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Discrete and Continuous E-Plane Bends in Parallel-Plate Waveguide

Carl E. Baum
Phillips Laboratory

Abstract

Discrete bends in the propagation direction of plane TEM waves can be achieved utilizing the
Brewster angle at a planar interface between media of different uniform isotropic permittivities. This
paper extends this to cases of multiple dielectric or nonuniform permittivity. The nonuniform case is a
generalization of the Brewster-angle concept. This is also related to special log-spiral solutions of the
general differential-geometry equations for synthesis of two-dimensional transient lenses for propagating

. TEM waves.
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1. Introduction

A recent paper [2] has considered the design of two-dimensional lenses, the geometry being
independent of the z coordinate, the direction of the magnetic field. Constraining the permeability 1 to be
uniform, scalar, positive, and frequency-independent (e.g., i), the permittivity € is allowed to be non-
uniform (i.e., spatially variable), but still scalar, positive, and frequency independent. In that paper, a
solution technique for the synthesis of such lenses has been developed, utilizing a conformal transfor-
mation as an intermediate step for generating the required (11, 42, u3) orthogonal curvilinear coordinate
system. A specific example of an E-plane bend was also exhibited.

The present paper generalizes some of the previous results. As before, the electric field is in the
u1 direction, the magnetic field is in the 42 direction, and propagation is in the u3 direction to give a TEM
wave and simplify the form of the differential-geometry equations. The appendices develop a general
form of solution which includes a class of log-spiral solutions, as well as the E-plane bend (azimuthal
propagation) in [2], and the complementary case of cylindrical-radial propagation. A particular choice of
a parameter in the log-spiral solutions gives a case in which the permittivity is constant along certain
planes (planes of constant azimuth ¢ ). This is related to the Brewster-angle phenomenon for the total
transmission of plane waves between two media of different uniform permittivities meeting at a planar

interface.

After considering the simpler case of a jacket in which the perfectly conducting guiding sheets are
closely spaced in terms of wavelength (Section 2), the Brewster angle is used to give discrete bends
(Section 3) at one or more such interfaces. Continuing on to small changes in permittivity (Section 4),’
differential equations for continuous variation of permittivity are developed, allowing various combina-
tions of uniform and nonuniform permittivity. This is then tied to the special log-spiral solutions
(Section 5).




2. Solution for Closely Spaced, Perfectly Conducting Sheets Bounding
an Isotropic Inhomogeneous Dielectric Medium

A jacket [4, 5] is a kind of two-dimensional space for the propagation of electromagnetic waves.
The assumed form of our TEM wave is uniform in terms of the formal fields (primed quantities in terms
of which the u,; coordinates are like Cartesian coordinates). The assumed wave is then like
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with 4’ and €’ as real and positive constants. For present purposes our jacket is taken as the space
between two closely spaced (but, in general, curved) perfectly conducting sheets with the dielectric region
(variable scalar permittivity €, constant scalar permeability p ) defined by

WD <y < W@ 2)

the superscripts indicating the two perfectly conducting boundaries. In addition we take the jacket to be
independent of the z coordinate with

zZ h2=1 (2-3)

so that propagation and the electric-field orientation are orthogonal to the z axis. This type of jacket is
simpler than the body-of-revolution type in [4] due to the constant k2 in the present case. (See Appendix

A and [5] for more detailed discussion of the coordinates, scaling relations, and constitutive parameters.)
-—)
The spacing of the boundary sheets (in the 11 direction) is

ha = ha(uz,u3) = by Auy = b3 Ay
Auy = uD - P 24)
1
h3=hl_l=[—m-eei ]ESI
The spacing can be determined once € has been specified.

Figure 2.1A shows the special case in which
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A. Straight jacket

B. Bent (curved) jacket

Fig. 2.1. Closely Spaced Perfectly Conducting Sheets with Variable Spacing
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11=1y , 13 =1 25)
which can be labeled a straight jacket. This simplifies matters as
dx
3 =ux) , ks = 26)
Given some &(x), this can be integrated to give
1
X dx” &(x") |2
=" dx” 2.7)
"3 = .[0 h3 -[0 [emm *

with the integration constant (and sign) chosen for convenience. In turn, the boundary spacing can be
found from (2.4).

