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Abstract

Discrete bends in the propagation direction of plane TEM waves can be achieved utilizing the

Brewster angle at a planar interface between media of different uniform isotropic pennittivities. This

paper extenda this to cases of multiple dielectric or nonuniform permittivity. The nonuniform case is a

generali~tion of the Brewster-angle concept. This is also related to special log-spiral solutions of the

o
general differential-geometry equations for synthesis of twedimensional transient lenses for propagating

TEM waves.



1. Introduction

A mxent paper [2] has considered the design of two-dimensional lenses, the geometry being a

inckpndent of the z inordinate, the direction of the magnetic field. Constraining the permeability p to be

unifonrL walar, positive, and frequency-independent (e.g., w), the permittivity e is allowd to b nom

uniform (i.e., spatially variable), but still scalar, positive, and frquency independent. In that paper, a

solution technique for the synthesis of such lenses has been developed, utilizing a conformal transfor-

mation as an intermediate step for generating the requixed (UI, u2, u3) orthogonal curvilinear coordinate

system. A specific example of an E-plane bend was also exhibited.

The present pap generalizes some of the previous results. As before, the electric field is in the

UI din?ction, the magnetic field is in the U2direction, and propagation is in the U3direction to give a TEM

wave and simplify the form of the differential-geometry equations. The appendices develop a generaI

form of solution which includes a class of log-spiral solutions, as well as the E-plane bend (azimuthal

propagation) in [2], and the mmplementary case of cylindrical-radial propagation. A particular choice of

a parameter in the log-spiral solutions gives a case in which the permittivity is constant along certain

planes (planes of constant azimuth #). This is relakd to the Brewster-angle phenomenon for the total

transmission of plane waves between two media of different uniform permittivities meeting at a planar

interface.

m
After considering the simpler case of a jacket in which the perfectly conducting guiding sheets are

closely spaced in terms of wavelength (Section 2), the Brewster angle is used to give discrete bends

(Section 3) at one or more such interfaces. Continuing on to small changes in permittivity (Section 4),”
.

differential equations for continuous variation of permittivity are developed, aUowing various combina-

tions of uniform and nonuniform permittivity. This is then tied to the special log-spiral solutions

(section 5).
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2. Solution for Closely Spaced, Perktly Qmciucting Sheets Rounding

a

an Isotropic I.nhomogeneous Dielectric Medium

Ajacket [4,5] isakindoftwod.mens ional spare for the propagation of ekctromagnetic waves.

‘Ilw assumed form of our TEM wave is uniform in terms of the fo~ fields (pm qmtiti~ in terms

of which the Un cmrdinates are like Cartesian coordinates). The assumed wave is then like

;= Eli~=~ t-~ il
()h c’

%H2i2=
()

& f_!!3T2
c’

.’= [A’.’]+ , q = [+ ,p’=jl, e’=e~

(21)

with A’ and e’ as real and positive constants. For present purposes our jacket is taken as the space

between two closely spaced (but, in general, curved) perfectly conducting sheets with the diekxtric region

Omriablescalar pmnittivity e, constant scalar permeability p ) defined by

ups U s up (22)

m the superscripts indicating the two perfwtly conducting boundaries. In addition we take the jacket to be

independent of the z coordinate with

U2=Z, i2=iz, h2=l (23)

so that propagation and the electric-field orientation are orthogonal to the z axis. This type of jacket is

simpler than the body-of-revolution type in [4] due to the constant h2 in the present case. (See Appendix

A and [5] for more detailed discussion of the coordinates, soling relations, and constitutive parameters.)

The spacing of the boundary sheets (in the ;I direction) is

&q m! up- 41) (2.4)

The spacing can be determined once c has been specified.

13gure 2.1A shows the spial case in which
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Bent (curved) jacket

Fig. 2.1. Closely Spaced Perfectly Conducting Sheets with Variable Spacing
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11 = ly , 13 = ix
..

(25)

which can be labeled a straight jacket. This simplifies matters as

Hdx
U3 = u3(x) , ha =

dua

Given sonw dx), this can be integrated to give

‘3= J:% =J;[gjdx”

(2.6)

(2.7)

with the integration constant (and sign) chosen for convenience. In turn, the boundary spacing can be

found from (2.4).

