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Abst Tact

The response characteristics.of an electrically=small cylindrical loop
with two extermal conducting shields. is calculated. The shields have the
effect of reducing the. electric.field.sensitivity of. the.loop. The'shield
parameters may be. chosen so that the shields do not appreciably affect the
response of the.loop to B. for frequencies of interest. .If the external
medium is comducting the electric. field sensitivity of the loop can also
be reduced by. plaeing insulacing media. around. the loop in. its immediate
vicinity.: For this.note .the.electric. field sensitivity.is. defined as the

response of the loop. to a particular. term. in.an.electromagnetic field
expansion. :
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CONDUCTING SHIELDS FOR ELECTRICALLY-
SMALL CYLINDRICAL LOOPS

ABSTRACT

The response characteristics of an electrically~-small cylindrical
loop with two external conducting shields is calculated. The shields
have the effect of reducing the electric field sensitivity of the loop.
The shield parameters may be chosen so that the shields do not-
appreciably affect the response of the loop to B for frequencies of
interest. If the external medium is conducting the electric field
sensitivity of the loop can also be reduced by placing insulating medis
around the loop in its immediate vicinity. For this note the electric
field sensitivity is defined as the response of the loop to a particular
term in an electromagnetic field expansion.
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I. Introduction

AB loop is a common sensor for. measuring pulsed.magnetic. fields.
Typically, if the loop can be.considered electrically small, i.e., if
wavelengths or skin depths.of interest (as appropriate) are much larger
than the sensor dimensions, then the response characteristics of the loop
simplify somewhat. The loop can. then. be characterized. by an equivalent
area, giving the sensitivity.of. the loop to B, and an inductance.

Actually the characterization of the. loop as sensitive only to an
incident 8 is an approximation. For simplicity we often consider the
response of such sensors.to an incident plane wave. . Depending on the
coordinate system used for the analysis (e.g., cylindrical or spherical
coordinates centered. on the.sensor) the plane wave can be expanded as an
infinite series of some characteristic functions. Correspending to each
term in such a series there is: a current pactern on the sensor. For an
electrically-small sensor one of these current. patterns is genera;ly
dominant and of primary interest. For an appropriately oriented B loop
this dominant rterm is associated with the magnetic field im the incident
wave near the sensor.

Suppose, however, that the incident wave is not a simple plane wave.
Then in the expansion of the. incident wave the relative size of the
various terms can be quite different from the case of a plane wave.
Specifically, the term(s) associated with the magnetic field near the
sensor may be considerably reduced to- the point that cther terms may
give comparatively significant currents on the sensor, even thdugh the
sensor may be electrically small. Then one may be required to consider
evert lower frequencies such that the currents on the .sensor associated
with the magnetic field terms are dominant. One.can also associate
one or more terms in the electromagnetic f£field expansion with the
electric field near the sensor. The response of z loop to such terms
is then sometimes called the. electric field sensitivity of the loop,
although this is a somewhat simplified concept.

An interesting question is how to minimize.the influence of
unwanted terms in the expansion of the incidenc.electromagnetic fields.
One approach to this problem: consists: of. completely enclosing the
sensor in omne or more.conducting shields.. . In conjunction with these
shields some of the electromagnetic parameters of the.media. near the
sensor are altered (in certain cases) to further improve the respomnse
characteristics. One can think of the conducting shields as allowing
the magnetic field to penetrate to the sensor for frequencies of
interest for a measurement, while the shields short out.the electric
field before it reaches the sensor.

In order to illustrace some of the. effects of such shields and
to obtain some quantitative estimate of the response characteriscics
of such shielded loops, we consider a simplified probliem. We consider
the response of three concentric conducting shells to an incident
plane wave, propagating perpendicular to the axis. of the shells. The
innermost shell represents a cylindrical loop (of some unspecified
number of turns and sensitive to the z component of the magnecric field);
the outer two shells are the shields. The cylinders are assumed of
infinite length for the calculations so that the resuits apply for
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the length much greater than the diameter. In the.case of finite length
cylinders we might. extend the shields slightly and cap the ends with

the same type of conducting sheet(s) so as to minimize any coupling from
the loop to the electric field through the otherwise open ends.

