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Abstract

A critical component of a high-voltage Half Impulse Radiating Antenna (HIRA) is the feed point
lens, which is used to match an electrically large coaxial waveguide to the feed arms of the

. IIIRA. The coaxial input interface is a prolate spheroidal (ellipse of revolution) surface; the
output interface is a quartic surface. We derive equations for the design of this lens, subject to
impedance matching constraints. We also derive a figure-of-merit for the lens design based on an
aperture integral of the electric field. We provide solutions for two configurations based on these
derivations. The most important result of these analyses is that the optimum design is an oiLlens-
air configuration with a lens relative dielectric constant of 7.0.
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1. Introduction

In [1] we developed design equations for the feed point lens used to match an electrically

large coaxial waveguide to the feed arms of a high-voltage Half Impulse Radiating Antenna

(HIRA). This lens, built from a single homogeneous dielectric material, converts a plane wave in

the coaxial waveguide to a spherical wave launched onto the conical feed tis of the antenna.

Although one would normally want to split the center conductor of the coaxial waveguide into

two feed arms, we can only solve the problem semi-analytically for a rotationally symmetric

geometry. For this reason, we assumed a single conical feed and an FZD ratio of 0.25, in order to

maintain rotational symmetry. The solution to this case provides a good approximation to the less

tractable three-dimensional problem.

Sketches of two possible lens designs, originally presented in [1], are shown in Figure I–

1. We refer to the first design, which includes an oil cap, as an oil-lens-oil design. The second

design, with no oil cap, simply has air or SF6 at its output. This is an oil-lens-air design. The lens

converts a plane wave in a coaxial geometry to a spherical wave in a conical geometry. The focus

of the spherical wave is on the ground plane, at the center of the coaxial feed, and at the focus of

a parabolic reflector.

In [1] we provided design equations that included both oil-lens-oil and oil-lens-air

configurations. Examples based on those equations assumed input coaxial waveguide dimensions

determined by high-voltage breakdown considerations. The impedance in oil was about 67 !2,

equivalent to 100 Q in air. The matching lens output impedance was not enforced, and flare

angle of the center conductor was unspecified. There remained three independent design

parameters: (1) the dielectric constant of the lens, (2) the flare angle of

conductor in the transition to the output ground plane, and (3) the size of the

ground plane —the thickness of the lens scales with the size of this hole.

the outer coaxial

hole in the output

In this paper we extend the derivation of the lens equations presented in [1] to include

enforcement of an output impedance matched to the input. This leads to a relationship between

the first two design parameters cited above and to specification of the center conductor flare

angle where it transitions to the conical output feed—both center and outer conductor shapes are

determined. No new constraints are introduced concerning the size of the hole in the ground

plane. The relationship between lens dielectric constant and outer conductor flare angle supplants

the minimum flare angle introduced in [1] as arbiter of the minimum dielectric constant required
o
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-for a viable lens design. We also provide here for design optimization based on maximizing the

aperture integral of the electric field for the fast impulse. This leads to a choice of lens dielectric

constant and corresponding outer conductor flare angle. We begin with incorporation of the

output impedance condition into the lens design equations.

Air or SF6

Polyethylene

Air or SF6

\

Lens
E, M8-12 Interfaux #3 & 4

Prolate Spheroid

i

oil E, = 2-2

Coax Feed

Lens
ErZ 6-9

Prolate Spheroid

- oil E, =2.2

Coax Feed

Figure I–1. An oil-lens-oil design (top), and an oil-lens-air design (bottom).
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. II. - Imposition of the Output Impedance Condition
●

—

In the material that follows, we conform closely with the notation of [1]. We derive below e

a general expression for 12 /41, and we use that expression along with previously derived results

to incorporate a constraint in the lens design based on matching the output impedance of the lens

to the impedance of the coaxial input waveguide. In following this material, it may be helpful to

refer to the following figure, which amplifies the content of [1, Figure 3.1]. .

