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ABSTRACT

A numerical model is used to investigate the radiating and receiving properties of plamr
bicone arrays for use as ultrawideband, time-delay scanned antennas. The approach employs
a hybrid of the finite element method with periodic boundary conditions to compute the electric
fields in a unit cell of the assumed-inl%ite array. It is observed that the input impedance of the
structure at broadside scan is very near that of 607r Ohms predicted for a self-complementary
array. It is shown that the useful bandwidth of the planar bicone array is restricted to those
frequencies for which there are no visible grating lobes. At broadside scan (or incidence) the
upper frequency limit is that at which the elements are spaced one wavelength apart. This paper
discusses the numerical modeling approach, and computed results with two different feed region
geometries.



—

*
1. INTRODUCTION

A variety of potentially interesting applications require focused radiation of high-power e

radio frequency (RF) transients. Two competing alternatives are: a single high-power source

feeding a large aperture horn or reflector; and an array of small antennas individually fed by

synchronized, medium-power sources.

An example of the fwst alternative is the reflector impulse radiating antenna (FURA) [1].

Its experimental implementation used a large parabolic reflector fed by a transverse electromag-

netic (TEM) horn joining the reflector edges to a single spark gap switch. Its large size (12’

diameter) allowed a long “fill time,” permitting the antenna to radiate frequencies lower than

40 MHz [2], [3] .

However, the single-switch approach is not suitable for applications that require a repeat-

able waveform because spark gap switches suffer from “jitter,” a pulse-to-pulse variation in the

time at which they break relative to the charging pulse’s leading edge. Solid-state switches, such

as those using bulk avalanche in Gallium Arsenide (GaAs), on the other hand, generate more

repeatable waveforms, because they are triggered by an illuminating laser source, not by self-

breaking. This suggests that a large array of the medium-power solid state switches could ●
radiate transients as well, or better, than a single-source antenna [4:25]. In addition, such an

array would have the valuable capability for electronic scanning.

A problem related to switching arrays that has not been adequately addressed is that of

the design of the radiating elements. The limitations that inter-element mutual coupling might

impose on the scanning capabilities and the radiated spectral content is largely unknown.

This paper begins an exploration of these issues by considering a practical embodiment

of the self-complementary array concept. It summarizes amlyses performed using the periodic

hybrid finite element method to calculate the fields in the vicinity of a receiving array of “planar

bicone” elements, and the resulting received and reflected power. It shows that even with these

nearly-ideal radiating elements, the frequency content of transmitted and received signals is

essentially limited to below the frequency at which the array elements are one wavelength apart,

and even lower if the array is to be electronicallyy steered. On the positive side, the results show

that the array’s input impedance is fairly stable over the permissible frequency range, remaining

within 25% of the theoretical value of 607r Ohms for a self-complementary antenna.
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2. THE SELF-COMPLEMENTARY AIUL4Y CONCEPT

o A self-complementary antenna is a planar metallic structure whose rotation by 90° about

its feed point forms the “complementary” structure, with air replacing metal and vice versa.

Deschamps [5] showed that such antennas have constant input impedance of 710/2,where q. =

1207r Ohms is the impedance of free space. Figure 1 shows an array whose elements are planar

bicones. In the case when dx = dy, the structure is self-complementary. Baurn [6] derived the

input impedance for general arrays of planar bicones. For a square lattice with A > a’x, it is

qOcos(0)/2 or qOsec(0)/2 for scanning in the E and H planes, respectively, while for A < dx, it

is 710/2. Hence, in theory, the ffequency-independent properties of self-complementary antennas

also extend to arrays. The computed results discussed below show that this is very nearly true

even when a practical (non-point-source) feed is used.

Note that plamr bicone arrays, when used as sources, radiate equally in two directions.

That limitation is accepted for purposes of this paper. Later investigations will deal with direc-

tional elements such as TEM horns. The properties of the self-complementary array serve as

a baseline that is optimum in terms of frequency response.