Figure 2.1B shows a more general case of a bent or curved jacket where on a plane of constant z
the u3 coordinate can be defined along a path P midway between the two boundaries. In this case if one
defines Zas the arc length along P (from some arbitrary starting point), then we have

€=1¢(t) , u3 =u3(Y
(2 (2] -2

u3z = I;‘Z; b [e(t”)]_ e

As discussed in [5] one can construct a lens from a set of jackets by stacking them in the -1’1
direction so that the boundaries of adjacent jackets have common boundaries ug"). However, if one is to
now remove the boundaries, it is necessary that the u3 coordinate be unchanged as one moves in the _1’1
direction (i.e., across such boundaries). This, in turn, places additional constraints on the coordinates and
allowable distribution of €. So now let us consider bends in lenses with TEM waves as in (2.1) and (2.3),
but with the boundary spacing ks no longer small so that variation with respect to ¥ is now allowed.



3. Discrete Bends

A basic bend geometry is indicated in fig. 3.1. A uniform TEM wave is incident from the left in a
uniform medium of permittivity £; and transmitted into the second medium with permittivity €; as a
uniform TEM wave provided certain Brewster-angle conditions are met [1], namely

1
[ 2
colyis) = [ 51— - sin)
] 1
. 2
sin(y;p) = _2_€2€+ o] = cos(yp)
1

cot{yip) = ﬂ-F = tan(y;)

| £2
b3
ViB + V1B = 2
Vb = Vig — Vg = bend angle
. £y — &
sin(yp) = ﬁ
1
2ler1]2
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_llea_lal2
tan(y;) = > [ 81I [ EzI (3.1)

1
Dy [e_z]f
Dy |
Figure 3.1 illustrates the case that ¢ is increasing to the right (increasing x ) so that the plate spacing is
also increasing to keep the transmission-line admittance per unit width the same, i.e.

Y? Yum , n=12

Yon = Z;,}. = [iu"—:lE = wave admittance of nth medium 3.2)

The interface S between the two media has its surface normal inclined an angle y;g with respect to the

direction of incidence (the T x direction). Note that there are two choices for the bend direction, up with



Fig.3.1.  Bend in Parallel-Plate Waveguide Utilizing Brewster Angle
at Interface Between Two Uniform Media.

v} positive for increasing € (which we use here), or down (toward -7 y)- In the present case, § inclines
. from upper left to lower right, while the alternative has § inclining from lower left to upper right. Said
another way the surface normal ?s pointing into the second medium points up from the x axis.

The incident field takes the form
(inc) , x Yo
E = Ey 1y =Ejflt-—|1y
Cwl

Zyn = I:?”-] = wave impedance of nth medium 33)

con = [MEn] ? = wave speed in nth medium

in the first medium (permittivity £1). In passing into the second medium, the electric field creased by the
factor D1/D2 (the magnetic field being unchanged), reoriented by a rotation of y},, and propagates with
the speed cy)2.



Applying this bend twice we have the configuration in fig. 32. Note the same “positive” orienta-
tion of the Brewster interfaces S,; (upper left to lower right). This can be applied to the case of N such .
bends with (3.1) applied to the nth bend as

cot{Wipn) = [:—1]%= tan(isn)

sin(ypy) = Ent+l —En

Ens1 +Ep
I |
Dps1 _ | &4l |2 (34)
Dy, | & |
.
Dps1 _ [Ens1 |2
Dy | &1

as well as other forms in (3.1) generalized by inspection. The illustration in fig. 3.2 is for the case of pro-
gressively increasing €, i.e.,, £ < €2 < €3. This need not be the case. For a decrease in £ on passing
through S, , the bend angle y},, merely becomes negative.

Fig. 3.2. Two Bends in the Same Direction with Two Brewster Interfaces.



By reversing the direction of inclination of one of the Brewster interfaces (52 in fig. 3.3) one can
reverse the bend direction while progressively increasing the permittivity (asin £ < &3 < & in fig. 33).
With this reversal of bend direction, the formulae in (3.4) and (3.1) are still applicable. Defining
+1 for positive inclination of S, (?S,, rotated in positive

z, .| sense (counterclockwise) from ray path) 35)

-1 for “negative” inclination of S, (?S, rotated in negative
sense (clockwise) from ray path)

the cumulative bend angle through the Nth Brewster interface is just
(N) &
WiV = Y EnWim (36)
n=1

This is measured positive with respect to ?x, the direction of the initial ray path. If N is the total
number of such interfaces, this represents the total bend angle.