Expanding the incident wave- in cylindrical coordinates we solve the
above problem. This solution relates the loop response to the incident
magnetic field in terms of loop and shield parameters. By making the
surface conductance of the inner cylinder. (the loop) infinite we calculate
the short circuit surface current density associated with the term cor-
responding to the electric field near the sensor. The results of this
calculation.show. the. effect of the shields in reducing the currents
associated with this term in the field. expansion. The electromagnetic
parameters of the media near the sensor. also play a significant role in
these currents. The currents associated.with the. incident electric
field are considered for both the. case in which the external medium is
nonconducting and in which it is highly conducting.

II. Boundary Value Problem

Consider then the response af the multiple cylindrical conducting
sheets to an incident plane wave as illustrated in figure 1A. There are
3 cylindrical conducting sheets with parameters identified by subscripts
1 through 3 in order of increasing radius. The innermost conducting
sheet represents a cylindrical loop; the remainder of the conducting
sheets are shields. The surface conductance is Gy and the surface
current density is Jg. There are also 4 separate media defined by
the cylindrical conducting sheets, again with parameters subscripted
in order of increasing radius except for the external medium which has
unsubscripted parameters. These media are assumed to be characterized
by a permittivity, €, a permeability, u, and a conductivity, o, which
are scalar parameters independent of both time and position. Associated
with each of the media we have two other parameters of the form

k = \/-jwu(c+jwe) (1)

for the propagation.constant and

= jwu
Z g+jwe (2)

for the wave impedance. There is also a convenient relationship using
these two parameters of the form

(3)

K§1HW

Ly _ M
Zm um

where L and m are subscripts applying te two different media.
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Since we are. assuming. an: incident wave with. only a z compoment: of the
magnetic field. (which is also z independent) the field expansions are of
the form

H =H j{: a_c* (1) Jeos (nd) |
2 z an T

= © Jsin(n9) | (4)
Céz)(kr) -sin(ne) (5)
E_ = -3jZHd § ———=n
b z n kr
° =0 cos (n¢)
and Y cos(né)
(%)}
E¢ = jZHzoZ a C "’ (kr) (6)
n=0 sin(n¢)

where C(z)(kr) denotes one. of the cylindrical Bessel. functions and
where‘agprime.over.ahBessel‘function denotes. the. derivative with
respect to the argument. The.braces around the trigonometric.functions
indicate a.linear.combination.of the two.functions, the same linear
combination.being .used. for all.three components. .A time dependence of
the form~eJUt is assumed.but is suppressed from .all the expressions.

The. incident wave is taken as

B ey 2 edkx,y 2 mikrcos() (7)
inc z =z zZ z
o [0)
and - - - ’ -
E, =zu oo dk% gy & gikreos(¢)
B =, 3, . (&

where o an&f§é~éfé unit vectors in the y and z directions, respectively.
Expandigg the: Incident magnetic field. in: cylindrical coordinates give32

" <H |3 () +2) (-3)"I_(kr)cos (nd) (9)
Zinc Zo Q n

n=1

Associated with this there is an. agimuthal electriec field of the form

l. J. A. Stratton, Electromagnetic Theory. (Chap. VI), 1941.
2. See: AMS 55, Handbook: of Mathematical Functions, National Bureau of
Standards, 1964, for the. expansions of cos{krcos(¢)] and sin[krcos(s)].
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- ' PN 2 gy
E¢inc = jZHzo [Jo(kr) + Z,Z (-i) Jn(kr)ccs(n¢)] (10)

n=1

There is also an associated radial electric field but this is not needed
in the problem solution. and is.not listed with the field expansions in
the various.media. Expanding the terms in equations (9) and (10) in-powers
of kr one can note .that. for. small |kr] the: magnetic field is associated
with the first (or n=0) term in equation (9) while the electric field is
associated with the:second (or n=1) term in equation (10) (together with
the corresponding term in Er ). As one. example of varying the ratioc of
ine
electric and magnetic. £ields we.might think of adding another plane wave
travelling in the -~x direction with the electric. field (at the origin) in
the same direction as. that.in equation {8) but with the. magnetic field in
the. opposite direction. to that in equation (7}. .In the cylindrical
coordinate expansion this would increase the magnitude of the n=1 term
in relation.to the magnitude of the n=0 term. Thus, we consider the
effect of the conducting shields in varying the currents on the sensor
associated with .the first two terms in the field expansions. Ideally we
would like to reduce the currents associated with the n=1 term without
significantly affecting those associated with the n=0 term. We might
then say that the’ shields decrease the electric field sensitivity of
the sensor.