Pigure 2.lB shows a more geneml case of a l.wntor curved jacket where on a plane of constant z

the U3coordinate can be defined along a path P midway betwcxm the two boundaries. In this case if one

defines /as the arc length along P (from some arbitrary starting point), then we have

As discussed in [51 one can construct a lens from a set of jackets by stacking them in the 71

direction so that the boundaries of adjacent jackets have common boundaries up). However, if one is to

now remove the boundaries, it is necessary that the U3coordinate be unchanged as one moves in the 71

dinxtion (i.e., across such boundaries). This, in turn, places additional constraints on the coordinates and

allowable distribution of c. So now let us consider bends in lenses with ‘IEM waves as in (2.1) and (2.3),

but with the boundary spacing hA no longer small so that variation with respect to U1is now allowed.
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3. Discrete Bends
.

..

A basic bend geometry is indicated in fig. 3.1. A uniform TEM wave is incident horn the left in a ●
uniform medium of permittivity q and transmitted into the second medium with permittivity q as a

uniform TEM wave providcxi certain Bxewster-angle conditions are met [11, namely

1

&2 -&l

&2+q
.

d
&2 +&l

1“

H92
&2

(3.1)

1

[I_ez 2—
&l

Figure 3.1 illustrates the case that c is increasing to the right (increasing x ) so that the plate spacing is

also increasing to keep the transmission-line admittance per unit width the same, i.e.

y;=h, n
Dn

= 1,2

1

Ym
[T

=ZJ=~2 = wave admittance of nth medium (32)

The interface S between the two media has its surface nofi inclined an angle ~iB with respect to the

direction of incidence (the ? x direction). Note that there are two choices for the bend direction, up with
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Ng. 3.1. Bend in Parallel-Plate Waveguide Utilizing Brewster Angle
at Interface Between Two Uniform Media.

W POSitivefor in-sing E (whi* we use here), or don (toward -? y ). ~ the present G=, S iIIC~eS

@

from upper left to lower right, while the alternative has S inclining from lower left to upper right.

another way the surface normal ?s pointing into the second medium points up from the x axis.

The inadent field takes the form

[1G=: - wave impedance of nth medium

c- = [Pen]-;- wave speed in nth medium

Said

(33)

in the first medium (perrnittivity q). In passing into the second medium, the electric field creased by the

factor ~/D2 (the magnetic field tiing unchanged), reoriented by a rotation of Vb, and propagates with

the sped CW2.
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Applying this bend twice we have the qmfiguration in fig. 32. Note the same “positive” orienta- “’

tion of the Brewster interfa- Sn (upper left to lower right). This can be applied to tlw case of N such
a

bends with (3.1) applied to the nth lxmd as

(3.4)

as well as other forms in (3.1) generW by inspection. The illustration in fig. 3.2 is for the case of pro-

gressively increasing e, i.e., Cl < e2 < e3. This need not be the case. For a decrease in & on passing

through Sn , the bend angle V~ merely beconws negative.

Fig. 3.2. Two Bends in the Same Direction with Two Brewster Interfaces.
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By reversing the direction of inclination of one of the Brewster interfaces (S2 in fig. 33) one can

rweme the bend direcdon while progressively ilmasing the pemittivi~ (as in Lq < L?2 < L?2in fig. 33).

With this reversal of bed directio~ the formulae in (3.4) and (3.1) are still applicable. Del%ing

I
+1 for podtive inclination of Sn (7S” rotated in positive

Xn =
sense (Countemklckwise) from ray path)

-1 for “negative” inclination of Sn (i% rotated in negative

sense (clockwise) fmm ray path)

(3.5)

the cumulative bend angle through the Nth Brewster interface is just

This is measured positive with respaY to ?=, the direction of the initial ray path. If N is the total

number of such interfaces, this represents the total bend angle.

tO ix.

m

A special case has a zero total bend angle, i. e., the wave in the N + 1st region propagates parallel

Forthecase of N=2ssinfig.3.3, thisimplies

~bl = ~b2
a?3 ~ (3.7)—=
q &l .

.

So, given the initial and final permittivities, the intermediate permittivity is required to be the geometric

mean.

t

Y

ray
@i -

● Fig. 33. Two Bends in Opposite Directions with Progressively Inmeasing Permittivity
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4. Small Change in Bend Angle for Smsll ~ge in Permittivity
.

Reparing for a later continuous spatial variation of the pennittivity, let us first consider the case a

of a small change in permittivity in crossing a Brewster interface S as pnwiously illustrated in fig. 3.1.