Y
Ground Plane

(z, ,’+j )
Outer Conductor

of Coax .----”. ,,’ ‘-
I

..-” ,,’,.(
,.~

:“”&I&()/.
,,’ ,/”

.,

C,~nter Conductor

-s-’-’-’”

(-4,+1*) (-l?, +l’z+d) (-t~+fz+d+cz) (/2)

Figure II-1. Lens Design Parameters

In [1], we presented an equation for /2/ fl, based on the quartic equation for the lens-air

interface, which involves the angle, 81, through which the extreme ray is bent by the ellipsoidal

lens surface, and Erz, the ratio of the dielectric constant of the lens to the dielectric constant of

the output medium— note that in [1], 81 was called A@l. A general expression for l?2/ /1, valid

for any ray initially traveling parallel to the axis of the coaxial input line can also be derived from

the quartic equation ([1, (3.3)], reproduced below). That expression involves the angles through

which such a ray is bent by both ellipsoidal and quartic lens surfaces. It also provides a means to

relate the output impedance to other lens design parameters.
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We begin our derivation with [1, (3.3)], the quartic equation

—

d-(Er2 Y2+(q-/2+z) 2).-% +JFZ7

First, we divide through by Y to obtain

~[-++e)=-++l% “

(2.1)

(2.2)

We next remove the explicit (z, Y) dependence by introducing two angles, 0 and 0. The former,

@, is the angle by which a ray traveling axially in the coax region is bent as it passes through the

ellipsoidal surface of the lens. It is a generalization of the angle, A(31, used in [1] and herein

referred to simply as f31.The angle, 0, is the total bend angle experienced by the same ray after it

has emerged from the quartic surface of the lens, which bends it by t? – 6. This ray, during its

traverse of the lens at angle, 8, appears to originate at the left focus of the ellipsoid; upon

emergence from the quartic,

m
the geometry, we know that

it appears to have originated at the coordinate system origin. From

z+t, –1’~
cot e =

Y
and cot t? = $

We use these to eliminate the explicit z dependence from the quartic, obtaining

++$+JIG7T).-++JEXG

Next, the 8 and 0 equations (2.3) can be solved simultaneously to obtain

and 0:

Y=
–t~ +12

cot 29- cot e

We now use this result to eliminate the remaining explicit

(2.3)

(2.4)

Y as a function of 8

(2.5)

Y dependence from the quartic. After

making this substitution and using the trigonometric identity, CSC20 = 1+ cot2 O, we obtain:

r“2 (coto-coto)+&csc8= ‘2 ‘~] (Coto-cote)+csct?
l–t2 //l l–J?2//~

(2.6)
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Since wehaveneither solved a quadratic nor introduced new quadratic terms in reaching this

point, we choose the signs on the cosecant terms to match their sources in the original quartic. m
Now, we multiply through by 1–/2//1 and solve the resulting linear expression for the ratio

f2 / /1, finally obtaining

i?~ – Csc ?9+ &Jcot 0 – cot e + Csc e)
—=
1~ –cscti+ cotl?-cote+&csce

The general expression for 4?2/ /l obtained above can be used

(2.7)

to relate the lens design

parameters to the desired output impedance of the lens. The output impedance can be related to

the angles O and 6 for the paraxial ray (Y= YOin the coaxial region) and for the extreme ray

(Y= WI), respectively. The paraxial ray is bent through an angle of O =60 at the first interface

and emerges from the second interface at an angle of 0 = 00 with respect to the axis. The

extreme ray is bent through an angle of @=81 at the first interface and emerges from the second

interface at an angle of z? = z / 2, parallel to the ground plane at z = O. The output impedance is

that of a monotone, with cone angle 00, over a ground plane. We need to solve for the lens

parameters consistent with these constraints for the desired impedance of Z~~u. This impedance

is determined by the output cone angle,

for the cone angle

—

00. Thus, we solve the following impedance expression

e

(2.8)

where 20, is the impedance of free space, 376.727 Cl.

