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~ Azimuthal TEM Waveguides in Dielectric Media

Carl E. Baum
Phillips Laboratory

Abstract

This paper develops exact solutions of the Maxwell equations for TEM waves with

azimuthal (¢) propagation in a dielectric lens medjum with permittivity proportional to ¥ -2
(¢ = cylindrical radius). This class of solutions is based on magnetostatic fields from ¢ -
independent ¢ - directed currents to give the transverse parts (magnetic and electric) of the TEM

wave. These can be derived from the magnetostatic vector potential. This leads to various

geometries of TEM waveguides in the lens medium, including bends in coaxial cable.
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L Introduction

Dielectric lenses for bending the direction of propagation of transverse electromagnetic
(TEM) waves have been investigated in three recent papers [2-4]. A common feature of these
lenses, and those to be discussed here, is that they are portions of a dielectric body of revolution
(BOR) with permittivity £ proportional to ¥~2 where Y is the cylindrical radius from the axis
of revolution (the z axis). In [2] an E-plane bend with translation symmetry in the z direction is
discussed. In [3] this is generalized to several cases involving planar, circular cylindrical, circular
conical and spherical conducting boundaries. This includes the H-plane bend (planar conducting
boundaries) based on the class of lenses in [7 (appendix F)]. In [4] this problem is approached
from the point of view of a jacket in which the spacing of the two conductors perpendicular to the
electric field is electrically small, and small compared to the dimensions in the direction of the
magnetic field. Such a low-impedance structure is basically two-dimensional in terms of
dimensions that can be large compared to wavelength and thereby admit prbpagation. This jacket
technique gives an approximate solution for a bend in a coaxial cable.

The present paper continues the discussion of such dielectric bending lenses by exploring
the general properties of the TEM waves with azimuthal (¢ - directed) propagation. Recalling the
properties of the solutions [3], it was noted there how the transverse behavior of the magnetic
field was like a static magnetic field multiplied by a waveform function propagating in the ¢
direction. As we shall see, this is a characteristic of the general solution. An interesting canonical
magnetostatic solution is that of a filamentary circular current loop. The closed magnetic field
lines encircling the current can be used to define closed conducting surfaces which look like a
circularly bent coaxial cable. (This insight came to me in a dream the night of 25-26 March 1996.)
By superposition of such loops any ¢ - independent static ¢ - directed current distribution and
the associated magnetic field can be produced for defining "coaxial” bends with various cross-
section shapes.




2. TEM Waves with Azimuthal Propagation

The cylindrical (¥, ¢, z) coordinate system is related to the Cartesian (x,y,z) coordinate

system by:

x=Ycos(¢) , y=Wsin(¢g)

(2.1)

For our (uj, u3, uz) othoganal curvilinear coordinate system as in [3], let us choose the right-

handed form

]

z ’ ¥ ’ u35‘ymax¢

&
0

¥
- - - = - =
11=1z , T2=1¢ , 13=1¢ (unitvectors)

with scale factors
k ¢
’8 'Pmax
The medium is specified by
u=p'2u, (uniform permeability)

€ ¥max 2
—— h3_2 =
€min k4

Ymax = maximum allowable ¥ in lens region

This gives wave parameters

Cy = [#3]-1/2

= h3c’ = ?‘P ¢’ £ ¢’ inlensregion

max
172
c’=[ue’]  <c
U 1/2 ¥
Zy =[;] = hhZy = —‘}7—26 < Zj inlensregion

max
Zb=[ L,]l/z

8'

Let us look for waves of the form

(22)

2.3)

(24)

(25)



(2.6)

where the argument ¢ ~ %?— gives the propagation in the +¢ direction. Let us show that this
kind of wave can satisfy the Maxwell equations.

From
-
=g JH
v =—p— 2.
X E > 2.7)

we have

(2.8)
7] _ad _u3)__ 9, u3
+ 1¢[&EO‘P a\PEOZ] f(t ,)— nH; It ( r)
This requires that
0 J
EE"P - ngz =0 2.9
Furthermore, from
a4, _ Ei)_l_i. _l3
atf ( ) c 6‘143’( &43) @10
wehave
.= ! g = @11)
v ty =—HHt, ',—la?Etz-lﬂ'Itql .
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which implies

- - -
T¢ x Et = ZpHt , Et=-Zylg x H

(212)

so that the wave must be TEM, i.e. have the fields mutually orthoganal and related by the local

wave impedance.
From
- -
VxH= e-a—E
ot
we have

+ 1¢[§Z-th, ;th] f( -u—:f) = EE‘; t - ﬂf-)
This requires that
%th, - ‘%- Hy, _= 0
Again using (2.10) we have
1 1

——H, = ’ - ——H, =
hac’ tl{l £Etz h3c' tz EEtz

which gives exactly the same TEM condition as in (2.12).