A special case has a zero total bend angle, i. e., the wave in the N + 1st region propagates parallel
-3
to 1 x. For the case of N = 2 as in fig. 3.3, this implies

Vb1 = ¥p2
s ._%2 37
&2 &

So, given the initial and final permittivities, the intermediate permittivity is required to be the geometric

mean.

Fig. 3.3. Two Bends in Opposite Directions with Progressively Increasing Permittivity



4. Small Change in Bend Angle for Small Change in Permittivity

Preparing for a later continuous spatial variation of the permittivity, let us first consider the case
of a small change in permittivity in crossing a Brewster interface S as previously illustrated in fig. 3.1.

Setting
g1 =€ , & = €& + A€ 4.1)

then from (3.1) we have
1
Ae
tan(y;p) = [1+7F = cot{v:B)
4.2)

n
lim ViB) = lim = —
A 0 ( IB) 0 ViB 1

so small changes of ¢ are associated with a Brewster angle of n/4. For convenience we define a dimen-
sionless relative permittivity

£
& = —

Eref . : 4.3
Erf =convenient reference permittivity (e.g., £ or some starting €)

Continuing the development we write

T n
V:'B=j{+A'I’iB , VtB=1’+A'I’tB
Ayip = —Ayip 4.4)

Ay = Ay;p — Ayg = 2Ay;g (small bend angle)

Then expand the various functions as

wl + o)« () w25 v o)

=1+ 2Ay;g + O((Aw,-g)z) as Ay;g -0 45)
! 2
[1+&]5=1+1&+o[(&)]as Ae g
& 2 g & &

So to first order we have
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. - Ayig = -4— —rl = 5 Ay, = —Ay;p 4.6)

dvip _ _dyp _ 14wy _ 1
2

de de de 4e @7
dyip _ _dyp _ 1 dvp _ 1
dtn(e) din(e) 2 dine) 4
If this change occurs with respect to a change in some other parameter, say arc length dZ, we have
dy vip __dyig _1 dl[lb 1 den(e) 48

dt dl 2 de 4 dt

This is integrable giving a cumulative change in the angles. Expressing this for the bend angle
along some ray path P with arc parameter £ (or other parameter if one chooses) from some initial set of

parameters (subscript 1) we have
Vb—V¥n =l[ln(er)-ln(er1 )]=1t A 4.9
2 2 \&n
. Comparing this to the formulae for a set of discrete bends in (3.1) and (3.6), one can see that the results are

somewhat different. However, (4.9) can be considered a limiting case for large N and small A¢ at each of
the N Brewster interfaces. Along this ray path P the u3 coordinate monotonically increases (Appendix A).

Writing
6, = Emin s er = Er(t) (4-10)

we have from (A.11)

1
h3=¢&,2(¢) (scale factor for u3 coordinate)
4.11)

us = I h3(t’) z, (t')‘u’

with the integral along P. This relates to the later consideration (next section) of the continuous case from
differential-geometry considerations. Note that the ray path P can also be generated from (4.9). If the
initial direction is specified by, say y;1 =0, we then have

. vu(9)= %‘{::(_(:1))] =ar ‘-;-'f) 4.12)
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So at any position along P, the slope of this path is given in terms of parameters from previous positions
along the path.

In a general lens design one needs to consider not only a single ray path, but also other ray paths
and how the ensemble of paths works together to allow TEM waves to propagate with a common depen-
dence on the propagation coordinate u3 with the electric field in the orthogonal u; direction (Appendix
A). Here we consider a limitation on the allowable spatial region for the lens (the lens domain) based on

a spatial singularity.

Consider fig. 4.1 along with fig. 3.2 for some of the other symbols. On passing through S1 the ray
path P is bent positive Ay} and another Ay5 on passing through S3. The relative permittivity increases
by Ae,; and another Ag,) on passing through these two surfaces. all these changes are assumed small
(so fig. 4.1 is not to scale). The distance along P between S1 and S3 is A¢ (also small). With S; and S3
nearly parallel (Ay}; being small) the perpendicular distance between S1 and S2 near the ray path is
AL/2 since y;p; is 7 /4 (in the limit). Assuming continuous derivatives we have

Ayp2=Ayp1 =AYy , A =Agp=Af, 4.13)
where 51 and S2 can be taken as any two nearby such surfaces for continuously varying &,. The two