In addition to the incident:wave: there are several other field
expansions needed. In the external medium there is a reflected wave
of the form

Hz = Hz [COHCEZ) (kr) + 2 Z (—j)ncnﬁéz) (kr)cos (n¢>)] (11)
refl o o=l
and

E¢ = jZHz [Eoﬁéz)(kr) + 2 E: (-j)ncnﬁéz)zkr)cos(n¢)] (12)
refl o n=1

The regioms. inside the.cylindricél sheets also have field expansions
which are.of the form for region 1

H, = H_ [al J (k)42 Z (--J')nal J,(kyr)cos (w)} (13)
1 o} o n
n=1
and o
B a
E¢l- jZleo [alOJ; (klr)-f-Z Z (=3 aanI'l(klr)cos(mb)] {14)

=1

for region 2
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S, . D .
Hz = Hz [32 Jo(kzr)-+-b2 Yo(kzr)] +2>_.(-3) [az’Jn(kzr)-i-bz Yn(kzr) cos(n¢)
2 o o o n n

m=l (15)
and -
Eqb = szHz . [az Jé(kzr)+b2 Y‘;(kzr)] 4-22(--j)n [az Jt'l(kzr)-%-b2 Yr'l(kzr)] cos (n ¢)
27 o) o o n n
n=1 (16)

and for region 3

‘ . |
H.z3= Hzo [aBOJo(k3r)+b3°Yo(k3r)] +ZZ (-3) [a3an(k3r)+b3nYn(k3r)] cos (n¢)
n=1 an

and -

1 Vg 4 Y ' i
E¢3= szHz 1%3 Jo(k3r)+b3 YO(&3r)] +é§: ﬁ‘jg ,[33 Jn(k3r)+b3 Yn(k3r)] cos(ng)
) o o, - n n
n=1 (18)

In order to calculate the various coefficients in the field expansionms,
we need to relate the field components at the conducting cylindrical sheets.
The manner of doing this is illustrated in figure. 1B. The conducting sheet
is assumed to be much thinner than other dimensions of interest and also
to be much thinner than a skin depth for frequencies of interest. It is then
approximated as having zero thickness. The conducting sheet is then character-
ized by a surface conductance, Gg» which relates the surdace current density
to the tangential components of the electric field (parallel to the surface
current density) on both sides of the sheet as

E. = E. =

1 2 (19)

wolmg

The tangential components of the magnetic. field which are perpendicular to
the surface current density are discontinuous: across the sheet by the relation

By - Hy = J (20)
Note that in this problem the tangential electric. field is only in the ¢
direction while the tangential. magnetic field is in. the z direction so that
Hz and JS are perpendicular.

Now. apply the boundary conditions of tangential E continuous and tan-
gential H discontinuous by an amount, Js, at the conducting sheets. This
gives at r = Ty

1 - \ 1
aanlJn(klrl) = aZHZZJn(erl)+b2§2Yn(erl) 21

.



and

- ' =
a; [Jn(klrl) 36 ZlJn(klrlﬂ a, Jn(k2r1)+bz Yn(kzrl) (22)
n 1 n n
at r = r,
v 1 = ' t
;Zn_zz.xn(kzrz)wznzzYFI(kzrz) a3nz3Jn(k3r2)+b3nz31’n(k3r2) (23)

and

' - '
2 [Jn(kzrz)'i.‘;szzz‘rn(kzrz)] +b2n [Yn(kzrz) st?_ZzYn(kzrz)]

= a3n3n(k3r2)+b3nYn(k3r2) (24)

and at r.= r3

¥ 1 — T (2) '
a3nZ3Jn(k3r3)+b3n23Yn(k3r3) = ZJn(kr3)+anHn (kr3) (25)

and

- ] - ]
33 [Jn(kfa) JGS3Z3Jn(k3’3)] +b3n [Yn(k3r3) st3z3Yn(k3r3)]