This result can now be used with the general expression for /2/ /l, evaluated at @=00

and ti = 00, to obtain an expression in which the unknowns are /2 //1 and 130

!2 –Csc?.?() +@(cotoo –Coteo +Csceo)
—=
/,

(2.9)
–CSC?90 +Cottio –Coteo +&cscoo

Although we could use [1, (3.3)] to provide an equation relating f31and /2/ /1, we can obtain an

equivalent relationship by evaluating (2.7) at 8 = (31and 0 = z / 2

!2 –1+~(–cote~+csc6J

~= –1–cote~+&cscel
(2.10)

m
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~By equating these two expressions for ./2/ /l, we can eliminate 12/ /1, leaving a single equation

for the two unknown angles, f30 and 61. An independent equation relating 00 and @l can be

obtained by considering the impedance condition in the coaxial transmission line and a

generalization of [1, (3.8)]. That generalization is

(2.11)

where a is the semi-major axis of the ellipsoidal lens surface, E ~1 is the ratio of the dielectric

constant of the lens to the dielectric constant of the input medium (oil), and O is the bend angle

of a ray traveling parallel to the z-axis, which strikes the ellipsoidal lens surface at the radial

coordinate, Y. Equation 3.8 of [1] is simply this expression evaluated at (01, Y1). Now, we also

evaluate a / Y for the paraxial ray at (8., Ye), and form the ratio, (a/ Y!o)/ (a / Y1 ) = Y1 / Yo, to

obtain another equation relating 00 and 8]

where we have

ratio, Yl / Yo, is

Y, = –Coteo +&csceo 2n7gJy = ~2iTz::u Jzo
=K?

Y() –Cotel +&l Cscel -

also incorporated the coaxial line impedance result

just a constant determined by the input impedance,

(2.12)

of [1, (5.3)]. Since the

we now have sufficient

information to solve for e., 61, and 12 / /1.

Summarizing, the equations to be solved for 00 and (3I are

–CSCO(-J+&(cotoo – Coteo +Csceo) –1+~(–cote~ +CSC8J
= (2.13)

-CSC?90 +cot?90 –Cote(-) +&csceo -1 –Cotel +@cscel

derived by equating the -/?Z/ 11 expressions for paraxial and extreme rays, ((2.9), and (2.10)), and

–Cotoo + ~csceo = ~27rz::a IZ(J

–Cotel +&cscel
(2.14)
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‘ where

El = 2.2 (dielectric constant of oil)

E3 =1.0 (foranoil-lerzs -airdesign)

=2.2 (foranoil- lens -oildesign)

Erl =E2 /&l and&r2 =E2 /E3

z air
coax = Z::put = 100f2 and Zo = 376.737f2

I ))00 = 2 arctan(exp(2~Z~&ul Zo

= 2 arctan(exp(200~/Zo )) = 21.37 degrees

(2.15)

For an assumed value of the lens dielectric constant, S2, equations(2. 13) and (2.14) can

be solved numerically for f30 and 01. In order to reduce the numerical solution process to a search

for just one angle, 61, rather than both simultaneously, we eliminate 60 between these equations.

To do so, we first make use of the substitutions

cot 0 = x and cscf3 =JI+X2 (2.16)

These transform (2. 12) and (2. 13) into

(–csct+)+~ Cotoo-xo+ m) -l+ W(-.I +=)

–Csc ??0 + cot ??Q F=–X()+6 l+XO F–1–x~+& 1+X1
(2.17)

and -Xo +&m. ~z

v–xl+& 1+X1

where Kz = exp(200n/Zo ). Next we solve the second of this pair of equations for X. and select

the positive root, since a negative 00 is non-physical. The root is

~o=-Kz(((2xl-2&m))-(2x1-2&Jq))
2(–l+Er~) (2.18)

-2(@qsr, m%))–x:(1 + Erl )+2x1 Erl

8
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‘ We use this result to eliminate X. from the first equation of the (2.17) pair. The resulting

expression can be solved numerically for xl by Newton’s method. Then, X. can be obtained from

(2. 18); and 80 and (3I can be recovered as arccot x. and arccot xl, respectively.

1

70 I

(31 (deg.)
(9.55, 61.32)~

““”-’--h <
...... ...-60 — (7.44,

57.06) z-co; Zainid”””.””””

50 . /

40 - \

max min

30 ‘

20 E2

5 7.5 10 12.5 15 17.5 20

(de:) I
60 / ‘---’

z -constrai ned..... ...-..... ..___ _____ . ......... . ------- -_

50

40 ~
max

30 ‘ ---

rein

20 E2

5 7.5 10 12.5 15 17.5 20

Figure II-2. constraints on (31 and E2 for oil-lens-oil
(top) and oil-lens-air (bottom) designs. Oil is
assumed to have a dielectric constant of 2.2.