-

qaE&, &2w&+A&

then from (3.1) we have

(4.1)

(42)

Sosmall changes of care associatd with a Brewster angle of n/4. For mnvenienm we defie a dimen-

sionless xdative @ttivity

&
e,=~

(43).
C* = convenient reference permittivity (e.g., eo or somestarting d

e

Continuing the development we write

Yin = ~ + A~iB , ~tB = ; + A~tB

A~tB = -AtyB

A~b = A~iB - A~tB = 2A~iB (smd bend angle)

Then expand the various functions as

+:+ ‘@=t+) +=2(:)WB+O((WB,2)

= (1 + 2Ay/w + O (AVB)2) as AVB +0

.

(4.4)

(45)

So to first order we have

10
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1 Al?,
Av~=-— 1 A~b = - @tB ““

4er=2

Taking b limit @VeS derivatives as

(4.6)

(4.7)

(4.8)

This is integrable giving a cumulative change in the angles. Expressing this for the bend angle

along some ray path P with arc parameter Z(or other parameter if one chooses) from some initial set of

pmametm (subscript 1) we have

(4.9)

..

* Comparing this to the foxmulae for a set of discrete bends in (3.1) and (3.6), one can see that the results are

somewhat different. However, (4.9) can be considered a limiting case for large N and small A&at each of

the N Brewster interfaces Along this ray path P the U3coordinate monotonically increases (Appendix A).

writing

&r=&& , &r = &,(f)

we have finm (All)

1

hs = c>(t) (scale factor for U3coordinate)

(4.10)

(4.11)

with the integral along P. This relates to the later consideration (next section) of the continuous caw from

differential-geometry considerations. Note that the my path P can also be generated from (4.9). If the

initial direction is specified by, say Vbl = O,we then have

(4.12)

11
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So at any position along P, the slope of this pa~ is given in terms of parameters from previous positions ‘

along the patk
@

In a general lens design oxw xmids to consider not only a single ray path, but also other ray paths

and how the ensemble of paths works together to allow TEM waves to propagate with a common depen-

denm on the propagation coordinate U3 with the electric field in the orthogonal UI direction (Appendix

A). Here we consider a limitation on the allowable spatial region for the lens (the lens domain) based on

a spatial singularity.

Consider fig. 4.1 along with fig. 3.2 for some of the other symbols. On passing through SI the ray

path P is bent positive A~bl and anotherA~b2 on passing through S2. The relative permittivity incn?ases

by Mrl and another Lier2 on passing through these two surfaces. all these changes are assumed small

(SOfig. 4.1 is not to scale). The distance along P between S1 and S2 is Af (also small). With S1 and S2

nearly parallel ( A~b2 being small) the perpendicular distance between S1 and S2 near the ray path is

LM/fi since Vtm is z/4 (in the limit). Assuming continuous derivatives we have

&b2 = A~bl =fi~b , &,l = &,2 =&r (4.13)

where S1 and S2 can be taken as any two nearby such surfaces for continuously varying &r. The two

Brewster surfaces SI and S2 intersect in a line (parallel to the z axis) designated P~. The distance along
a

these surfaces (a slant distance) from the ray path is

. @?&d,, =d,z=e , (4.14)

Taking thelimitas At+ Owehave

d~=+$=fier~=fidt;cr) (4.15)

Since the permittivity increases (or decreases) in a direction nornd to each 7s, this direction being at an

angle of x/4 from the ray path, we also have

(4.16)

Note that if q demeases along the ray path the sign of d~ can become negative conesponding to a flip of

the position of P~from upper left to lower right in fig. 3.1. As one progresses along the ray path P, the

length of d~ can vary. The lens domain should not include singularities such as P~. As such the perfectly

*
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Fig. 4.1. Spatial Singularity Associated with Turning of Ray Path
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conducting ektric boundaries (x$) and u~2) in Section 2) need to be chosen to exclude such positions

from the lens domain. Note from tk above that more rapidly varying h(e,) gives smaller ~~~and hence a

a more mstrictd lens domain

As dkussed in this section, we have a constructive way to design this kind of lens. Basically it

involves the discrete pmcechue in Section 2 genendized to a continuous various of &r. A set of steps for

thisis

1.

2.

3.

4.

5.

6.

Specify araypath Pinthex,yph.

At each POintOfp find Vb frOmthe SIOpeand d~b /df (the Curvam).

With some starfing value of er fmd &r(t) from (4.15) by integrating along P.

Add %/4 to Vb to give 7s and assign the value of &r at this position on 4 everywhere along the

surface S. Repeat for all positions on P to determine &r in the x,y plane.

