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Aimuthal TEM Waveguides in Dielectric Media

CarlE. Baum
PhillipsLaboratmy

Abstract

This paper develops exact solutions of the Maxwell equations for TEM waves with

azimuthal (#) propagation in a diektric lens medium with permittivityprcprtional to Y ‘2

(Y R cylindrical radius). This class of solutions is based on magnetostatic fields from # -

independent# - directed currentsto give the transverseparts (ma&etic andelectric)of the TEM

wave. These can be derived f+omthe magnetostatic vector potential. This leads to various

geometriesof TEM waveguidesinthe lensmediuw includingbendsincoaxialcable.
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1. Introduction

Dielectriclensesfor bendingthe directionof propagationof transverseelectromagnetic

(TEM)waves have been investigatedin three recent papers [2-4]. A common feature of these

lenses,and thoseto be discussedhere,is that theyare portionsof a dielectricbody of revolution

(BOR)withpermittivity& proportionalto Y-2 where Y is the cylindricalmdiusfrom the axis

of revolution(thez axis). In [2] an E-planebendwithtranslationsymmetryin the z directionis

dixussed. In [3] thisis genedized to severalcasesinvolvingplanar,circukwcylindrical,circular

conicaland sphericalconductingboundaries.ThisincludestheH-planebend(planarconducting

boundaries)based on the class of lensesin [7 (appendixF)]. In [4] this problemis approached

fnxn thepointof viewof a jacketinwhichthespacingof thetwoconductorsperpendicularto the

electricfieldis elecb-icallysmall,and smallcomparedto the dimensionsin the directionof the

magnetic field. Such a low-impedance structure is basically twodimensional in terms of

dimensionsthatcanbe largecomparedto wavelengthand therebyadmitpropagation.Thisjacket

techniquegivesan approximatesolutionfora bendina coaxialcable.

Thepresentpapercontinuesthediscussionof suchdielectricbendinglensesby exploring

thegeneralpqerties of theTEMwaveswithazimuthal( # - directd) propagation.Recallingthe

propertiesof the solutions[3], it was noted there how the transversebehaviorof the magnetic

field was likea static magneticfieldmultipliedby a waveform functionpropagatingin the #

direction.As we shallsee, thisis a characteristicof thegeneralsolution.An interestingcanonical

magnetostaticsolutionis that of a filamentarycircularcurrent loop. The closedmagneticfield

linesencirclingthe current can be used to defineclosed conductingsurfaceswhich look likea

circularlybentcoaxialcable.(Thisinsightcame tome in a dream thenightof 25-26 March 1996.)

By superpositionof suchloops any $- independentstatic @- directedcurrentdistributionand

the associatedmagnetic fieldcan be produced for defining“coaxial”bendswith various cross-

sectionshapes.
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2. TEMWaveswithAzimuthalPropagation

The cylindrical(V, @, z) coordinatesystemis relatedto the Cartesian(x,yz) coordinate

systemby

x= Yu)s(@) , y= Ysin(#) (2.1)

For our (uI, u2, u3) othoganalcurvilinearcoordinatesystem as in [3], let us choose the right-

handedform

lq=z , U2=Y , lJ3=Ym# (22)

il = iz , iz=iy

withscalefactors

hl=hz=l ,

. .

The mediumis specifiedby

P= P’>PO

&
2

()
—=h3.2= +
&*

# 73s i~ (tit VER30H)

?3=+
miu

(uniformpermeabfity)

Ymax = maximumallowableY inlensregion

Thisgiveswave paranwters

Y
Cw = [/,@’2 = h3c’ = ~ c’ < c’ in lens region

max

C’=[W’]1’2<c

.

Letus look for wavesof theform
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(23)

(2.4)

(25)
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2= ()Et(z,w f – &

()a=Iif(z,w f- ~
(2.6)

Z: “ l–i~=o
se wave

fi”i~=o

f(f) = temporal waveform

where the argument f - ~ gives the propagationin the +@ direction. Let us show that this

kindof wave can satisfytheMaxwellequations.

From

we have . .

ThisIequks that

d a
#ty - #tz =o

Furthermore,from

we have

+Efw = -@tz 1 +?&z=mY
hsc

4

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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whichimplies

so that the wave must be TEM,i.e. have the fieldsmutuallyorthogonaland dated by the local

waveimpedance.

From

Vxz=.g

we have

This requiresthat

$Wy --& Htz=O

Againusing(2.10)we have

~Hty
h3c’ ‘I%z, -LHtz=~zh3c’

(2.13

(2.14)

(2.15)

(2.16)

whichgivesexactlythesameTEMrenditionas in (2.12).

ThusforTEMsolutionsof theformin(2.6)we needonlyto satisfy(29). Equations(2.12),

and (2.15)withnon-zero ~t and at .