Brewster surfaces S1 and S intersect in a line (parallel to the z axis) designated P;. The distance along
these surfaces (a slant distance) from the ray path is

AL &AL
dg =d.y = =221 4.14)
5] =Hs2 32 AVD ﬁl_ Az, (
Taking the limit as A¢ — 0 we have
1 dt dt dt
de. = =2e, — =0 & __ 4.15
s~ {2 dy, V2e, de, V2 dtn(e,) 415

=
Since the permittivity increases (or decreases) in a direction normal to each 1, this direction being at an
angle of x/4 from the ray path, we also have

dt
e =712._’;(:_')=%'1’5 *Vin(e,) 4.16)

Note that if £, decreases along the ray path the sign of d; can become negative corresponding to a flip of
the position of P; from upper left to lower right in fig. 3.1. As one progresses along the ray path P, the
length of d5 can vary. The lens domain should not include singularities such as P;. As such the perfectly

12
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Fig.4.1. Spatial Singularity Associated with Turning of Ray Path
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conducting electric boundaries (u{n and ugz) in Section 2) need to be chosen to exclude such positions
from the lens domain. Note from the above that more rapidly varying £n(e,) gives smaller |d;] and hence

a more restricted lens domain.

As discussed in this section, we have a constructive way to design this kind of lens. Basically it
involves the discrete procedure in Section 2 generalized to a continuous various of &,. A set of steps for

1.  Specify a ray path P in the x,y plane.
2. Ateach point of P find y} from the slope and dy} /d¢ (the curvature).

3.  With some starting value of &, find &,(¢) from (4.15) by integrating along P.

4. Add x/4 to y, to give T s and assign the value of ¢, at this position on £ everywhere along the
surface S. Repeat for all positions on P to determine &, in the x,y plane.

5.  Go to another position in the lens domain and find another ray path starting in a direction with
angle —x /4 from the surface normal to local S, i.e., ¥} as one passes through successive surfaces S

(or Sp, if one prefers).

6.  Take two such ray paths to define the lens domain as the region between them, taking care to use
such a pair of paths that have no singularities “between” them. Note that the ray paths need not
extend to infinity but can be truncated as convenient. Place conducting sheets on these two ray
paths extended in the +z directions as surfaces.

If one wishes, such a continuous solution can be matched to two regions of uniform &, (as in Section 2) to
“begin” and “end” the lens at two convenient choices of S. This might correspond to connection to uni-
form transmission lines, sources, terminations, radiating antenna apertures, etc. This can be extended to a

wide variety of combinations of continuous nonuniform regions with uniform regions.

14
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5. Special Log-Spiral Solutions

Appendix C treats a general class of log-spiral solutions based on the differential-geometry equa-
tions for two-dimensional TEM waves in Appendix A and a general class of solutions in Appendix B.
Here we consider log-spiral solutions consistent with the continuous variation of permittivity in Section 4.

In (C.10) for the permittivity there is a parameter (an angle) 4’ which can be selected at our con-
venience. Two simple special cases, azimuthal and radial propagation, are associated with
a’=x/2 and a’ = 0, respectively, in Appendix D. Here we choose 4’ =% /4 which gives

13

h_
P e? 20 (5.1)

Noting that constant ¢ is a straight line in the complex plane (A.13) given by
{=x+jy="el® (52)

we can identify the planes of constant ¢ in three-dimensional space as Brewster surfaces designated S or
Sn in Sections 3 and 4.

The solution uses the compléx coordinates (a conformal transformation of {)
o(¢) =3({)+ jor({)

o1 == [-tn(a¥)+4]

03 = vlz[tn(a‘l') +¢] 63
hy = Eﬂ =a¥, a= positive scaling constant

Other parameters are

1
hp=1

h3 = I%:%I hD = a\Pe—‘Ji‘D] = elﬂ(ﬂ\P)—J—ZElb = e—¢

15
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2 "
cw=[pe] ¢’=e"¥c’= local wave speed

-t

c'=[usmin]_z

N'u

Zy= F%] =¢"%Z; = local wave impedance (54)
L

NI-:

za="‘]

| Emin
The (uy,u3,u3) orthogonal curvilinear coordinates are

1 1 1 -
uq ="72'a‘345w1 = —Eetn(‘ﬂ’)—¢ =—7-2-‘I’e 4
U=z (55)

= 1 ‘J'-Zﬂvs = 1 ln(a‘!’)+¢= 1 ¢
u3 75;6 EC 7-2-‘I’e

The electric boundaries are given by two choices of uj (say u%l) and u§2)) giving logarithmic spirals as in

(5.4). Constant arrival-time surfaces (or constant phase surfaces) are given by constant u3 which are also
logarithmic spirals. This is illustrated in fig. 5.1.

