
.. ...
,..”. \

23 Mach 1996

Dielectric Jackets as Lenses and Application to

Generalized Coaxes and Bends in Coaxial Cables

Carl E. Baum
Phillips Laborato~

Abstract

This paper considers the generaI properties of a jacket consisting of two closely spaced, but

curved, conducting plates separated by a medium of uniform isotropic permeability and nonuniform

isotropic permittivity for propagating dispersionless TEM waves. A simple form of this is a body of

revolution with generalized axial propagation (generalizti coax) which can be synthesized with a

uniform perrnittivity. One can also use a nonuniform permittivity for a bend in a coaxial cable.
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1. Introduction

In the design of lenses for transporting transverse electromagnetic (TEM) waves in desirable

ways, there are techniques from differential geometry and the concepts of transit-time and differential-

frnpedance matching [5]. In its most general form such lenses are three-dimensional structures in which

wavelengths are allowed to be small compared to characteristic dimensions in all three coordinate

directions. In such cases, one can consider the full Maxwell equations for appropriate solutions.

Under appropriate conditions, the propagation of electromagnetic waves as governed by the

Maxwell equations can be reduced to propagation in less than three dimensions. A common case is that

of a transmission line in which the two cross-section dimensions are typically assumed to be small

compared to wavelength. If the transmission line is constructed of straight perfect conductors in a

uniform isotropic medium the dominant mode of propagation is a TEM mode, and one can even go to

frequencies high enough that the cross section is not electrically small if one is careful not to introduce

higher order (E and H) modes.

In [5] the concept of a duct is used to describe the propagation of an elementary part of a TEM

wave through a lens. As illustrated in fig. 1.1A a duct consists of a waveguide bounded by two each

electric and magnetic walls (boundaries) in the shape of a curvilinear rectangle (a rectangle in the limit of

small cross-section dimensions). In a general (UI, u2, U3) orthogonal curvilinear coordinate system the
+

electric field ~ is in the ?1 direction, the magnetic field ; is in the 12 direction, and propagation is in

the ?3 direction. All of the directions can change (smoothly) as one moves along the U3coordimte (in

general curved). The small changes in the cross-section coordimtes can be labelled as AUIand AUZ thew

being taken as constant along a uniform duct. Multiplying the electric field by the spacing in the 71

direction between electric conductors gives a voltage; multiplying the magnetic field by the spacing in the
+
1 z direction gives a current. Together with the U3coordinate the voltage and current satisfy the usual

telegrapher (transmission-line) equations (onedimensioml).

A jacket is a structure as illustrated in fig. 1.lB. Now the U2 coordinate extends over many

wavelengths, at least at the higher frequencies of interest, but Atq (the extent of the zq coordinate) is still

electrically small. Constraining the wave to propagate in the U3 direction, one can think of a jacket as a

set of ducts combined together such that two adjacent ducts have a common magnetic wall. Provided

that the U3 coordinate is continuous in going between adjacent ducts, then waves with identical voltages

on all ducts having the same properties with respect to U3can be considered as a single wave on the

entire jacket and the magnetic walls can be removed with no effect. As illustrated in fig. 1.lB the U2
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Fig. 1.1. Ducts and Jackets
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coordinate closes on itself such that (as in a coaxial cable) lines of R close on themselves with no

magnetic walls (divergenceless ~). As such, one can speak of inner and outer electric walls. A jacket is a

fundamentally a twodimensional electromagnetic structure with propagation possible in U2 and U3

directions, except that by design, exatation, and termination propagation is made to occur in the U3

direction with appropriate parameters independent of u2. Thus a jacket, as a twodimensional kind of

electromagnetic structure, is intermediate between a onedimensional transmission line (or duct) and a

three-dimensional electromagnetic structure (e.g., lens). (More generally, one can also consider

propagation in both U2and U3coordinates as in [5 (Appendix B)].)

One can also consider an opm jacket as in fig. 1.lC, in which the U2coordinate does not close on

itself. (Perhaps one could call such a structure a “sandwith”.) With no magnetic walls at the two

truncations of the U2coordinate, there is leakage of the fields through these open walls. As discussed in

[1], as long as the spacing between the electric walls is small compared to their “width” in the U2

direction, one can consider this as an approximation in which the error due to the fringe fields is

sufficiently small for some applications. Another way to think of such an open jacket is as (in general)

defoxmed “parallel plates” with perhaps an inhomogeneous medium between the plates.