.
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3. Relationto Magnetostatics

From AppendixAwe have thegeneralpropertiesof magnetostaticfields(subscriptO)

associatedwith #-directed currents independentof@. Let us try this type of fieldwhichfrom

(A8) is

z=20=- (3.1)+i+ x V(YA04 )

where AOtis the only non-zero component (# -independent)of the static vector potential.In

mmpment form thisis

Elf== +Y44 )
jlv %

Hty . _LL(y&, )
JLYdz

Note that with this identification

(3.2)

(A.1O)is exactly the same as (2.15),thereby satisfyingthis

rqirement, provided we restrictourselvesto regionswhere there are no currents (i.e., away

fmm thepdectly conductingboundaries).
. .

Havingan acceptablemagneticfield,let us turnnow to theelectricfield.Define~: from

the at (whichwe now have)by theTEMcondition(212). With{3.1) thisgives

In compment formthisis

(33)

(3.4)

Since;t is proportional to a gradient in a plane of constant ~, it is easy to verify that (2.9) is

satisfied.

All the requirementsfor satisfyingthe Maxwellequationshaving been met, then TEM

waves of the form in (2.6) with (2.12) relating the two fields are admissiblesolutions of the

Maxwellequationsinregionsof no CUITentS
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4. AzimuthalTEMWaveguide

With the TEM wave satisfying the Maxwell equations, attention now turns to the

boundary conditions.Considera bend in the coaxial cable as illustratedin fig. 4.1. Note the

similarity to the same problem in [4]. Besides the previously introduced cylindrical (Y?,qt,z)

coordinatesystem,one can introducecoordinates(Y’,&) in a plane of constant ~, based on a

referencepoint (center)at (z,Y) =

surfacesas

Y3z($’) = innerconductor

Y4’(#) = outerconductor

where the notationcorrespondsto

(O,YO).The coax is then descrii by perfectlyconducting

(4.1)

[4]. However,&is now taken as a functionof Y as in (2.4)

insteadof the approximateform as a functionof ~’. Besidesthe boundariesin (4.1) there is a

region ~ <# s ~ definingthelensregion(thebend).

Consideringtheboundaryconditionson Yj (@’)and Y~ (#’) we need ~t perpendicular

and fit parallel.Withthesetwo mutually_cular as in (212),it sufficesto considereither

of thefieldsat theseboundaries.As we haveseen,thesefieldscanb derivedfrommagnetostatic

considerations For thispurposeextendthebendto a fullcircleby setting (~, ~) = (O,%) so

that the conductors form closed surfaces with complete azimuthal symmetry. Then as a

gedankenexperimentplacea currentsourcein the innermnductor to forcea staticcurrent10(in

the # direction)around the inner-conductorloop with a surfacecurrent density J~! (q)’)on it

(independentof #). Then with no magnetic field allowed to penetrate the outer perfect

conductor (and the innerone for that matter) them willbean oppositecurrent-10 on the outer
(4)

conductor with some distribution J (#’). The magnetic field between the two surfacess~
(encircling the inner conductor)is an exampleof the magnetostaticfielddiscussedin Appendix

A. Identifythis (whethercalculatedor measured)with fit which now matches the boundary

conditionof zero normal componenton the innerconductors.The TEMmode thensatisfiesthe

bounda~ conditions on these two surfaces. (The same reasoning applies to multiple inner

conductmssurroundedby theouterconductor,givingmultipleTEMmodes).

From an amlytic or computational point of view, one can solve the second order

differentialequationfor Y~, in AppendixA, subjectto thelmundaryconditionthat thisbe two

differentconstantvalues on the innerand outer boundaries(likean electricptential function).

Alternatively,one can formulatean integralequationwith YAfj@for a filamentarywireloop (as

7
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in AppendixB) takenas a Green’sfunction.Integratingthistimesan unknown #directd static

currentdensityon the two boundaries,and imposingthe two constantvalues for Y~@ on the

two boundariesgives an appropriate integralequationon the two Ixmndariesas curves on a

planeof constant #. Thiscan be solvedfor the surfacecummt densityby techniquessuchas the

moment method. Of course, one an choose some number of current loops located on the

(z,Y) = (q,Y?n) withcurrentsIn, computeY~$ and choosepathsin the (z,Y) planeon which

thisisconstantto definetheinnerandouterconductors.

As far as theTEMmode (or rrmdesin thecaseof multipleinnerconductom)isconcerned,

this is sufficientto satisfythe existenceand properties.However, other modes can exist in the

geometry and medium.The boundary conditionsat ~ and ~ need to be satisfied.One can

impose the boundary conditionsrequhed to match the TEM mode with electricand magnetic

sourceson the ~ and ~ planesas specifiedby thefield-equivalenceprinciple[8]. As a practical

matterone wouldlike(at leastapproximately)to matchthisTEMmode to the well-knownTEM

mode of a straightcoaxialcable.An approximateway of doingthisbasedon ductsof equal A#

is diwussedin [4]. Inthiscase,the ductiqedances arematchedthroughtheboundaries,but this

stillleaves some perturbationsdue to the shiftsof the conductorIxmndariesand jump in &in
-.

crossingthe #l and 4J2boundaries.Anotherapproachis to constructthe bend withsectionsof

variousIxmdxadiusY. with @ tendingtowardzero nearthetwo straightcoaxes.