3. MODELING APPROACH

3.1. Computational Method

A general-purpose solution method was previously developed for calculating the reflection

and transmission properties of planar periodic structures [7]. It uses the finite element method

(FEM) in conjunction with periodic boundary conditions to compute the electric fields in a unit

cell of the structure. For purposes of this work, a capability for modeling resistive wires was

incorporated, as discussed in Appendix A. Although FEM is inherently a frequency domain

method, it can be used for UWB studies by repeating the solution for a number of frequency

points within the bandwidth of interest. The periodicity conditions allow the solution to be

restricted to a single unit cell, but that means the results will only be valid for “large” arrays,

typically ten or more elements across.

Figure 2 shows a practical realization of the self-complementary array that allows for

feeds that are not ideal point sources. The sources might be placed directly across the gaps
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between plates, or might feed the bicones by TEM transmission lines. The modeling approach
*

considered this antenna in the receiving mode, with the sources represented by resistive wires a

whose resistance (assumed real) is the same as the source impedance.

The dashed lines in Figure 2 are the outline of a unit cell. The definition of the unit cell

is not unique--this one was chosen so that the source points are within the perimeter. Figure 3

shows its representation for purposes of the FEM calculation: The unit cell is truncated at

planes *h above and below the metallic structure. The tetrahedral cells are a subdivision of the

free space within that region. Figure 3 shows only the cells on the -z side, with shading show-

ing those cell faces associated with conductors, and thick lines indicating those edges where

resistive wire boundary conditions are set. Periodicity conditions are imposed on the +x and

*y unit cell faces, while periodic radiation conditions are imposed on the *Z faces.

The unit cell model is illuminated from the -z side by a plane wave propagating at an

arbitrary angle (00, 4.). The resulting electric field values on that face form the right hand side

of a matrix equation. The matrix solution gives the electric field along every tetrahedron edge.

The reflection and transmission into -z and +Z half spaces are calculated from the field values

at z = -h and z= +h, respectively. The field values along the resistive wire edges give the power

absorbed by the array. a

3.2. Convergence Checks

There are two uncertainties associated with the hybrid FEM modeling: (1) the grid

resolution of the physical structure; and (2) the number of Floquet modes used in representing

the external radiation conditions. (Appendix B discusses the properties of Floquet modes.) To

address the first issue, a second geometry model, shown in Figure 4, was created. Its maximum

edge length is A~20, one half that of the model in Figure 3. Table I shows the convergence of

received power vs. the maximum Floquet mode index ZVM for broadside incidence with each

of the two mesh models. The total number of modes used is 2(2NM + 1)2, with the mode

N ]. For each combination thereindices in both x and y directions including the range [-AI’M, -

are both TE and TM modes. The results of Table I indicate that the low-resolution model of

Figure 3 is adequate for calculations up to at least ~. and that *5 Floquet modes in each direc-
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tion is adequate.

converged result

Under these conditions, the results for received current are within 1.5 % of the

with the fine grid model. However, for frequencies near 2~o, the current

calculation is in error by more than 5%, and the fme mesh model must be used. The number

of Floquet modes required is inversely proportioml to the mesh edge length in the radiation

boundary, so a finer mesh requires correspondingly more modes. The calculations in this report

used either the coarse mesh with +5 modes, or the fme mesh with +10 modes.

4. NUMERICAL RESULTS

4.1. Received Power vs. Frequency

Figure 5 shows the computed power absorbed by loads whose impedance is q~2, and

scattered in the forward and reverse directions, when the array is illumimted at normal inci-

dence. The received power is nearly constant at 50% up to fo, butfalls off dramatically above

that frequency. At all frequencies, the sum of forward and back scatter is 50%.

For frequencies below fo, there is only one propagating Floquet mode (radiating lobe)

in each direction, normal to the array. The impedance of that mode is qo. The incident field

● excites currents on the bicones, which then “see” three impedances in parallel: q/2 for the

load resistor; and q. for each propagating mode. Hence, it is expected that under ideal condi-

tions one half of the power will be absorbed by the loads, and the other half will reradiate, an

equal part in each direction. This is exactly the case in the low frequency limit, but at higher

frequencies the non-ideal sources cause a slight difference between the forward and back scatter.

Section 4.3 will show in some detail how the feed region geometry affects the division of power,

but in general, the shape of the received power vs. frequency is relatively insensitive to the feed

design.