The angles t30 and 01 are

determined by the choice of &2

and by the input (coaxial

transmission line) impedance and

output (cone over ground plane)

impedance. The bend angle for

the extreme ray, 01, is now a

function of &2, as determined by

the impedance constraints. This

function is restricted to those

values of 61 which lie between

the maxima and minima given by

[1, (4.2) and (4.6)]. From the

accompanying graphs of these

functions, we see that the

minimum bend angle proves

irrelevant. Whereas [1, (4.6)]

assumed /2 / /1 + O, here, this

ratio is determined by the

impedance constraint. The

maximum bend angle, in

combination with the impedance

constraint determines the

minimum allowable E2.

At this point, the lens design is complete, save specification of the radius of the lens

output, Y2. The parameters of the ellipsoidal surface, a, b, and d, are obtained from (2.11) and

from [1, (3.2)]. The ratio Y2/ l?l is obtained from (2.7). The ratio, Y2 / /1, is calculated by

inversion of [1, (3.1 1)] as

(2.19)
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- A minimum for Y? is calculated from [1, (3.16)]. Selection of a suitable value, based on that
e

constraint, completes the lens design specification for the assumed S2.

III. Lens Figure-of-Merit

An appropriate measure of performance of the lens is the aperture integral of the electric

field for the fast impulse. A meaningful figure-of-merit for lens design must relate this aperture

integral to the transmission coefficient for rays transmitted by the lens. Since the lens is

symmetric about the z-axis, the transmission coefficient must possess the same rotational

symmetry. Thus, all rays originating on a shell of constant radius, Y, in the coaxial waveguide

feed will penetrate the lens and ultimately emerge in air with the same total transmission

coefficient, 7’r(Y), the product of the Fresnel transmission coefficients for the ellipsoidal and

quartic lens interfaces and for the spherical output (to air) interface, if applicable (see Figure I-l).

In Appendix A, we present a derivation which reduces the figure-of-merit calculation to

evaluation of a single line integral of the transmission coefficient T(u) along the y-axis in the

aperture plane. There we use conformal mapping to show that the aperture plane integration can

be replaced by integration over the radial coordinate, Y, in the coaxial input line. With minor

changes in notation, the resulting figure-of-merit expression is
@

ha,oil 2/Y~ w,
J

Tt(Y)

‘= hf:j = ‘~ ‘CI (l+ Y/Y,)2N
(3.1)

where ha oil is the aperture integral of the electric field in the presence of transmission losses and

h(opt) is ‘the optimal aperture integral, both normalized to the power in the oil-filled coax, as
a, oil

described in the appendix; &oil is the relative dielectric constant of oil. The figure-of-merit is a

dimensionless quantity, expected to vary between zero and one. Lens design optimization

corisists of choosing parameters that maximize this figure-of-merit.

Given the lens

required transmission

coefficients in terms

expressions dependent

properties and geometry, it is a straightforward process to calculate the

coefficients from the Fresnel equations. The Fresnel transmission

of ray incidence angles at each lens interface can be converted to

on Y in the coaxial line by application of Snell’s law of refraction and by

using the normal derivatives at the lens surfaces. This permits the above equation to be evaluated

numerically to obtain the figure-of-merit for any choice of E2. We now describe this approach to

obtaining T#P). m
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For E-plane incidence (electric field parallel to the plane of incidence), the Fresnel

transmission coefficient at each interface is [2, p. 191]

2 ~~cos(a~)
T(~i) =

COS(CZi) +J= 1– (&i/Ef) sh12(CZi)

(3.2)

where a i is the angle of incidence, &i is the dielectric constant in the medium of incidence, and

St is the dielectric constant in the medium of transmission. At the ellipsoidal lens interface, ~i is

&l and &t is S2. At the quartic interface, ~i is &2 and &t is &3. Since the output interface is

assumed to be spherical and concentric with the wavefront, all rays are incident normally there;

and the interface transmission coefficient reduces to

(3.3)

Here, &t = &air is always 1.0; and &i is &oil for an oil-lens-oil design and &air for an oil-lens-air

design. Thus, ‘o,oil–lens-oil –– 1.195—the output transition is from oil to air—and

‘o,oil–lens-air = I.O—there is no output transition. The total transmission coefficient for a ray is

e
just the product of the transmission coefficients at each of these interfaces.