- (2)
= Jn(kr3) +c H (kr (26)

3)

Now arrange these six equatioms. in a more. convenient form by combining
them. by. pairs and substituting for some. of. the.wave impedances from equation
(3). A Wronskian relationship is. used to simplify some of the combinations
of Bessel functions.® Solve for a, and b, in terms of a from equations

(21) and (22) giving 2n zn ln

nkzrl ulkz
2 -  ——— ——— ! ! - L4
B T T2 gk, TalmTa ) (arp) [Jn(kl_rl) stlZlJn(klrl)]

(27)

wkzrl ulkz

n ln 2 u2kl

Jz'1<k1r1>"n<k2."1’)‘?Q(k'érl)[Jn(klrl)'st ZlJr'z(klrl)]

1
(28)

3. See reference 2 for the various Bessel function relationships.
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Solve for a, and. b in terms of a, and-b2 from. equations .(23) and (24)

giving 3n 3n n__ n
(Tkary | UK, : !
= - 2 1 v -
a3 = -a 2 Y hak, Jn(kaTo) ¥, (kyrp) =¥ (k,r,) [sn(kzrz) 3G Zyd, (ko))
n n 372 2 J
Thqr, JUoky , . : 7
"bzn 2 |k, ¥ (eprp)¥ ) (kgry) =¥ (kyry) Yn(kzrz)‘JGszzzYn(kzrz)
(29)
and B
’ﬁkéfz u2k3
- —3 L j_2 3 = T _3 1
B3 =8 T TR, Ialkgry) I (kyT ) =d) (kary) (T (kyry) =G, Z,J] (kyT,)
n - ‘n ) 2
nk3r2 u2k3 '
RV 1t i
+b2n 2 ik, T (ko) Iy (k) =T) (kary) 1T, (kyoTy) JGszzzyn(kzrz)
(30)
Relate aq and b3 from equations (25) and (26) giving
n n
jrkr u.k '
=2 - 3 _3_ U (2) - (2) _ 1
1 a3n > “k3 Jn(k3r3)Hn (kr3) Hn (kr3) [Jn(k3r3) JG3323Jn(k3r3ﬂ
-~ jmkr Hok '
- 303 o (2) ¢ BN i '
b3n > uk3 Yn(k3r3)Hn (kr3) Hn (krB) [Yn(k3r3) JGSBZ3Yn(k3r3)]

’ (31)
Equations (27) through (31) can be combined to solve for a; s but before doing
this let us make some more simplifications. n

Since we are primarily concerned with the case of electrically-small
sensors in these calculations we can expand the Bessel. functions for small
arguments as

= 1 ' = - .. 2
To(m) =1 Ji@) = -3 (2) = - &
) =& : Trieay = L
Jl(Z) =3 Jl(z) =3 (32)
7,2 = 2 1n(2) ¥'(z) = -¥ (z) = 2=
[o] ™ o l Tz
Lo 2 | ooy 2
Yl(z) T T g Yl(z) =7
T2

9



Note that we are.primarily interested in ay and. a; so that equation (32)
o 1

covers only the.cases.ocf.n = 0 and n = 1 for the Bessel functions and
their derivatives.

Consider first the case.of n = 0. Equations (27} through (31)
simplify to

‘ juu,r,G
. 171°s)
a, a; [1 + 5 (33)
[o] o]
. ) TR e S A
by Fay k) W= (34)
o o} 2
[ 3%maS, )
ay; = a, 1 +'———'—'2 + b2 — [-Jmuzrst ] (35)
g o o o Tr(kzrz) 2
p,  JWH TGy P O ET L LR
b, *a Tr)ili-o=ts —m 2y (2} |2 ——2.](36)
3, 2,4 “3%2 T 2 17 "2\ ) |4 2
and
19¥3%5% ) [
1=ay |+ —5—=|+b, —— [-juu,r,C_ (37)
o) o ﬂ(kBr ) 3
3
Combining these equations we have
. . . 2 . .
Juu TGy Juk, TGy juu, T Gy p,  J9HT G ) JuusTaGy
a;  =f{ji+ 5 Lol > 2 5 211~ L+ 5 Lith+ ~ -2
o ) Hy
-1
Juu4T 4G g(r 2y gungr Gy BT G 4 [ \2[L  Juu,r,G p, JuHyT G
_ )| 2 I il M2 2 Ha- 21]. . M+ 1
2 T 2 LT 2 el |® 2 =3
3 3 3/ | M3 2
(38)