As frequency increases through fo, more than one Floquet mode can propagate in each

direction. In fact, with the square lattice, a total of 16 higher order modes can exist when

f. <f <fife, 8 directed into each half space. Their directions of propagation are in the cardinal

planes, a pair of modes TE and TM to z. The impact they have is that now the currents on the

bicones can, and do, reradiate in those other directions. It is not simply the relative impedance

of those other modes vs. that of the load that determines how much power goes into each, but
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also the shape of the current distribution on the plates. The fact that the received power goes

so suddenly to nearly zero above~o indicates that mutual coupling causes the current distribution e

to assume a form that results in no current flow through the loads, such as equal and opposite

currents on each side of the feed gap.

The solid line in Figure 5 may be regarded as the impulse response magnitude for broad-

side scan. Figure 6 is the corresponding phase, which has been linearized to re-reference the

coordinate origin to the center of the load. The nonlinear phase characteristic near and above

~. indicates that waveforms containing those frequencies would not be radiated or received intact,

but would suffer distortion due to dispersion.

4.2. Input Impedance

The input impedance that a transmitting source would see was found as the ratio of open

circuit voltage to short circuit current. For each frequency, the impedance load was replaced,

alternately, by a conducting wire (short circuit) and a very high resistance (an effective open

circuit).

Figure 7 shows the calculated resistance and reactance as a function of frequency. The

resistance is very nearly qJ2 for all frequencies except those near the onset of grating lobes at ●
~. and fijo. In the usable frequency range (O , jJ, the input resistance is stable and the reac-

tance is nearly zero. This implies that a transmitting source or receiving circuit can be impeda-

nce matched over wide bandwidths without tuning, which is a necessary property for radiating

or receiving transients.

4.3. Alternate Feed Region Geometry

Figure 8a shows a closeup of the feed region used for the previous calculations. Figure

8b is an alternate geometry that more closely approximates a point source feed.

Calculations for the received and scattered power for the new geometry are shown in

Figure 9. The received power is substantially the same as in Figure 5, but the fractional for-

ward and back scatter are different. This justifies the earlier statement that the percentages of

scattered power differ from the expected 25% due to the non-ideal feed geometry. The phase
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of the received current was identical to that of the origiml geometry, shown in Figure 6.
t

Figure 10 shows the computed input impedance with the new feed geometg. In com-

parison to Figure 7, it is noteworthy that the resistance is still closer to q~2 in the range (O ,

&) and the reactance is more nearly constant. These are indications that the feed geometry in

Figure 8b can provide a better broadband impedance match to a transient source.

4.4. Scanning Effects

A transmitting ultrawideband array can be electronically scanned by adjusting the timing

sequence of its individual sources. However, the spectral content of the radiated pulse will not

generally be the same, due to the possibility of grating lobe effects. For wideband sigmls there

is, strictly speaking, no such thing as a grating lobe. Instead, energy from a transmitted pulse

that does not propagate in the main beam direction will be spread out in angle, with the lower

frequencies radiating nearly along the array surface, and progressively higher frequencies radiat-

ing progressively nearer to broadside.

The performance of the plamr bicone array for an oblique-incidence wave is illustrated

a by Figures 11 and 12. They show, again for the receiving case, the power absorbed by an q~2

load, and its phase, respectively, for an incident wave arriving from 30° off normal. Results

are shown for both the H plane and E plane, which represent, respectively, scanning in the x-z

and y-z planes, for a y-polarized source. The received power drops abruptly just past .65 j. due

to the onset of the grating lobe. At that frequency,

continues on fairly linearly up to j. , where it drops

dence.

Figures 13 and 14 are computed results for

the phase has a slight discontinuity, but

steeply, just as it did for broadside inci-

an incident wave arriving from 60° off

normal. The bandwidth is, as expected, even more limited, with the rolloff near .5 ~o. In

addition, the low frequency limit on received power is not 50%, but somewhat less than 45 YO.

This is due to the fact that the modal impedance for the dominant Floquet mode (the incident

field) varies as COS(OO)or sec(OO),depending on polarization (see Appendix B). The difference

is more noticeable for 600 scan than it was for 30° scan.