The TEM wave is given by

FerT1=B - BT - metyi- )T

- - , - (5.6)
H=H,T2-5 t—':—3) 12

The various directions are given by the unit vectors

Viy 1 [-?m
V] 2 ’

—’
2=12 5.7)
A\

—’
11=

16



/ ¢ = constant,
s surfaceof constante

ufl)

surface uz = constant

-
-~ .

Fig. 5.1. Log-Spiral Lens

this shows that the direction of propagation T 3 is oriented at an angle of -z /4 with respect to the

constant-¢ surfaces (Brewster surfaces) with surface normal 1 ¢. Furthermore, (5.6) shows that on such

surfaces the magnitude of the electric field is constant for constant retarded time t-u3 /¢’, consistent
. with Sections 3 and 4.

17



6. Concluding Remarks

There are various ways to approach the design of two-dimensional transient lenses with constant
i and variable &. For small spacing of the conducting sheets, a jacket approach gives a very flexible
design in which the variation of € with u3 can be specified along a planar curved path and the variable
conductor spacing then computed. For large spacing of the conducting sheets (compared to local wave-
lengths at the highest frequencies of interest) this ¥1 coordinate (in the electric-field direction) becomes
important.

For electrically large A one can approach this problem from both discrete and continuous
points of view. The discrete approach relies on the Brewster-angle phenomenon of no reflection at a
planar surface between adjacent regions of different permittivities. This can be repeated at some set of
such interfaces to achieve various bend angles for the direction of propagation and various combinations

of initial and final permittivities.

From a continuous point of view one can search for solutions of the differential-geometry equa-
tions to synthesize the (41 , u3 ) coordinates (with ¥2 = z). Here we have found a class of log-spiral solu-
tions which, for a particular convenient choice of parameters, gives a special form in which constant £
occurs on planes of constant ¢ which can be interpreted as Brewster-angle interfaces for small change in ¢,
thereby giving a continuous variation of &€ which corresponds to the discrete form. This also allows a lens
design which contains both uniform- and variable-¢ portions.

Further generalizations are possible. The particular log-spiral solution with constant-¢ planes as-

planes of constant £ can be matched to a second such solution on some particular plane, say ¢ = ¢p,
where the second solution has a different coordinate origin. This can be extended to some set of such
matching planes (say M-1) where the M regions so defined all have different coordinate origins. Of

course, one can then consider what happens as M — co.

Besides log-spiral solutions the results of Appendix B allow a quadratic term in the exponential.
This leads to coordinates based on the error function and Dawson’s integral. So future investigations
may lead to various additional types of two-dimensional transient lenses.

18



Appendix A. Summary of Two-Dimensional Differential-Geometry Lens
Equations for Single Field Components

A lens with the constraints (2.3) that

up=z,Tlh=1; ,hp=1 (A1)

reduces the differential-geometry lens design to a two-dimensional problem (the lens being independent
of one coordinate). Summarizing from [2,5] we have

2 2
2_ ox + (_aL) forn=1,3 (scale factors)
=(a) (&

(A2)

3
(a2 =Y h3(duy)? (Qine element)

n=1

The TEM formal fields are constrained to have the form

E":H"1'2=’50f( _ﬂ)?z (A3)

giving the physical fields (V/m and A/m)

-E=El?1 , El=£]-
K (A4)

- -

H=Hy 12 , Hy=H,=Hj

For this restricted form of the fields (one component each of electric and magnetic fields) the
constitutive-parameter scaling reduces to

W=hhzu , 8'=:—3£ (A5)
1

Restricting to the case of uniform permeability we choose for convenience
pE=Ep 2 Uy (A.6)

giving

19



The local wave speed and wave impedance are

Cw = [ue] =[— ¢’ =hac’

o[ [ on

Restricting (for causality)
E2Z Emin 2 €0

let us set
Emin =€

which in turn restricts

1
hy = k71 = [Enem]i <1
Note that the fields are related by
L= k12 = haZh = Z
Hj

consistent with the TEM nature of the assumed wave.