Next consider the case of n = 1. Equations (27) through (31) simplify to

G 2
u
a, % a; %uliz + % 11:1 - 12: : (39)
1 1 251 2 21

iG. Z

u. k k s, 1

211 "172 171 1
b = a l(kr) =i L == (40)

2l ll 4 271 2 uzkl 2 k2 2k2r1

10



iG_ z
U e S W S S I L85 15 2P
3; 2,12 gk, T 2 kg T 25T, 2, Tr(kzrz)z 2 ugky 2 kg 2kgr,
iG_ z 2 iG_ z
b. = a (kr)z .J:..f.z_l.c.:_i."i..lf?_.*. ik + b .lii l—._u_Z_k}..{.L_k_Z_.;. 822
3, T2, 6 302 2wk, 2k, 2kgr, 2. kg | |2 Mgy T 2 kg T 2T,
(42)
and
Gz G Z
PR e O B e N B R P N e Il B
3; |2 Mk, T 2K 2kry 3 (kyt,) 2 uky 2k 2kt
Combining these equations we have
iG_ 2 jiG_ Z
S D s S W A Nl B B 1 T e R B
1, 2wk, T 2k, T 2kyry 2 ugk, 2k 2kgr,
6.z [ G Z iG_ Z
O e ) o o S W S M B F R S D U Rl R PR N Sl B
r, 2 uzkl 2 kz 2k2rl _? u3k2 2 k3 ?k3r2 2 uk3 2 k Zkr3
3G 2. iG_ z
PO RN F s o S N RO Ul e o N N S
T, 2 Mpky 2k, 2kyrg 2 ugky © 2 kg | 2Ky,
- -1
2r . ic_ zr iG_ Z i Z
G e S s W e | P O M SO Ml (R T W Y
r3 2 uzkl 2 kz 2k2rl ? u3k2 2 k3 2k3r2 2 uk3 2 k 2kr3
(44)

The expressions for a, and a; are still rather complicated. We thus
o 1
go on to consider some special cases to simplify the results and more readily

estimate the effects of such conducting shields.

III. Effect of Conducting Shields on Loop Response

The presence of the conducting shields affects the response character-
istics of the loop in at least two ways. The frequency response of the loop
(for measuring B) is. lowered somewhat, and the currents on the loop structure
associated with the electric field are significantly reduced. These two
effects are included. in.the.two coefficients given in equations (38) and
(44).

11



A. Effect of Conducting. Shields on Response to. Magnetic Field

We now look at some. special cases.for a, . For convenience we

1
define. characteristic. frequencies of the form °
% = Trer (45)
m “n"m’s

where m is 1,.2,. or.3. The cylindrical loop has. the characteristic frequency,
wh » which one can think of as. the: load resistance comnected to the loop,

di%ided by the loop inductance. (ignoring the presence of the shields). The
other two. characteristic. frequencies, @ and.mh s, are associated with the

shield parameters.: The coefficient, al s, represénts. both the penetration of

a. unit magnetic field (s@nusoidal).insiae the cylindrical loop and the
response of the loop. to. B, normalized by dividing by the limiting form of
this. response: for low frequencies.

Consider the special case that. the permeabilities of all four
media are the same. (Typically the.permeabilities would.be.uog) Equation
(38) then becomes

2
r ;
a, = L+ fly e de o) dede ) de
° : 1 h, 2f “n,"n, hy
-1
( r, 2 . . Ty 2 .
-le g e e 1-3}? iz (46)
h3z 3 hl hz 3 5 hl
Suppose we remove the two shields (by making G and G_ both zero). Then
a1 has the very simple form S2 °3
-1
a, = L+12 (47)
W
o hl

This is the normalized response. characteristic of. an. electrically-small B
loop. Setting only Gs to: zero. to leave one shield plus. the sensor gives

2 b
. . r . . H
a = Yy +de ||y 4 de o [L) de is (48)
1, “n Yy Lol “n Y
1 2 1 2

12



Note the progressive complication: of the mathematical form of the response
in going from zero. to two shields. A three shield case would undoubtedly
be significantly more complicated.