Go to another psition in the lens domain and find another ray path starting in a direction with

angle ‘Z/ 4 f’K)mthe 5UIfjKeIIOITId b kids, k, ~b iM One paSSeS thrOUgh SUCCf2SSk SUIfM!f3s

(or &if one prefers).

Take two such ray paths to define the lens domain as the region between them, taking care to use

such a pair of paths that have no singularities “between” them. Note that the ray paths ti not ..

extend to infinity but can be truncated as convenient. Place conducting sheek on these two ray

paths extended in the b directions as surfaces.

If one wishes, such a continuous solution can be matched to two regions of uniform Cr (as in Section 2) to

“begin” and “end” the lens at two convenient choices of S. This might correspond to connection to uni-

form transmission lines, sources, terminations, radiating antenna apertures, etc. This can be extended to a

wide variety of combinations of continuous nonuniform regions with uniform regions.

14
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5. special Log-spiral solutions

9“

..

Appendix C treats a general class of log-spiral solutions based on the differential-geoq ap-

tions for two-dimensional ‘EM waves in Appendix A and a general class of solutions in Appendix B.

Here we consider log-spiral solutions consistent with the continuous variation of permittivity in Section 4.

In (C.1O) for the permittivity there is a pmmeter (an angle) a’ which can be selected at our con-

venience. Two simple special cases, azimuthal and radial propagation, are associated with

a’= %/2 anda’=O, resptxdvely, in Appendix D. Herewechoose a’=z/4 which gives

L= L!L=,* ,#20
e~ h3

(5.1)

Noting that constant @is a straight Iine in the complex pIane (A.13) given by

g=x+fi=wej~ (52)

we can identify the planes of constant @ in thr~imensional space as Brewster surfaces designatd S or

~in Sections 3and4.

.

a The solution uses the compl~ coordinates (a ccmformal transformation of J)

d{)- u3(c)+@l(c)

= d~
hQ ~= ay, a E positive scaling constant

(53)

15
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Cw= [pc]2c’= e-c’= local wave speed

1

7

c’= [Wnin]

1

-5

.E41 =e+%=local wave impedanm
&

(5.4)

The (Ul,u2,u3) orthogonal CUrdhnr coordinates am

The eleciric boundaries are given by two Choi- of U1(say # and u\2)) giving logarithmic spirals as in

(5.4). Constant arrival-time surfaces (or constant phase surfaces) are given by constant U3 which are also

logarithmic spirals. This is illustrated in fig. 5.1.
a

The TA4 wave is given by

E~

() ()
l?= E1il=— t-~ il=fie-~ t-~ 71

hl

l%
()

8= H2i2=— t-~ i2
a

The various directions are given by the unit vectors

71= ia=~[-i’+i’l
i2=iz

[1.%=l++‘3pu31~1‘J’+1#

.
.

(5.6)

(5.7)

16
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surface of cxmstante

x

Rg. 5.1. Log-spinal Lens

this shows that the di.nxtion of propagation ? 3 is oriented at an angle of -z/4 with respect to the

constant-~ surfaces (Brewster surfaces) with surface normal 7 ~. Furthermore, (5.6) shows that on such

surfaces the magnitude of the electric field is constant for constant retarded time f- U3/c’, consistent

9
with %XtiOnS3 and 4.
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6. Concluding Remarks
h

..

There are various ways to approach the design of twodimensional transient lenses with constant a

A and variable e. For small spacing of the conducting sheets, a jacket approach gives a very flexible

design in which the variation of c with U3 can be specified along a planar curved path and the variable

conductor spacing then computed. For large spacing of the conducting sh@s (compared to local wave-

lengths at the highest i%equenciesof interest) this UI coordinate (in the electric-field direction) Ixxomes

important.

For electrically large AUl one can approach this problem from both discrete and continuous

@nts of view. The discrete approach relies on the Brewster-angle phenomenon of no reflection at a

planar surface between adjacent regions of different pmnittivities. ‘I?ds can be repeated at some set of

such interfams to achieve various bend angles for the direction of propagation and various combinations

of initial and final perrnittivities.

From a continuous point of view one can search for solutions of the differential-geometry equa-

tions to synthesize the (q , U3 ) coordinates (with U2 = z). Here we have found a class of log-spiral solu-

tions whkh, for a particular convenient choice of parameters, gives a special form in which constant &

occurs on planes of constant @which can be interpreted as Brewster-angle interfaces for small change in &,

thereby giving a continuous variation of e which corresponds to the discrete form. This also allows a lens
6

design which contains both uniform- and variable-& portions.

