider
linear combinations of these TEM waves as also solutions of the Maxwell equations. Keeping the wave-
form f(t-u3/c’) the same in all cases then one can look at the orientation of the electric and magnetic
fields to determine the contours (in the ¥, z orr, 8 plane) for the appropriate boundaries for the TEM
waveguide. Also noting that the coordinate origin can be taken anywhere along the z axis, then the
spherical-coordinate solutions exist for any such choice of 7 = 0, giving in effect an infinite number of
spherical cases, two for each choice of coordinate origin. Thus the present cases (canonical solutions) can

lead to various other lens designs.

Here the discussion has been for constant u , but variable €. The dual problem has constant ¢,
but variable i , with the roles of electric and magnetic fields interchanged (as well as electric and mag-
netic boundaries interchanged). So the present examples can all be used to generate a dual set of

examples with the appropriate interchange of parameters in the equations.
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