One approximate form. for equation. (46) is to neglect. terms of order
w~ and higher in‘(al y=l. This gives

[}
-1
a, = r+de o la e (49)
N Y

Considering the loop as a.é loop we are roughly interested in frequencies
below Wy and. we assume that at w = wy the loop is electrically small.

Then fro%LequationA(49) one can see tha% the response of the loop below
Wy will not be significantly affected if both Wy and w, are made

so%ewhat larger than wy Thus, the shields canyge made go have

negligible effecﬁ on thé response of the loop to the magnetic field.
B, Effect of Conducting Shields on Response to Electric Field

In comparing the response of the loop to:. the electric field to
its response. to the magnetic field it is.convenient to consider the
short circuit.surface current demsities. Typically, the cylindrical
loop has one.or more turns made. of good..conductors and a resistive load
is introduced at some position on.the. loop structure. Thus, the loop
structure does. not behave just like a conducting cylindrical sheet.
However, if we consider the short circuit current by making the load
resistance zero, the loop structure.can be approximated.as a continuous,
perfectly conducting sheet (for conducting azimuthal (¢) currents).

The surface current density on the. loop associated with the n = 0
term is

1 I . 171 = - 36
G5 380, 3 ol = =16 2.8, a) =5 e Bz 3
o "o 1 o “o h1 o "o

and the surface current density associated with the n = 1 term is

(50)

t ~
ZGS lez a; Jl(klrl)cos(¢) = Gs ZlHZ 2, cos(¢) (51)
1 o 1 1 o "1

To obtain the short circuit current densities associated with these
terms one takes the limit of arbitrarily large Gs .
1



In the limit of large GSl, and for frequencies much less than Wy and

Wy one has from equation (46) that z

3 -1

1 = lw (52)

Combining this with equation (50) shows that the short circuit surface
current ‘density associated with the magnetic field is -H for frequencies
of interest. Thus, we define a new. expreasion as 25

¢

a'=1lim ¢ 2Z.a (53)
G °1 T 11
S1

s
EP

When multiplied by -cos(¢) this represents the ratio of the short circuit
current demsity. associated with.the electric field to- that associated with
the magnetic field. This parameter, a', then gives the relative contribu-
tion of the term associated with the electric field, in a plane wave, to
the sensor signal. The effectiveness of the shields and other associated
media in.reducing the electric field semsitivity of the loop is reflected
in a decrease in |a'|.

From equégicns,(éé) and (53) a' can now be calculated giving

A e A 2 3G Z
D ) | Pl I Nt e Tl B SR PR W e B T
2°LUE 12 u3k2 2 k3‘ 2k3r2 r, 2 u3k2 2 k3 2k3r2
i6_ Z
lu3k+LE3__ 533
2 u 3 2 k 2kr3
2 jG_ Z T2 b
+r2 lu2k3_£52+ 322 f_l_ ;_u2k3+_l_i2.+ 522
r, 2 u3k2 2 k3 2k3r2 r, 2 u3k2 2 3 2k3r2
-1
u,k k st Z3
;.-3__1-._3.__2_ (54)
“l2w 3 2 k 2kr -
This is a somewhat simpler expression than that for 2y - As a first case

let GS and Gs both be zero and let €, u, and ¢ applylto media 2 and 3,

the same as-fo% the external medium. This is just the case of no shields
or other distinct media external to the cylindrical loop structure, giving

14



a" = j2kr; (55)

The results of other cases can be compared to this one in order to estimate
any improvements gained by ‘adding conducting shields and other media around
the loop. Note that we are only considering electrically-small sensors

and shields so that |kr,|<<l, and thus also |a'|=<<l. This means that for
such an electrically-small loop the electric field sensitivity is insigni-
ficant compared to the magnetic field sensitivity if the electric and
magnetic fields are related as in.a simple plane.wave. However, there

can be situations in which the ratio of electric to magnetic fields can
baYe‘a.much larger magnitude. In such situations one may need a smaller
ja'l.