(A7)

(A8)

(A9)

(A.10)

(A.1D)

(A.12)

A convenient intermediate step, discussed in [2], for constructing the remaining u1 and u3 coor-

dinates uses a conformal transformation

o(¢) =v3({)+ 1)
{ = x+ jy (complex coordinates)

where ©{{) is an analytic function. The line element is

20
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WL = (dx)? + (dy)? = K2jaof?

o i
ho =32 (A14)

2 2
h3=h:‘;. ___(_?x_) +(-£L) forn=1,3

Lines of constant 1 and v3 (on a plane of constant z) form curvilinear squares (for equal decrements of v1
and v3). While the 1,73 coordinates do not satisfy (A.7), except for the trivial case of hy =1, one can

construct the corresponding uy, coordinates in the form
u =uy(oy) , u3 =mu3(v3) (A.15)

Then we have
2 2 2 2 2
2_[ox ) [ ) _(Fon)i[ 2] (2L
=) () -(2) [(ao) ”(av.,”
h,,=':—2:—lh, forn=13
. which gives
hihy = }:—%”:—Z—lhs =1 | (A17)

This allows one to choose the vy, giving the shape of constant v; and 73 lines, and hence constant ¥; and
u3 lines, and solve for the 1) and u3 coordinates subject to the separability conditions in (A.15).

(A.16)
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AppendixB. A General Class of Two-Dimensional Solutions

Consider some possible forms that the conformal transformation o{{) in (A.13) can take. .

Rewriting from (A.17)

dup|ldus| 2 .1)
doy |E|_h° ®

the separability conditions (A.15) require that k, can be factored as

2 _ d{z_ duq ||dus
-l e

(B2)
real function || real function
| of 71 only of v3 only
This implies
d 5)2 real function |[ real function complex function of ©3)
(E; | of 77 only of v3 only 71 and v3 of magnitude 1
which allows us to write
- real function real function imaginery function
SC33 vl e i

do of vj only of o3 only of vy and v3

Now d{/dv is analytic, as is the logarithm away from zeros and singularities of d{/dv. Sotrya
series expansion as

tn(z—i)= ia,,v” = ia,,[m +joq]" (B.5)

n=0 n=0

This is an expansion about v = 0, but it can easily be shifted to another origin as desired. Writing out the

first several terms we have



ln(:—i) =ag " (acceptable)

+ay[v3 + joy ] (acceptable)
+a v% + j2v301 - 012] (acceptable provided a3 is real) (B.6)
+a3 vg + j3v§v1 - 303:;12 - jv% ] (unacceptable)
+.e (unacceptable)
Here we see that, by comparing the terms in this series to the sum in (B.4), the terms for n 23 cannot be

used (i.e., these a, =0) due to the mixed terms involving both v3 and v1 which cannot all be purely
imaginary by appropriate choice of complex a,,.

So now we write

% = forar+an? ay Teal (B7)
which has the solution

J' g0+ap+a0” g _ J'd; =¢ (B.8)

in the form of an indefinite integral with integration constants to be chosen for convenience. The scale

factor is now

hp = E%I - cReleo]-1m[a; oy ~a;0f +RelarJos +a03 (5 g

which fits the required factored form. Writing

Refag]=a) +af (eachreal)  (B.10)

we have

duy _ 2a5-21m(a; Jo, -2a,0%
dv

(B.11)
du3 _ 245-2Refa; Jo3—24,03
do3

which can be integrated to give indefinite integrals of the same form as (B.8) (now real). Here we have
chosen the up, to be positive monotonic functions of the respective vy.



AppendixC. Reduction of General Class to Log-Spiral Solutions

There are some special cases of lenses belonging to the general class of solutions in Appendix B
with g3 =0. For such cases it is convenient to introduce cylindrical (¥, 9,z) coordinates with the

complex form
C=x+jy=‘l’e” 1
n({) = tn(¥)+ jo
Then the general solution in (B.8) becomes
0 1 - v
(= J' e‘°+“1°'dv' =% [_ NP ]ﬂ
a
” T €2

2
= £._ eal" - e‘lv()]
ax

Here ap is not essential, giving merely a linear shift in 0. The lower integration limit can be taken as oo
with a phase angle such that Re[a;0g ] = —, giving our basic form of solution as