Since the field in the coaxial input line is a plane wave, the rays there are traveling

parallel to the z-axis; so the angle of incidence of each ray on the ellipsoidal lens surface is the

same as the angle, ae,n, formed between the axis and the normal to the ellipse at that point,

(ze, Ye ). If such a ray is transmitted by the ellipsoidal surface, forming an angle, @, with the z-

axis, it will be incident upon the quartic surface at an angle, aq,i = 9 – aq,n, where aq,n is the

angle of the normal to the quartic surface at the point of incidence, (zq, Yq ). Now, the angle of

the normal to a curve at some point is just the angle whose cotangent is the negative of the slope

at that point. Thus, the angles of incidence at ellipsoidal and quartic surfaces are given by

[ )(3Y
a .=e,I a e,n = arccot – —

Jz e

“= 9– aq,n = arccot
[ ye ]-mccot(-:

j
Ze –(–l’] +1’J

aq,l

(3.4)

Q
where the tangents to the ellipse and quartic are
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i3Y = (b I a)2

z ,
~ (-,+(-11 +/2 +d)) and

b.

Q
(3.5)

by differentiation of the ellipsoidal and quartic expressions, respectively. The incidence angle for

a ray that strikes the ellipsoidal surface at (ze, Ye ) can be calculated directly from the equation

for the ellipse (solved for Ze in terms of Ye) and its derivative (above), given an assumed value

for Ye. Calculation of the incidence angle at the quartic is more invoIved. First, we solve for the

intersection of the ray with the quartic by numerically solving the quartic equation, (2.1), and the

ray equation, Y = (z–(–/l +f’))/tote, simultaneously to obtain (zq, Yq ). The above

derivative of the quartic can then be evaluated and the incidence angle calculated. The

transmission coefficients for the two interfaces can then be used along with the spherical output

interface transmission coefficient, TO (see (3.3)), to obtain the total transmission coefficient for

the ray. To numerically evaluate the integral in the figure-of-merit expression, (3. 1), this process
a

is repeated for values of Y from Y. to Y1.

The figure-of-merit was calculated for a range of lens dielectric constants for oil-lens-oil

and oil-lens-air designs consistent with the impedance constraints presented earlier. These data

are presented in Figure III-1. All calculations assumed a coaxial input waveguide outer radius of

8.5 cm. Since both input and output impedances were matched at 100 f2 (in air), the center

coaxial conductor radius was 1.6 cm (see (2.12)); and the output conductor cone angle was 21.37

degrees (see (2. 15)). We observe that for both types of lens design, the figure-of-merit is a

monotonically decreasing function of the lens dielectric constant. Thus, the optimum design in

each case results from selection of the lowest possible dielectric constant, consistent with the

constraints previously developed. We conclude that for the oil-lens-oil case, the dielectric

constant must be greater than about 9.6, while for the oil-lens-air case, itmust be greater than

about 6.9. Since a lower dielectric constant is easier to achieve and will produce smaller

reflection losses, an oil-lens-air design with a lens dielectric constant of about 7.0 is the optimum

choice.
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0.92
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Relative Dielectric Constant of Lens, E2

Figure III-1. Figure-of-merit for oil-lens-oil and oil-lens-air designs
and an impedance of 100 f2 in air (67 f2 in oil). The
dielectric constant of oil is assumed to be 2.2.

w. Optimized Lens Designs

For both oil-lens-oil and oil-lens-air designs, we chose an output impedance of 100 f2

and an outer coaxial waveguide radius of 8.5 cm. As a result, the inner coaxial conductor radius

was 1.6 cm and the flare angle of that conductor outside of the lens was 21.37 degrees. Based on

the figure-of-merit calculations, we chose a lens dielectric constant of 10 for the oil-lens-oil

design and 7 for the oil-lens-air design. Note that neither the impedance constraints nor the

figure-of-merit calculations lead to specification of the lens output radius, Y2. This remains a

free parameter, subject only to the minimum introduced in [1, (3.16)], which ensures that the two

lens interfaces do not intersect on axis. We used the minimum for both designs. The following

table lists the parameters for both oil-lens-oil and oil-lens-air optimal lens designs. Dimensions

and positions are in centimeters; angles are in degrees. The figures which follow the table (Figure