For scanning in either of the principal planes, a grating lobe first appears at the
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fGL=
fo

Sin(eo) +i
(1)

hding~euse of the array to frequencies kssthanfGL. If a design objective is wide-angle

scanning, it should be possible to improve the bandwidth performance by making the array

lattice triangular instead of square. However, since such a structure is not self-complementary,

its input impedance may be more frequency-dependent.

5. CONCLUSIONS AND RECOMMENDATIONS

This numerical investigation of the properties of plamr bicone arrays has shown the

extent to which they deviate from theoretical predictions of self-complementary arrays. The

input impedance is fairly independent of frequency, with the real part remaining within 25% of

qJ2, except at frequencies near f. (the frequency at which the inter-element spacing is one

wavelength). The detailed geometry of the feed region has only a minor effect on the input

resistance, but a large effect on the input reactance. The useful bandwidth of the planar bicone

array is not limited on the low end, but is limited on the high end by that frequency at which
e

grating lobes begin to appear in visible space.

Further investigations are needed to establish the input impedance for triangular-lattice

arrays, which should be capable of wider bandwidth for a given scan region. Also, directional

elements, such as TEM horns need to be studied in order to design arrays that have unidirection-

al radiation, instead of the bidirectional radiation characteristic of planar bicones.
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APPENDIX A - FINITE ELEMENT MODELING

A. 1. Properties of Existing Computer Code

The calculations discussed in the body of this report used a computer code that was

written to fmd transmissivity and reflectivity of generic periodic structures. It uses an expansion

of the electric field inside the array unit cell in terms of linear “edge elements, ” volumetric

fimctions defined over tetrahedral cells and referenced to the grid edges. These expansion

functions have been repeatedly shown to yield accurate solutions for time-harmonic electric

fields.

A sparse matrix Sz is constructed by first substituting the sum of edge element expansion

functions with unknown complex scalar coefficients into the vector wave equation, and second,

taking its inner product over the volume region (the unit cell) with the same functions (i.e.

Galerkin’s method). Next, the radiation boundary conditions at planes parallel to and outside

the material structure are implemented by adding two matrices SA and SB, which have nonzero

entries for each pair of edges in the lower and upper boundaries, respectively. The matrix terms

are formed from inner products of the finite elements with a sum of Floquet modes. The addition

● of these matrices to S1 provides reflectionless boundaries that allows the mesh to be terminated

arbitrarily close to the structure. Fimlly, periodicity conditions at unit cell side walls are

implemented by mathematically folding opposite edges onto each other with a phase shift ap-

propriate for the incident field’s propagation angle. This folding can be written in terms of

multiplication on the left by a matrix R and on the right by its Hermitian (conjugate transpose):

R[S~ +S1+SB]RHE =Einc (Al)

the incident field column vector EinC is the inner product of the finite elements on one radiation

boundary with the dominant Floquet mode.

The solution of the above matrix equation gives the vector of coefficients, E, representing

the electric field values along each edge of the mesh. The reflectivity and transmissivity are

then found from those values on the radiation boundaries.

The existing code was valid for any combination of linear, isotropic dielectrics

perfect conductors. To perform the study of ultrawideband antemas, it was necessary to

and

add
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modifications for impedance loads, as described in the next section.

A.2. Resistive Wire Modifications

Representing a resistive wire in edge-based FEM is straightforward, provided that the

wire coincides with grid edges (which is assumed to be the case). First, the matrix SZis assem-

bled as if the wire were not present. Then

wire are modified as follows [8:325]:

S~i =

the diagoml entries corresponding to edges on each

Sii + jkoqo ~ (A2)

where Li is the edge length and pi is the wire resistivity (usually the same for all segments along

a particular wire, regardless of whether the segments are the same length).

From the field solution, the potential across a wire segment is Vi = ei Li . Since the

segment resistance is Ri = pi Li5 the current through the wire is Ii = ei / pi .