(2.13)

(2.14)

(2.15)

(2.16)

Thus for TEM solutions of the form in (2.6) we need only to satisfy (2.9). Equations (2.12),

and (2.15) with non-zero Et and ﬁt .



3. Relation to Magnetostatics

From Appendix A we have the general properties of magnetostatic fields (subscript 0)
associated with ¢-directed currents independent of ¢ . Let us try this type of field which from
(A.8)is

H=Ho=- #L‘P (‘PA0¢) G

where Ag,is the only non-zero component (¢ -independent) of the static vector potential. In
component form this is

Hy, =ulw%(‘*"‘°¢)

Hyy =——(0,) (32

Note that with this identification (A.10) is exactly the same as (2.15), thereby satisfying this
requirement, provided we restrict ourselves to regions where there are no currents (i.e.,, away
from the perfectly conducting boundaries).

Having an acceptable magnetic field, let us turn now to the electric field. Define ft from
the ﬁt (which we now have) by the TEM condition (2.12). With (3.1) this gives

Fr=- i;’, (\yA(,‘)_-wfn'm v(waq, ) = Wm (\PA%) 33)
In component form this is

l

B~y —3, (‘PA"J

I

By =5 —3, (‘PA‘%)

-
Since E¢ is proportional to a gradient in a plane of constant ¢, it is easy to verify that (2.9) is
satisfied.

(34)

All the requirements for satisfying the Maxwell equations having been met, then TEM
waves of the form in (2.6) with (2.12) relating the two fields are admissible solutions of the
Maxwell equations in regions of no currents.




4. Azimuthal TEM Waveguide

With the TEM wave satisfying the Maxwell equations, attention now turns to the
boundary conditions. Consider a bend in the coaxial cable as illustrated in fig. 4.1. Note the
similarity to the same problem in [4]. Besides the previously introduced cylindrical (¥,¢,z)
coordinate system, one can introduce coordinates (‘¥,¢’) in a plane of constant ¢, based on a
reference point (center) at (z,'%) = (0,'%). The coax is then described by perfectly conducting

surfaces as

W¥3+(¢") = inner conductor
@1
¥4:(¢’) = outer conductor

where the notation corresponds to [4]. However, € is now taken as a function of ¥ as in (2.4)
instead of the approximate form as a function of ¢’. Besides the boundaries in (4.1) there is a
region ¢ <¢ < ¢, defining the lens region (the bend).

Considering the boundary conditions on W3 (¢’)and ¥j (¢°) we need Et perpendicular
and I_-I) ¢ parallel. With these two mutually perpendicular as in (2.12), it suffices to consider either
of the fields at these boundaries. As we have seen, these fields can be derived from magnetostatic
considerations. For this purpose extend the bend to a full circle by setting (¢1, ¢2) = (0,2z)so0
that the conductors form closed surfaces with complete azimuthal symmetry. Then as a
gedankenexperiment place a current source in the inner conductor to force a static current Ig (in
the ¢ direction) around the inner-conductor loop with a surface current density J;: ) (¢) onit
(independent of ¢). Then with no magnetic field allowed to penetrate the outer perfect
conductor (and the inner one for that matter) there will be an opposite current - I on the outer
conductor with some distribution | s(:) (¢')- The magnetic field between the two surfaces
(encircling the inner conductor) is an example of the magnetostatic field discussed in Appendix
A. Identify this (whether calculated or measured) with H which now matches the boundary
condition of zero normal component on the inner conductors. The TEM mode then satisfies the
boundary conditions on these two surfaces. (The same reasoning applies to multiple inner
conductors surrounded by the outer conductor, giving multiple TEM modes).

From an analytic or computational point of view, one can solve the second order
differential equation for WAy ¢ in Appendix A, subject to the boundary condition that this be two
different constant values on the inner and outer boundaries (like an electric potential function).
Alternatively, one can formulate an integral equation with WAy ¢ for a filamentary wire loop (as



cross section
in bend

Fig. 4.1. Bend in Coax




in Appendix B) taken as a Green'’s function. Integrating this times an unknown ¢-directed static
current density on the two boundaries, and imposing the two constant values for WAg o O1 the
two boundaries gives an appropriate integral equation on the two boundaries as curves on a
plane of constant ¢. This can be solved for the surface current density by techniques such as the
moment method. Of course, one can choose some number of current loops located on the
(z,¥) = (zn,'¥y) with currents I, , compute ¥4y, and choose paths in the (z,'¥) plane on which
this is constant to define the inner and outer conductors.

As far as the TEM mode (or modes in the case of multiple inner conductors) is concerned,
this is sufficient to satisfy the existence and properties. However, other modes can exist in the
geometry and medium. The boundary conditions at ¢; and ¢; need to be satisfied. One can
impose the boundary conditions required to match the TEM mode with electric and magnetic
sources on the ¢ and ¢, planes as specified by the field-equivalence principle [8]. As a practical
matter one would like (at least approximately) to match this TEM mode to the well-known TEM
mode of a straight coaxial cable. An approximate way of doing this based on ducts of equal A¢’
is discussed in [4]. In this case, the duct impedances are matched through the boundaries, but this
still leaves some perturbations due to the shifts of the conductor boundaries and jump in € in
crossing the ¢1 and ¢5 boundaries. Another approach is to construct the bend with sections of
various bend radius ¥y with ‘1‘61 tending toward zero near the two straight coaxes.