As a simplification of a' consider the special case that €&, u, and ¢
apply to media 2 and 3 as well as to the external medium. Then equation
(54) reduces to

_ jGS A " 2 jGS\Z \jGS VA
a' = j2kr 1- —_2 Y [ — 1- 3
1 Zk.r2 r, 2kr2 Zkr3
-l
JGS A r 2 st Z r 2 JGS Z
- ?2' el el B R ore (56)
3(\"3 T2 3 2
Now let o<®we. We define characteristic frequencies of the form
G
s
Yo T T r (57
m mm
where m = 1, 2, or 3. Equation (56) then becomes
-l 2 ""l .o _.l
| P i@_ rl '.jiu_ tu .
a' = JZkrl 1+ - ;—2‘ " I+ i_ug, |
€2 €2 eyl
~~1
=1 2 -1 2 -1
T ) r
jdw 2 Je + X 1 - Ju
g r, w r3 w,
3 2 2
(58)

Setting GS to zero gives the results for a single shield with the sensor
as 3
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An approximate form for equation (58) is obtained by assuming that the
frequencies of interest are much less than both w, and w, giving

2 3
2 e\ [T
al = joe p Al o |y L) 12 L 1L (60)
1w w r, Ty LY

%2 43

For the case of a single shield as in equation (59) and for frequencies
much less than W, then the expression simplifies to

2

2 -1
. r
a' = jokr, 12 |1 -2 (61)
1 Wy T,
2

In equations (60) and (61) one can see that for sufficiently low frequencies
a' decreases more rapidly with frequency as more shields are added, showing
the effectiveness of such shields in reducing the electric field sensitivity
of the loop. One should be careful in using approximate forms such as in
equations (60) and (61)(and others to follow) that the various parameters
are in a range. (i.e., large enough or small enough) to make the expression
valid.

Now let ¢>>we with the.same restriction that e, p, and a be the same
in media 2 and 3 as well.as in the external medium. Equation (56) then
becomes

r GS . 2 GS GS
2 2 2 3
€y (r 2 Gy r\2 s -
- 3 2 2 1 2
2or, Wr.| Zor, T |%. -3 (62)
3 3 2 3 Z‘J
For GS /2crr2 and Gs /20r3, both much larger than one. equation (62) becomes
2 3
) -1
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Again the conducting shields reduce the electric field semsitivity. Note

the similarity in the forms for a' for the highly conducting case (equations
(62) and (63)) and the negligibly conducting case (equations (58) and (60)).
Setting Gs to zero in equation (62) gives the results for a single shield as

3
G a3t
) o
| I e —f ———
a' = j2kr, § 1+ Zor, 1 ) (64)
For G_ /20r2>>l this reduces to
201‘2 ry 2 .
!t N~z - | —
a' = j2kr, 7 1 -i= (65)
S, 2

Equations (63) and (65) are again only limiting forms which require that
certain parameters be in a certain range and also that the various rm's be
distinct from each other.

Consider another special case for a' in which the permeabilities are
the same in media 2 and 3 and the external medium. However, let the
permittivity and conductivity of medium 2 be the same as those of medium 3,
but different from those of the external medium. Equation (54) then becomes

j6, z 2 iG_ 2 j6, z

SRS ) | A T R 1 e Nl O A S S e Mt
271 2k2r2 r, 2k2r2 2 k2 2k Zkr3
=1
2 3G 2 2 3Gz iG_ Z
] R I N 18 Rl £ S W N
r3 2k2r2 r3 Zkzrz 2 kz 2 k 2kr3 (66)

Specialize this case further by letting ¢>>we and ¢,>>we, and ¢, <3,¢. This
set of assumptions might apply to such a shielded 10op in the presence of
intense ionizing nuclear radiation such as found in the source region of
the nuclear electromagnetic pulse. Media 2 and 3 might be insulators
which have been made conducting (less conducting than the surrounding air)
by the ionizing nuclear radiation. Under these assumptions a' becomes