C=ll e, ay = jarg(ar)
a1 = tnfja|C) = tnflar|¥) + jo
o= ai{ln(]all‘l’) + }'¢] =03 +Jv1

aizal_l

(C3)

Note the choice of 4 to remove an inconvenient shift in ¢. Furthermore, [alrl will have the dimensions

of meters, a convenient distance scale. A convenient alternate form for the various constants is

a = el , &,a" real

aj=a 1-g7 1

bul=a . arg(ar)=a"=-ja C4)
Ref[a;]=acos(a’) , Imfa;]=asin(a’)
Re[af]=a"lcos(a’) , Imaf]=-a"1sin(a’)

The separate vy coordinates are
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| vy = Im[a{ }¢n(a'P) + Re[a}]¢
¢ = a1 [~ sin(a’)¢n(a¥) + cos(@ ]
v3 = Re[a]}¢n(a¥) - Im[a} )¢
= &~ Ycos(a')tn(a¥) + sin(a’}9]

(C5)

The perfectly conducting sheets are placed on boundaries of constant vy, say vgl) and vgz), where such

boundaries can be found from
W = g~1,—csc(a’)avy +cot(a’)p

By appropriate choices of a and 4’ various logarithmic spirals can be produced.
For the up coordinates we first have

bo =i |-t - v

- |£ao +alv| = ¢~ Sin(#’)av; +cos(a’)avs

. Choosing the propagation coordinate u3 first we have (from (B.2))
d& — ezms(a')av3
dva
uz = se;(a’_) e2cos(a’)avy
a

sec(a’) e2cosz(a')ln(a‘!‘)+2cos(a')sin(a’)¢
2q

with integration constant chosen for convenience. The remaining coordinate is then

du _ ~2sin(a)av;
doq
Uy =-

csc(@’) ~2sin(a’)av
2a

_csc(a’) e2$in2(a')ln(a‘-l’)—Zcos(a’)sin(a’)¢
2a

with integration constant again chosen for convenience.

. The permittivity is now given by

C6

(olvg)

(C8)

(C9



doy

o
L | . L
€ h3 £min dos dug |1duy

duz
- ezsin(a')avl +2cos(a’)avy (C.10)

_ ez[- sin?(a')+cos?(a")]en(a¥)+4cos(a’)sin(a’)p

ok

= ¢208{2a'}tn(a¥)+2sin(24')¢

With this for ¢, and (C.6) with boundaries o{") and o{?) specified (or equivalently from (C.9) with
ugl) and ugz) specified), we have the lens design equations. Parameters a and 4" are available for us to

choose at our convenience.
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Appendix D. Two Simple Special Cases

. The log-spiral solutions in Appendix C have special simpler cases. The case that a’=x/2
corresponds to a case in [2,3] in which

o1 =—a Un(a¥) , v3=a"l¢

—24v. 2
ul=—e2a1=——‘l;‘; (D-l)
duz _ —py=al
dos 1, ug=v3=a ¢

Note in (C.8) that u3 is singular; this can be avoided as above or by taking an appropriate limit and
removing the irrelevant singular term. This solution applies to the case of an E-plane bend with circular
cylindrical conducting sheets on cylindrical radii ¥ of ¥j and ¥, with

0. Fmax O __¥max
b v S T o2
1 2 (D.2)

Ymax = a1 = maximum cylindrical radius of interest
. The permittivity for this case is

vy 2
E= (_l"npg) €min 2 €min . (D.3)

This case is studied in more detail and illustrated in [2, 3].
Another simple case is given by a’ =0 for which
— -1 |
v1=a¢ , v3=a n(a¥)

a g2

u3=> v (D4)

%:1 , W=t =ﬂ_1¢

Now in (C.8) we have u; singular; this is avoided in the same way as the previous example. This solu-
tion applies to the case of a radially expanding wave in an angular sector between perfectly conducting
planar sheets on angles ¢ of ¢; and ¢, with

(1) _y (2)
= in®1 =W.; (']
® 17T Tminf 8= Tmin 5
Ymin = a~! = minimum cylindrical radius of interest
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The permiittivity for this case is

k 4 2
¥min

this case is like a dual of the previous case is that the roles of the ¥ and ¢ coordinates and boundaries of
the lends domain are interchanged. The geometry is then like the illustrations in [2,3] with this new
interpretation.
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