The dual of a jacket is a slice [5] in which the ducts are combined so as to remove common electric

boundaries. However, this has less application due to the important magnetic boundaries. For present e

purposes, our emphasis is also on media of constant permeability P (typically h), but of variable (but

isotropic) permittivity & (2 &O).
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2. Two-Dimensional TEM Waves and Waves in Jackets

a
One way to look at a jacket is as a two-dimensional space [5 (Appendix B) 1. In tem of a general

(UI,u2, u3) coordinate system the two dimensions of concern are U2 and U3 where UI is the coordinate

normal to the two-dimensional surface characterizing the jacket, the extent of the tq coordinate variation

(i.e., 41) being small by hypothesis. The assumed form of our TEM wave is uniform in terms of the

formal fields (primed quantities in terms of which the Un coordimtes are like Cartesian coordinates). The

asmrned wave is then like

where p’ (formal permeability) and e’

(2.1)

(formal permittivity) are positive real constants (frequency

independent).

For diagonal

via

~ (permeability) and%’ (perrnitivity), these are related to the formal parameters

#
Z’ = (Yn,m) “ Z , ~ = (Yn,rn) “ ~

[

I@goo

hl

()
Il#qo

Ytz,m = 0 h2

00
lqh2
~

(2.2)

Noting that the electric field has only a U1component and the magnetic field has only a U2component we

have the scalar relations

h2h3 ~ , _ h3h1
&’=—

h ‘p-~p
(2.3)

e Constraining for convenience that p be uniform let us choose
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giving

~=1
hz

_&
=h;2&’ , E’ 2&o

E - h2h3 “

The local wave speed and wave impedance are

1 1

[1
Cw=[ll&]-z=c’$z = C’h3

ZW=[+=Z; L: [1
= Z; h3

&

If we restrict (for causality)

& 2 &~in 2 &O

we can set

which in turn testricts

1

[1
&min Z < 1h3=T _

The line element is

(dt)2 =

(hJ2 =

hn =

~h: (duJ2
n=l

[H ‘[2T
scale factors

(2.5)

(2.6)

(2.7)

(2.9)



●

a In the 71 direction, we have by typothesis a small separation between the electric walls, say designated

by u~l)and 42), given by

hA = hA(u2 ,u3) = ~ ~1 =
~w2) - ~1)1 (2.11)

so hA is simply a constant times hl (exact in the limit of small Aul) which we can regard as something to

be found in the solution instead of being specified a priori. Note that

hl = 52
h3

(2.12)

so the U2 and U3 coordinates give h2 and h3 which, in turn give hl and hA. This seems to offer lots of

flexibility.
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3. Jacket as a Body of Revolution with Generalized Axial Propagation

A simple kind of jacket is a body of revolution (BOR) in the form of a generalized coax. The
Q

electric walls am independent of rotation about the axis of rotation symmetry (z axis). Propagation can

be considerd as in a generalized axial dinxtion (combination of axial and radial).

A special case of this has constant

(3.1)

implying a constant propagation speed in the U3 direction. One example of this is a coax of slowly

varying radius as illustrate in fig. 3.1. In this case, we have

U3=Z
.

z.= [q+[w) = characteristic impedance

‘2(ZJ # finction of z (i.e., constant)
Yl(z)

(3.2)

Another obvious example is the conical transmission line with closely spaced circular conical

electric walls as illustrated in fig. 3.2. In the usual spherical (r, 8, @ and cylindrical (V, O,z) coordinate

systems we have

x = wCOS(#) , y = y sin(d)
(3.3)

z = r COS(6) , W = Wsin(~)

With rotational (@) symmetry we have

aq=r, h3=l

U2 =Vj#, h2=~=
r sin(tl)

‘j ‘j ‘in(@O)

du3 = dr

dur = : du2 = Wd@
1

= line elements

‘j

(3.4)
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where Vj is some convenient normalizing cylindrical radius and Oj is some mean value of 0 in the jacket,

ioe

fi<Oje@, @- fi’=AO (35)

with (?I and ~ as the 8 values of the two circular conical electric walls. It is well known [41 that this

strut-me admits an exact threedimensional solution, which corresponds in this case to

hpL r sin(e)

‘j rj Sin(@o)

hldul = rd9 = line element

[

()tid
ul ()= rj sin Oj 4?2

2

[

~~
tan 2J

[

()tan:
=Yjt?l —

[tan :’
d

with the integration constant chosen for convenience. The characteristic impedance is just