Gs T r 2 Gs r 2 r 2 r z
a’z'&k d_.+_:;.’ __..]r_ +_._2_ __l - _._2.. .._.]:.
JaxT 1 1 +
1 02 czr3 r3 202r2 r, r3 T, (67)

For Gs /202r >>1 this reduces to

5 2
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Note that even with the outer shield removed so that Gs a (J there is still

some. reduction in the electric field sensitivity due.to3the presence of
.medium 3 which is less conducting than the external medium. We consider
the case.of a single shield which is also in contact.with the external
medium. by setting Gs to zero, giving

2
~ G, -1 o \2 -1
a' = jbkr, §—+ﬁ- 1- | (69)
2 %3 3

Now remove. the last shield by setting G = 0., Note that.some reduction in

the elecfric fieid sen51tiv1ty is gtill gbtalned just by the addition around
the loop of a medium of lower. conductivity than the. external medium.

Another interesting case is obtained from equation (66) by letting

g>>we but w82>>02. Also assume that 0> e, . This set of assumptions might

apply to a shielded loop in. some conducting medium such as soil or sea water.
Media 2 and 3 could be insulating dielectrics. Under these assumptions a'
becomes

=1
-1 ~1
g . -1 rl 2 . Ty 7 T, 2 r 2
a' = j2kr, |- S 1=~ |1+ 1L~ = ==+ ==
1| jwe w r W r T
2 e 3 e, 2 3 3
(70)

This equation has a form similar to equation (67). Further simpiifications
can be introduced. into. equation (70) in. the same manner as for the previous
case with media 2 and 3 conducting.

Then not only can the extra shields be made to have negligible effect
on the response of the cylindrical B loop to the magnetierfield; these
same shields can reduce the response of the loop to the electric fileld.
As indicated by the above analysis the electric field response can be
reduced beyond that. attained with a single conducting shield by the use of
two conducting shields. The additional media added outside the loop also
affect the electric field respomse; in the case where the external medium
is highly conducting the addition of an insulating medium ocutside the loop
can significantly reduce the electric field sensitivity.
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Iv. Summary

Conducting shields can be used to reduce the electric field sensitivity
of a cylindrical B loop without significantly affecting the magnetic field
sengitivity of the loop. One might roughly think in terms of the magnetic
field penetrating through the shields. and the electric field being shorted
out by the shields. If the external medium is highly conducting, the addi-
tion, next to the loop, of media which are comparatively good insulators
also reduces the electric field semsitivity of the loop. In this case one
might roughly think in terms of an insulator blocking the current density
in the external medium from reaching the loop conductors.

There are several limitations on the analysis used in this note. The
cylindrical B loop is only roughly approximated as a conducting sheet.
Considering the short circuit surface current density removes this limita-
tion to some extent. However, a shorted multi-turn cylindrical loop still
is not quite a perfectly conducting cylindrical sheet for currents in the
azimuthal (¢) direction. A practical cylindrical loop also has finite
length. Note that if signal leads are brought from the loop out through
the shield(s) the current patterns on both the loop and the shields will
be changed and other problems such as common mode signals on the signal
leads may appear. In such a case the conducting shield may still prove
advantageous but one may have to be careful in how the shield(s) and loop
are joined.to the signal leads and any signal-lead shields.

The analysis in this note presumes linear parameters which are constant
in time for the various media and also presumes no sources for the electro-
magnetic fields in the vicinity of the shielded loop. In the source region
for the nuclear electromagnetic pulse these assumptions do not apply. TFor
such a case the results of the present calculation c<an only be applied in
a very approximate semnse.

A final obserwvation might be that the separation of the loop response
into magnetic and electric field sensitivities is only an approximation
which has some validity for electrically-small loops. For wavelengths or
skin depths, whichever is appropriate, of the order of the loop dimensions,
more than the first two terms in a cylindrical coordinate expansion of the
electromagnetic fields enter into the loop response. However, electric
field sensitivity can be a useful concept in some cases in the design of
electrically-small loops. Note also that, while the incident electro-
magnetic fields used for these calculations propagate in a direction
perpendicular to the loop axis, the incident fields can actually have a
more general form.
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