9
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5. ConcludingRemarks

We nowhave a theoryof TEMmodesina BORsectionwith e proportionalto Y_2. This

givesthedesird dispersionlesscharacterofTEMmodesforpropagatingpulsesthroughbendsin

coaxial cables, thereby extending the bandwidth of such bends to higher frequencies, or

equivalentlypreservingshorterrisingtimes.Thisstillleavesquestionsof how kst to transition

into and out of such a bend, and how to best manufacture such a bend while closely

approximatingtherequiredconductorsandpermittivity.

Themethodof constructingthe solutionrelieson thepropertiesof staticmagneticfields

and the asociated currentson boundaries.For the coaxialIxmd the topology is one of two (or

more) perfectlyconductingsurfaces,the closed inner loop(s)being containedwithinthe outer

loop.Anothersuchtopologyfor comparisonis thatdkussed in [1] for containingstaticmagnetic

fields. One might ask whether other kinds of magnetostaticfield geometries can be used to

constructTEMfklds in transientlensdesign.
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AppendixA. Magnetos@ticsfor AzirnuthallyDhectedCurrentswithRotationSymnwtry.

For magnetostatics(subscriptzero)we havetheappropriateMaxwellequation

vxa)qo , V “ To (staticcurrentdensity)

Assumingthepermeabilityp is uniformand isotropic,we have

It iswellknownthatthemagneticfieldcanbe derivedfroma vectorpotential[6] where

+
Bo=/Li?o=Vx~O , V“a=o

v% =-JJO , 7~y) ~v,

20(3 = 4 ++
4ZI r-r’l

Notealsothatwe have

Vxap$ , yxo = 3

away fromcurrents

Speciakethistoa currentdensityof theform

(Al)

(AJ2)

(A3)

(A.4)

(AS)

which, in cylindricalcoordinates (Y,q$,z), has only a # component independentof @ This

rotation -e&y, C- in [8], carries over to the other parameters as well. In particular, the

vector~tential hastheform

fmm whichwe have themagneticfield

Z = Hoz(2,w)iz+Hoy(2, y)iw

Hoz =
()

LL y~,
pY a

Hoy = -;$4, ‘ .+4, )
@P&

Analternateformof thisis

11
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(A.7.)
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(A.8)

Away fromcurnmtsthisrotationallysymmetricmagneticfieldhas

Vxzo=$=
[
#@ -=Ho= 1t?+1$ (A.9)

showingthatall suchmagneticfieldshave

$Hoy -$ Ho= = O (A.1O)

in curnmtlessregions.For thevectorpotentialaway fromcurrentswe have

(All)

Thisgives a solar differentialequationfor the one non-zero componentof the vector potential

withvariousformsas

[1w), +J243,\.1 ~ y ——
twiw. . Y-z&J,=o&2

(A.12)

So thisgivesa partialdifferentialequation(similarto a Laplaceeqyation)for ~~ or Y*@ on a

domain in a (z, Y) plane. If we are given perfectlyconductingboundaries,(say an inner and
-+

outerconductor)thiscanbe solvedsubjectto theboundaryconditionthat HO be parallelto these

boundaries. From (A.7) this is a conditionon the derivativesof Y~~, in particular that the

tangentialderivativeof the parameterbe zero on theselxmndaries.Equivalently,thismeansthat

Y~4 mustachievea constantvalueon eachboundary(likean electricpotentialfunction).
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AppendixB. MagnetostaticFilamentaryCircularLoop

An importantcase of the kindof currentdistributiontreatedin Appndix A is that of a

filamentarycurrent10on a cimdar loop, locatedon (z,Y) = (O,a) . By varyinga (say asY’ ) and

shiftingz as z-z’ thiscan&used to givea arrentdemky distributionof the form Jot (z~v)

dismssed previously.Thiscanonicalproblemin effectgives a Green’sfunctionover whichone

can integrateto givethevectorpotentialandmagneticfieldfor themoregeneralcase.

sUmmarMngfrom[6],we havethevectorpohmtial

~~=%%r” [(%}(+’4
m

[ r
22*= 4M?(a+Y) +2

and magneticfield

HOz=~[(a+Y)2.+z2~’2 ~(@+~~~~~_E(rn)]

(Bel)

(m

Here m is calledthe parameterin modem notationfor ellipticintegrals[5], and is equivalentto

k’, wherek is calledthemodulus Onthez axis thatnmgneticfieldreducesto

Hoz = :U’[a’+zzr’”~HOY=O
033)
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