Further generalizations are possible. The particular log-spiral solution with constant-~ planes as Q “

pkmes of constant & can be matched to a second such solution on some particular plane, say@ = @

where the second solution has a different coordimte origin. This can be extended to some set of such

matching planm (say M-1) where the M regions so defined all have different coordinate origins. Of

course, one can then consider what happens as M + 00.

Besides log-spiral solutions the results of Appendix B allow a quadratic term in the exponential.

This leads to coordinates based on the error function and Dawson’s integral. So futwe investigations

may lead to various additional types of two-dimensional transient lenses.

18
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Appendix A. Summary of Two-DimensionalJXffmnw~eoX ~

e

Equations fir Single Field Components

A kms with the constraints (2.3) that

u2=z, i2=iz, h2=l (Al)

reduces the differential-geometry lens design to a twdimensional problem (the lens being independent

of one coordinate). Summmizh g fmm [251 we have

~=(%r+(a‘orn=’f’(defadom)
(dt)2 = ~~(d~)2 (line element)

(A2)

The TIM formal fields are constrained to have the form

(A3)

*

..

giving the physical fields (V/m and A/m)

-)

E= E1il , El=
~

h (A.4)

FLH2i2 , H2=HZ=H5

For this restricted form of the fields (one component each of electric and magnetic fields) the

constitutivcqxxameter scaling reduces to

Restricting to the case of uniform permeability we choose for convenience

(A5)

* giving

19
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h1h3 = 1

The local wave speed and wave impedance are

Restricting (for causality)

&2&&2&o

let us set

which in turnrestricts

1

h3 = @ =
[1
*2<]

&

Note that the fields are related by

(AA)

(A.9)

(A.1O)

(All)

(A.12)

consistent with the TEM nature of the asumed wave.

A convenient intermediate step, discussed in [2], for constructing the remaining U1and U3 coor-

dinates uses a conformal transformation

W)= ~3(O+Pl(0

~= x + jy (complex coordinates)
(A.13)

where u(<) is an analytic function. The line element is

20



Id =W2+(M2=Md “

(A.14)

Lhws of constant rq and U3(on a plane of constant z) form cumilinear squares (for equal decremen tsofq

and u3). While the U1,U3coordinates do not satisfy (A.7), except for the trivial case of ~ =1, one can

construct the corresponding un coordinates in the form

q = q(q) , M3= IJ3(V3) (ASS)

Then we have

(A.16)

l--+h=~ ~ forn=l,3
n

● which gives

. .

hlhs =HI--Idqdn:=1
dul dus

(A.17)

This allows one to choose the on, giving the shape of constant tq and ~ lines, and hence constant UI and

M3lines, and solve for the q and U3coordinates subp to the separability conditions in (A.15).

21
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Appendix B. A General Class of Two-Dimensional Solutions
a

Consider some possible forms that the confomud transformation u(O in (A.13) can take. m

Rewriting from (A.17)

HHdu du3
dq dv3 =ti

the separability cxmditions (A.15) require that ~ can be factored as

‘nz:lrf=l

()[d~’= ml function

z of q only

which allows us to write

[:Z;][complex function of

q and V3of magnitude 1

(B.1)

(B2)

(B3)

(B.4)
.

.

Now d~/dv is analytic, as is the logarithm away from zeros and singularities of df/dv. So try a

series expansion as

tn(*)=~%.n=~.n[.3 +jw]n (B.5)

n=O n=o

This is an expansion about 0 = O,but it can easily be shifted to another origin as desired. Writing out the

first several terms we have

22



(M)

+ul[v3 + jq] (acceptable)

[
+a2 V$+ j2v3tq - v; 1 (acceptable provided a2 is real)

[
+a3 u:+ j3v~tq - 3v3v~ - pl 1“3 (unacceptable)

+ . . . (unacceptable)

Hemweseethat, bycomparing thetermsin thisseries tothesumin (B.4), thetermsfor n23 cannotbe

used (i.e., these ~ = O) due to the mixed terms involving both 03 and VI which cannot all be purely

imaginary by appropriate choice of complex ~.

So now we write

%. #iI+alv+a2d witi q real

dv
(B.7)

which has the solution

(B.8)

..
in the form of an indefinite integral with integration constants to be chosen for convenience. The scale

factor is now .
.

which fits the required factored form.