IV-1 and Figure V–2) show half cross-sectional views of the two designs, including the paths for

representative rays (equipotential lines) traced through the structures. The calculated figure-of-

merit for the oil-lens-oil design is 0.981; for the oil-lens-air design, it is 0.991.
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Lens Design Parameter. Symbol Oil-Lens-Oil Oil-Lens-Air

Input Values
m

Coax dielectric constant El 2.2 2.2
Lens dielectric constant E2 10.0 7.0
Output dielectric constant &3 2.2 1.0

Output cone angle 80 21.37 21.37

Coax outer radius Y~ 8.50 8.50

Coax inner radius YO 1.60 1.60

Outer radius Y2 18.12 17.30
Lens Ellipsoidal Interface

Ellipsoid semi-major axis 9.63 10.27

Ellipsoid semi-minor axis ; 8.50 8.50

Ellipsoid focal distance d 4.52 5.75
Lens Transition Region

Extreme ray maximum bend ‘l,max 62.03 55.90
angle
Extreme ray minimum bend ‘l,min 50.26 41.41
angle
Outer conductor flare angle 61 60.96 55.45
Center conductor flare angle 80 6.55 5.78

Center conductor radius at lens Y3 1.63 1.63
output

Lens Size and Proportions

Minimum outer radius ‘2,min 18.12 17.30

Outer radius (input) !IJ2 18.12 17.30
Quartic surface to ellipsoid fl 14.14 16.02
focal point distance

!2 I l’~ 0.289 0.256
Y~ I l?~ 1.28 1.08
Y2 I Y~ 2.13 2.04

Lens On-axis Coordinates

Ellipsoid focal point location -1~ + !2 -10.06 -11.91
Ellipsoid center –tl+/2+d -5.54 -6.16
Ellipsoid forward extent –/l+ Y2+d+a 4.08 4.11
Quartic surface location !2 4.08 4.11

Some Intersections

Ellipsoid-enter conductor (Z(),YO) (3.91, 1.60) (3.92, 1.60)

Coax outer conductor—lens (z#P~) (-5.34, 8.50) (-6.06, 8.50)

Lens-quartic-ground plane (ZJIJJ (0.00, 18.12) (0.00, 17.30)

Quartic<enter conductor (Z3,Y3) (4.18, 1.63) (4.16, 1.63)

Lens Performance

Figure-of-Merit 7 0.981 0.991 0
14
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Figure IV-1. Optimized 100f2 oil-lens-oil design. The lens dielectric
constant is 10. The figure-of-merit is 0.981.

v. Concluding Remarks

We have provided design equations and optimized designs for the feed-point lens needed

to build a high-voltage half IRA. Since for both oil-lens-oil and oil-lens-air designs, the figure-

of-merit decreases monotonically with increasing lens dielectric constant, the optimum choice of

lens dielectric constant in an impedance matched system is one slightly larger than the minimum

consistent with the condition that the required bend angle for the extreme ray at the fkst lens

interface not exceed the maximum possible. The thickness of the lens in the axial direction scales

with its output radius, which remains a free design parameter.

Since the figure-of-merit is a weak function of the dielectric constant of the lens, we are

free to choose this parameter with minimal concern for its impact on lens performance. Since a

e
lower dielectric constant is easier to achieve, and larger reflection losses accompany higher
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constants, the optimal “design is the

constant of about 7.0.
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Appendix A

A-I. Derivation of the Figure-of-Merit for the Half IRA Lens

We consider here a procedure for choosing the optimal design of the lens, from the family

of solutions that were provided in [1]. Since the lens is symmetric about the z-axis, the

transmission coefficient must also have the same property. Thus, all rays originating on a line of

constant radius Y in the feed coax will penetrate the lens with the same transmission coefficient,

T#P), where Tt(Y)is the total transmission coefficient through the interfaces of the lens and

through the final output interface to air, if any. It is straightforward to calculate this transmission

coefficient for a given lens design from the Fresnel equations.