5. Concluding Remarks

We now have a theory of TEM modes in a BOR section with & proportional to w2, This
gives the desired dispersionless character of TEM modes for propagating pulses through bends in
coaxial cables, thereby extending the bandwidth of such bends to higher frequencies, or
equivalently preserving shorter rising times. This still leaves questions of how best to transition
into and out of such a bend, and how to best manufacture such a bend while closely

approximating the required conductors and permittivity.

The method of constructing the solution relies on the properties of static magnetic fields
and the associated currents on boundaries. For the coaxial bend the topology is one of two (or
more) perfectly conducting surfaces, the closed inner loop(s) being contained within the outer
Ioop. Another such topology for comparison is that discussed in [1] for containing static magnetic
fields. One might ask whether other kinds of magnetostatic field geometries can be used to
construct TEM fields in transient lens design.
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Appendix A. Magnetostatics for Azimuthally Directed Currents with Rotation Symmetry.

For magnetostatics (subscript zero) we have the appropriate Maxwell equation

VxHo=Ty , V* 7, (staticcurrentdensity) (AD)
Assuming the permeability p is uniform and isotropic, we have
-
0

V-Bo=0 , Bo=pHo , V-+Ho=0 (A2)

1t is well known that the magnetic field can be derived from a vector potential [6] where

-3 - - -
Bo=uHpo=VxAp , V*A=0

-,
V2A0=-uTy , Ao(P =p| —XD_ v (A3)
0 |4 -»> =
anlr-r|

Note also that we have

VxHo=0 , V240=70 (A4)
away from currents.

Specialize this to a current density of the form

- -

which, in cylindrical coordinates (¥,¢,z), has only a ¢ component independent of ¢. This
rotation symmetry, C.,; in [8], carries over to the other parameters as well. In particular, the
vector potential has the form

Ao=40,(z9)Ts (A6)

from which we have the magnetic field

H= Hoz(z,‘l’)_l)z+Hoq,(z,‘P)_1>\y
_ 1 9
Ho, = =5 W(‘I’Ao ¢) (A7

An alternate form of this is

11
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- 1 =
Ho= - Tox (w4, ) (AB)

Away from currents this rotationally symmetric magnetic field has

5 = T9 .. T?
VXHO =0 =[§H0‘1’ —FP'HOZ] 1 ¢ (A-9)

showing that all such magnetic fields have

d 7}
= Hoy, -5 Hp, = 0 (A.10)

in currentless regions. For the vector potential away from currents we have

v2Z4o= '6’=[v2A0 ,—¥ 40 ¢]T¢ (A1D)

This gives a solar differential equation for the one non-zero component of the vector potential

with various forms as

%(‘*’A‘%)“P—l%(‘y”"o)*”%(‘%f):" A

¥ %[‘rl?ai(‘%v )]*752‘(‘?“% )=0

So this gives a partial differential equation (similar to a Laplace equation) for Ag ¢ OF YAp ¢ ona
domain in a (z,'¥) plane. If we are given perfectly conducting boundaries, (say an inner and
outer conductor) this can be solved subject to the boundary condition that ﬁo be parallel to these
boundaries. From (A.7) this is a condition on the derivatives of WAp ¢’ in particular that the
tangential derivative of the parameter be zero on these boundaries. Equivalently, this means that
YA ¢ must achieve a constant value on each boundary (like an electric potential function).

12




AppendixB. Magnetostatic Filametary Circular Loop

An important case of the kind of current distribution treated in Appendix A is that of a
filamentary current Ip on a circular loop, located on (z,'¥)=(0,4) . By varying a (say as'¥’ ) and
shifting z as z—2” this can be used to give a current-density distribution of the form Jo, (z,'¥)
discussed previously. This canonical problem in effect gives a Green’s function over which one
can integrate to give the vector potential and magnetic field for the more general case.

Summarizing from [6], we have the vector potential

o~ 4] -]

. (B.1)
m= 4a‘l’[(a+ ‘}‘)2+22]-
and magnetic field
Hp, =-;%[(a+'i')2.+z ] [K(m) 2’2 o zzrs( )}
_Ip z 2. 2 a2+ w2422 ®2
Hog =32 =(a+¥) +z]‘ () 22 )

Here m is called the parameter in modern notation for elliptic integrals [5], and is equivalent to
k2, wherek is called the modulus. On the z axis that magnetic field reduces to

Hp =0 (B3)

z

= -;:aZ[a2+zz]‘3/2 ’ Oy
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