Re[~] = ~ + @ (each real)

we have

~s e~-21rn[aJh-Z20~
dq

*. ~@”-2~a1]u~-2a*t7~
du3

writing

(B.1O)

(B.11)

which can be integrated to give indefinite integrals of the same form as (B.8) (now real). Here we have

*
chosen the Unto be psitive monotonic functions of the respective Um

23



Appendix C. Reduction of General Class to Log-Spiral Solutions
a

There am some special cases of lenses belonging to the general class of solutions in Appendix B *

with ~ = O. For such cases it is convenient to introduce cylindrical (W,$,z) coordinates with the

complex form

c=x+jy=Yej*
(cl)

ln(~) = in(y)+ j~

Tlum the general solution in (B.8) becomes

Here ao is not essential, giving merely a linear shift in v. The lower integration limit can be taken as 00

with a phase angle such that l?e[al~] = -w, giving our basic form of solution as

..
(=~lrl&l” , uo = j~q)

alo = 4n@ll~) = @a@) + jt$

u= a~[@allW) + j~] = ~ + jrq

a~ E %-1

(C3)

Note the choice of ao to remove an inconvenient shift in @. Furthermore, ~rl will have the dinnmsions

of meters, a convenient distance scale. A convenient alternate form for the various constants is

q . #’ , a,a’ real

a~= q-* = a-le-jll’

~ll=a , arg(al ) = a’ = -j%

Re[al] = acos(a’) , Im[al] = asin(a’)

Re[a~]= a-l cos(a’) , @a~] = -a-l sin(a’)

(C.4)

The separate Uncoordinates are

24
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~ = W@@’)+ R+i]# .

. a-l[-s@a’)@aY) + 4a’N]

U3= Iq@@P)- I.m[ai]o

= a-l[cOs(a’)k(aY) + sin(a’)#]

(C5)

(1) ad U{2), W* suchThe perfectly conducting sheets are placed on boundaries of constant VI, SSY 01

boundaries can be found horn

y= ~-le-=(u’)f%+d(uw (C.6)

By appropriate choices of a and a’ various logarithmic spirals can be produced.

For the Uncamlinates we first have

b=~=pl=klq’aw

H=J30+a,v = ~- sin(u’)aq +cos(a’)av3

m Choosing the propagation coordinate U3first we have (from (B2))

du3_. ~2c0~a’)av3
dvs

da’) ~2cos(a’)m3u3=—
2a

with integration constant chosen for convenience. The remaining coordinate is then

cd~’) ~-2sin(a’)aulIq = -—
Za

= csc(a’) ~2s~2(a’)~~(aY)-2~s(a’)s@a’)#
2a

with integration constant again chosen for convenience.

(C.7)

.

(c-w

(C.9)

The permittivity is now given by

2s



.=&*=
h3 HH,=dv3 dq

du3 dul

(1) d $2) specified (or equivalently from (C.9) withWith this for e, and (C.6) with boundaries U1 an 1

1$) and u~) specified), we have the lens design equations. Parameters a and a’ are available for us to

choose at our cxmvenience.

(Clo)
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Appendix D. Two Simple S@al Cases . .

e“ The log-spiral solutions in Appendix C have special simpler ~ses. The case that a’= z/2

~ndstoacasein [231inwhich

~= -U%I(UY) , 03= u-1#

~-ti, y-2
q =-— -—

2a=2a
(D.1)

!L!&=l , U3= V3 = a-14

Note in (C.8) that U3 is singular; this can be avoided as above or by taking an appropriate limit and

renmving the irrelevant singular term. This solution applies to the case of an E-plane bend with circular

cylindrical conducting sheets on cylindrical radii V of WIand W2with

Y max “ a-l = maximum cylindrical radius of interest

m The permittivity for this case is

()

2
&. + &~2&&

This case is studied in more detail and illustrated in [2, 3].

Another simple case is given by a’= Ofor which

q = a-l# , v3 = a-l@aY)

a2U3=-Y
2

(D.2)

(D.3)

.

(D.4)

Now in (C.8) we have U1 singular; this is avoided in the same way as the previous example. This solu-

tion applies to the case of a radially expanding wave in an angular sector between perfectly conducting

planar sheets on angles ~of~ and~with

up=Y&& , #= Ynil#2

Yfi - a-l - minimum cylindrical radius of interest
05)
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‘llw permittivity for this U is

this case is like a dual of the previous case is that the roles of the Wand $ coordinates and boundaries of

the lends domain are interchanged. me geometry is then like the illustrations in [2s1 with this new

interpretation.

. .

. e“
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