It is important to preserve the conservation of power check within the code by accounting

for that absorber by the resistive wires. The power absorber by a resistive wire segment is
m

(A3)

The electric field strength incident on the radiation boundary is IEincI = (.4UC)-1’2,where&

is the unit cell area. The incident magnetic field strength is

1Hint 1 = YqooA;:’2

where Yqoois the modal admittance of the incident field mode, with q= 1 for TE or 2 for TM:

(A5)

sec 00
Y200 = ~ (A6)

10
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where 60 is the angle of the incident wave measured from the array’s surface normal. Finally,

the incident power density is

1

[

COSOOTE

P
inc

= ~ sectlo TM

and the total incident power is

~inc = ~inc Auc = Y900

Hence, the power absorbed in a resistive segment is

abs I; Yqoo
Pi =

Ri

(A7)

(A8)

(A9)

11



APPENDIX B - FLOQUET MODE IMPEDANCES
*

Plane wave harmonics, or “Floquet modes, ” correspond to the lobes emitted by a trans- 0

mitting array. The modes are evanescent for lobes that are not in visible space. For an array

located in the z=O plane with lattice spacings ~ and dYand lattice skew angle T, as shown in

Figure B1, the modal impedances are [9:41-42]:

1-
kqo

TE(p=l)

z
‘mn

pmn =
Km~TCI TM(p=2)

k

‘mn = [
k2 - k:mn - k:mn ]112

k
27rm= ks~docosr$o-r

xmn
x

k 27rn . 27rmcot-y
ymn = ksin OOsintpO-r

Y
dx

where (O., @o) is the scan angle (for transmit) or the incident wave

modes are TE or TM to z.

(Bl)

(B2)

(B3)

(B4)
a

angle (for receive). The

In the case when only to the dominant (m =n =0) mode propagates, Km = k. COS(OO) and

the modal impedance reduces to

zpoo

A planar bicone array, which radiates

of zpoo/2 . Then a transmitting source

coefficient of

Iq.sec 00 (p= 1)

=
qocos eo (p =2)

equally in both directions, will see

with q/2 characteristic impedance

(B5)

an input impedance

will see a reflection

12



(B6)● R=
* SinZoo

(1+ Coseo)z

(positive for TM, negative for TE).

Inthecase ofasquare lattice withal” =dY = Xo and-y= n/2; with elements phased to

radiate in the broadside direction, the propagation constant for the m,n mode is

or

f( mn =

L

~2 _ 27rm
dx

‘mn =
[[

k l-m2 ~

f

2

2

27rm
dx

–n 2

2

2

J

1/2

(B7)

1/2

(B8)

For frequencies below f. , only the (0,0) mode propagates and there are no grating lobes. In

●
the interval f. < f < fifo the (O,* 1) and (&1,0) modes can propagate. These modes cor-

respond to grating lobes in the @ = 7r/2, T, and 37r/2 planes at

0~~ = * sin H.1fo7 (B9)

Above fifo another set of grating lobes forms in the diagonal planes. A transmitting source

sees these higher order propagating modes as parallel impedances, although the impedance that

each one presents depends on how well it couples to the currents on the antenna.

13
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Figure 3. Subdivision of Unit Cell into Tetrahedral for Finite Element Analysis
(shading identifies conducting faces)

Y

A x

Figure 4. Fine Resolution Grid used for Convergence Check
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Figure 7. Input Impedance, Broadside
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Figure 14. Received Phase vs. Frequency for 60°1ncidence
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Figure B 1. Generic Array Lattice Geometry



Table I. Convergence of Received Current vs. Number of Floquet Modes
(Table values are in mA)

Low-resolution Grid High-resolution Grid

Modes .833 ~ 1.833 ~ .833 ~ 1.833 ~

1 2.500 .8712 2.556 .7273

2 2.618 .7794 2.587 .7091

3 2.623 .7805 2.593 .7257

4 2.623 .7809 2.595 .7286

5 2.624 .7806 2.596 .7299

6 2.624 .7802 2.596 .7300

7 2.624 .7808 2.595 .7297

8 2.624 .7807 2.595 .7291

9 2.624 .7806 2.596 .7293

10 2.624 .7806 2.592 .7293

11 2.596 .7294

12 2.595 .7294

13 2.594 .7292
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