One can now imagine an optimization procedure in which one postulates a lens

configuration, calculates a figure-of-merit based on T~(Y), and makes adjustments to the lens to

improve the figure-of-merit. We know that ideally we want Tr to be as large as possible for all Y,

but it is unclear in what sense.

● In fact, we must optimize the lens in the sense that the aperture integral of the electric

field for the fast impulse is maximized. Recall that the early-time expressions for the radiated

field in transmit mode and the received voltage in receive mode are

Era~(t) = –
ha W(t)

2nrcfg dt (A.1.1)

VreC(t) = –ha ~inc(t)

where fg is the feed impedance (typically 100 f2) divided by 377 Cl, and ha is defined by

% = +jj, E,(X’,YW4”
o u

(A. 1.2)

To optimize the radiated field and received voltage, one must maximize ha. (One might also like

a small fg, but that is already fixed at 100 G!/ 377f2.)

We now have to express how ha varies with 7’t(Y). To do so, we note that lines of

constant Y in the feed coax must end up as lines of constant u in the aperture plane (Figure A:I–

● 1). This must be true because in both cases we have a solution to the static Laplace’s equation. A
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c

.7

~proof that theapefiure field, when there isnoreflection loss, isasolution tothestatic bplace's

equation is in [3, Appendix A]. This solution is just the solution to the problem of a wire above a e

ground plane.

We therefore infer that if the fields vary with Yin the input coax, they must vary locally

with u at the output. Thus, Tr(Y) = Tt(u), where the relationship between Y and u must be

determined by conformal mapping. In the section that follows, we find a conformal mapping

from the coax to the aperture plane. Once that is established, we then

information to modify ha and to derive from it a suitable figure-of-merit.

- ,inesof ,.,

show how to use this

Figure A:I–l. The coaxial feed (left) is transformed into a geometry described by a
wire above a ground plane in the aperture plane (right). Lines of
constant radius in the feed coax become lines of constant u in the
aperture plane.

A-II. Conformal Transformation of a Half Coax to a Wire over Ground Plane

Since the conformal transformations for a coaxial cable and for a wire above a ground

plane are well understood, it is straightforward to link the two. The steps of the transformation

are shown below in Figure A:ll– 1.

18
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U2’-u,’

Figure A:ll-1. The coordinate transformations required to transform a half
coax to a wire above a ground plane.

We must be able to describe four coordinate systems. In the order they are used, we have

~’ = x’ + jy’

w? = u’ + jv’

w= u+jv
(A.2.1)

~=x+jy

where x, x’, y, y’, u, u’, v and v’ are all real. Note that x, y, < and x’ y’ and ~ all have the units of

meters. Furthermore, u, v, w, u’, v’ and w’ are all dimensionless.

To find the relationship between the first and second coordinate systems, we refer to

● [4, p. 61], obtaining

19



r = ~w’

T
w’ = ln(~’ /b)

*

(A.2.2)
m

The relationship between the second and third coordinate system is just an inversion and

translation. Note that the size and shape of the rectangles in the second and third coordinate

systems are the same. Thus, we have

Finally, the relationship

various ways as [5]

w= –w’ + u; (A.2.3)

between the third and fourth coordinate system can be expressed in

[)=ln(hf+j
w+j~

~ld-j ‘

g=. e
w+jz/2 + 1 .ew–j

=
d ‘ew+jz12 _ ~ J

ew+j

~ld + j
jew =

~ld - j
(A.2.4)

where we have shifted w by jm’2, in comparison to the usage of [5]. We have shifted w in this

way in order to have v = O, instead of v = nf2, on the unit circle in the aperture plane. After a

combining all of the above transformations, and using the relationship that e“~ =1, we finda

relationship between the first and last coordinate systems, i.e.,

(A.2.5)EzEl
This is the relationship we have sought.

Looking ahead, we know we will have to carry out a line integral along the line from p6

to P3. In the coax, this line can be expressed as

~’ = ~e-@J2 = -j~ (A.2.6)

where Y is the radial coordinate that varies between a and b. Substituting this into (A.2.5), we

find the relationship between yin the aperture plane and Yin the coax along the line p#3 as
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2= I–Y/b

d I+ Y/b
(A.2.7)

which is valid along the line P6P3. The reason why we require this relationship will become

apparent in the next section.