For small Aul, this is also well approximated using the formulae in Section 2 as

(3.6)

(3.7)

(32)

(3.9)

The foregoing C&be generalized by considering the jacket to have some mean cylindrical radius

Y(z). (One can also use a spherical form r((l).) Then we have
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(,

Jzf3 = fit = arc length along curve Y(z)

h3=l (3.10)

Y(z)
U2 = yj#, h2=_

‘j

Note also that we can now also pararneterize W or r as a function of u3. Regarding now U1 as a

generalized radial direction (orthogonal to U3as well as u2), and noting that Aul is small (by hypothesis),

we have the spacing of the ekctric walls as hA(z) in the 71 direction (orthogonal to is) as

hA
Y(z)

= hlAul =—AU1
‘j

So the spaang in the generalized

characteristic impedance is

(3.11)

radial direction is proportional to the Ioml cylindrical radius. The

Au,
(3.12)

which is independent of U3as has been required.

This kind of BOR jacket is especially simple because of its invariance with respect to @. Jf we

think of each elementary A@ as defining a duct, then all ducts are identical. This is not the most general

case where there can be variation (say in e) from duct to duct.



4. Waves in Duck Combined to Give Waves in Jackets

Consider a ZOZi’ duct (analogous to a uniform transmission line) with characteristic impedance

(with small Au2as well as smallAzq)

1

[1
h~ AUI P ~

zd=— —–
h2 Au2 e

# function of U3

Following the previous constant p assumption (Section 2) we have

1

[J

Aul p 2
Zd=— —

AIQ E&

(4.1)

(4.2)

This constant impedance assures that there are no reflections along the duct.

Note now that e is allowed in generaI to be a function of U2and u3. In going from one duct to an

adjacent one (a small change in u2) we require that U3 remain the same, which is merely another way of

saying that (UZ u3) is an orthogonal coordinate system for the jacket. Constant U3 contours represent

wavefronts on the jacket. Combining the various ducts together and removing the magnetic walls then

gives a jacket as discussed in Section 1. Its characteristic impedance is the same as in (4.2) with Au2now

reinterpreted as the total change in U2around the jacket. (All ducts are effectively connected in parallel.)
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5. Nonuniform Ducts and Jackets

As an aside now let each duct be nonunifi, i.e., modify (4.1) and (4.2) as

where AuI is now replaad by A(u3), a function of u3, but hl A(u3) is still considered small.

the electric walls is then

L@, U3) = l+q , U3) +3)

(5.1)

The spacing of

(5.2)

Requiring A(u3) not to be a function of U2makes all the ducts again the same, but now nonuniform. Each

duct can be treated as a nonuniform transmission line which is dispersive, but can be treated analytically

(even for pulses) for various tapers (functional forms of A(u3) in this case).

All ducts having the same form as in (5.1), they can be combined to forma ncmunifinn jackef with

A(u3) as the jzck?t iuper. Then such a jacket can be also solved as a nonuniform transmission line [2, 3].

Such jackets then can be used as pulse transmission-line transformers.



6. Bend in Coax

I

Now let us consider an example of a jacket in which e is required to vary with spatial position.

As illustrated in fig. 6.1, let us consider a bend in a coax. The bend region (jacket of interest) is contained

within the region #q s # s ~ and the coax is bent in a circular arc with a reference arc (“axis”) on

(Y, z)= (Yo, O)in our first cylindrical(Y, #, z) coordinatesystem. As seen in cross section(planeof

constant@ there is a second cylindrical (Y’, #’) coordinate system used to describe the conductors and

permittivity on the local cross section.

The straight portions of the coaxial cable are connected to the bend on the ~ and @2planes with

the axes on (Y, z) = (Yo , O)on these two planes and with the axes perpendicular to these two planes.

With Y~ and Y~ as the inner and outer radii, respectively, and e as the permittivity in the jacket, the

characteristic impedance is

where Y~ is a mean coax radius as

Y(j = [Yj Y~]+

For later use we have

(1
*O~~n%=

Y~ 243=242)

(6.1)

(6.2)

(6.3)

Considering such a coax as a jacket strictly requires Y~ near Y~ so that

Y~-Y~ <<1
goz — Y(j

(6.4)

and propagation in the Y’ direction (local radial direction) can be neglected. Considering a duct in the

straight coax as characterimd by some small A@’, we have
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(65)

as the characteristic impedance of the duct. This will be useful later for matching to the ducts in the bend.