A-III. Adjustment of ha to include Transmission Coefilcient

To calculate the radiated field, we first consider the case in which the field is not

perturbed by the transmission coefficient. Later, we perturb the solution by the transmission

coefficient.

In the case where there is no transmission coefficient to consider, the radiated field is

described by (A. 1.1), with ha calculated

the actual aperture, so we have

as in (A. 1.2). It is simplest to calculate over one-half of

(A.3.1)

where Sa ‘ is as shown in Figure A: III-l. Here, fg is the input impedance for a wire above the

ground plane, which is normally 100 Cl/ 377 Q and V. is the voltage from the feed arm to the

ground plane. The last step follows from [5 and 6].

yld

1 -

\ f

7d2

P3 P*\
[

1 )(/d

Figure A: II-l. The contour integral over half the aperture, c;.

In the absence of a perturbation due to the transmission coefficient, the contour integral is

m
straightforward to calculate. The integral from P3 to P2 is zero because there is no change in y.

The integral from P2 to PI is zero because v is zero. Finally, the integral from PI to P6 is
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;’
-vanishingly small for thin wires. This leaves just the integral from Pfj to P3 , which is just

- zd/ 2. Since Av = 2z, we have for the unperturbed case *

(A.3.2)

This can now be

received voltage.

used in the antenna equations, (A. 1.1), to calculate the radiated field and

Next, we consider the more interesting case of what happens when there is a perturbation

in the field due to a transmission coefficient that varies as a function of position in the aperture

plane. Recall that we have shown that the field in the aperture plane varies as a function of u,

where lines of constant u are equipotential lines. Thus, the contour integral is modified to read

% = ;JC63T(Y) v(Y)~Y (A.3.3)

where Cfj3 is the straight-line contour from pb to p3. This expression assumes that the field is

affected only locally by the transmission coefficient, an assumption which is valid at high

frequencies. As before, v(y)= 7rf2on the contour, and Av = 2Z so we have the simplified result a

ha = -~ JC63Z(Y) dy (A.3.4)

Note that T(@) includes transmission coefficients for ~ interfaces, including the final oil-air

interface implied by an oil-lens-oil design. That final interface introduces no additional y-

dependence, however, as we assume it is spherical and concentric with the emerging wavefront.

To simplify the above expression even further, we note that we can express Tt(y) in terms of Y in

the coax feed. Thus, we have

y l–Y/b dy

z= l+ Y/b ‘ 7= (1+ :/b)’ ~

(A.3.5)
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●
‘ where we have used (A.2.7) to relate y to Y. Note that Cfj3 is now the contour in the coax from

p6 to P3, as shown in the first sketch of Figure A:II-l. This is simplified to

ha = ~~b
q(W &

b a (l+ Y/b)2
(A.3.6)

This is the final result we have sought. Note in this expression that ha = ha,oif is normalized to a

plane of reference in oil. If we used a plane of reference in air, we would recover the unperturbed

result of (A.3.2), ha,air = d /2.

A suitable figure-of-merit for our candidate lens configurations may now be defined as

(A.3.7)

where h~~~) is the value of the aperture integral, normalized to a plane of reference in oil, that

would be observed if there were no power losses in the transition from oil in the coax to air. We

a
derive below this optimal aperture integral.

Recall from (A.3. 1) that ha is inversely proportional to the voltage. If we assume that the

an optimal transition between oil and air would be a smooth transition

then the power in oil and in air would be the same and we could write

~(g; ~

T z c,air

ha,air
=*= Zcoi[

region with no power loss,

(A.3.8)

since the voltage is proportional to the square root of the power–impedance product. Now, since

the impedance is proportional to the square root of the dielectric constant, and the relative

dielectric constant of air is 1.0, we have

(A.3.9)

where we have used ha air = d /2, and &oil is the relative dielectric constant of oil.,

Combining the expressions obtained above, we finally obtain as our lens figure-of-merit
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‘q

(A.3.1O)

0

Recall that for each candidate lens configuration we can calculate a total transmission

coefficient as a function of Y in the oil-filled feed coax. It has until now been unclear how to

weigh the contributions of each ray to the overall radiated field. The above expression tells us

how to weigh that contribution. It is therefore the figure-of-merit for the candidate lens

configuration.
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