Considering the bend region we have a distorted coax cross section with inner radius Y~(@’),

outer radius Y~(#’), and permittivity e(@’) in the jacket. The U3coordinate for the jacket is given by [11

Y
U3 = ‘Pm=# , h3 = —<1

Ym
(6.6)

which implies

(6.7)

This makes constant @ surfaces the wavefront surfaces (simultaneous arrival time).

Thinking of the bend region as a jacket implies that

hA(#)= y~(@’) -

and we neglect variations

Y~(@’) << Y(j (6.8)

in & with respect to Y’ for each @’. For each ~’ we assign Y~ as the

appropriate value of Y’ to use in each duct where we constrain

‘% = [wow)];=W’)p’w) (6.9)

as an appropriate mean value of Y’ in the jacket. Note that Y~ in the jacket is chosen as the same as in

(62) for thestraight coaxes formatching between the straight coaxes and the lx?nd. Thus converting from

Yin (6.7) to @’we have for the jacket

17
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Y= Y() + Y(jcos(@’) , Ym =Y(j + Y-d

[

Y() + +6 2
&(@’) _

C* Yo + Y(j Cos(ql’)1
&* = &(o)

Alternate forms for this include

[

.Y(-j+Y(j

1

2
&(#’) = &(o

Y() + Y~ Cos(#’)

(1

Yo

1

2

= E ; Yo + Y~ cos(~’)

[ 1

2
= e(z) ‘0 – ‘6

Yo + Y(j Cos(qv)

(6.10)

(6.11)

An individual duct in the jacket has a characteristic impedance

[rp:g(qv)
——

t ?

‘:~’i!’-%’=’’”(-)=’’(6.12)

Matching the ducts in the bend to those in the coaxes for common values of @’ and equating the duct

characteristic impedances gives

[1

~=~+

80 El

Using these formulae one can determine

,(,,.’4”(%)=’4”(%]

[r

e($’) :
‘go y

go= ’’”(%) =’’n(:)

(6.13)

Yj(#’) and Y~(#’) from



(6.14)

where #“ is any reference angle for the permittivity, such as those in (6.11). Comparing E(#) to &l one

may wish to make some choice which minimizes the change on transitioning between the straight coaxes

and the bend. One choice would have

(6.15

so that the mean E matches q and Y~ and Y~ match Y$ and Y~ respectively at #’ = + z/2. This

minimizes the maximum deviation (approximately) of the permittivities and conductor radii at # = O

and # = z. Of course this assumes that q > q enough that e~ = 8(0) 2 60. This presumes that q

is associated with some dielectric such as polyethylene, foam polyethylene, etc. In the bend, the

permittivity needs to be graded, but in a limiting case &(0)can be air. If the straight coax sections have air

dielectric, then one can choose e- = q and have a larger deviation of permittivity and conductors at

# = z.
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7. ConcludingRemarks

The concept of a jacket as a two-dimensional spare for TEM-wave propagation can lead to some

practical dielectric lens designs. From a theoretical point of view this is of interest as a two-dimensional

wave concept, midway between a one-dimensional duct or transmission line, and a full three-

dimensional lens. Constraining the permeability to be uniform and isotropic (e.g., PO) and the

perrnittivity to be isotropic, this still leaves the spatial variation of the permittivity to consider. Examples

of both unitbn (generdiz.ed coax) and nonuniform (bend in coax) permittivity have been considered.

The approximation of a lens as a jacket is basically a low-frequency approximation (as electrically

small in the direction of the ekctric fieId). As such the lens takes the form of a low-impedance

tmmmission line. In the example of a bent coax, one would like to use this result for higher impedances

of interest (5o Q, 100 !2). One can search for three-dimensional solutions in the spirit of [1]. Another

approach is to extend the present approximations by making the transition more smoothly between the

straight coaxes and the bend, and using the more exact dependence of e on Y (as in (6.7)) instead of an

average for each @’. The hd radhts YO need not be a constant over the Ixmd. Near the straight coaxes

the curvature Y~l can be smoothly decreased (lwing Oin the limit of connecting to the straight coaxes).

Adjusting e at each moss section to correspond with the local YO will then remove abrupt changes in e

at both ends of the bend.
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