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Abstract

This paper develops a generalized form of inhomogeneous TEM plane wave involving

inhomogeneous (lint isotropic) constitutive parameters. This is then used in conjunction with differential-

geometric scaling to synthesize inhomogeneous dielectric lenses for transient TEM waves. A special class

of these has a uniform permeability allowing a purely dielectric lens. A special example involving

propagation in the azimuthal direction in cylindrical coordifites is shown to agree with previous results

based on a different method.
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1. Introduction s

A recent paper [5] showed that guided TEM waves (modes) of a very general form could be m

propagated in an inhomogeneous isotropic dielectric medium with permittivity e proportional to Y-2

where Y is the cylindrical radius in the usual (Y, ~, z) cylindrical coordinate system. This has the

property of practical importance that the permeability p is a constant (homogeneous), such as Ko, the

permeability of free space. Propagation is in the @ direction with electric and magnetic fields both
+

perpendicular to 1 @ and to each other, with ratio given by the local wave impedance. The TEM wave is

guided by (ideally) perfect conductors with cross sections in each (z, W plane independent of @over some

range ~ < @ < ~ for which the speaal lens is desired.

Special cases of TEM waves (simple forms with field components in only single coordinate

directions in cylindrical and spherical coordinates) in this kind of medium have been discussed in [2, 3].

One application of this type of lens is a dispersionless bend in a coaxial cable, a special but common form

of TEM transmission line. This is considered in an approximate form in [4] and in an exact form in [5].

The exact form of inhomogeneous @directed TEM waves in [5] allows for very general conductor

cross sections in (z, Y) coordinates. It is developed from a magnetostatic solution for @independent,

@directed currents and the associated vector potential with only a @independent@ component &@ . The

field components are shown to be derivable from V(YAOO ) times the waveform function describing the e

propagation in the @direction. The quantity !PAoo serves the role of an electric scalar potential.

In [7] lens synthesis (design) is considered for various types of inhomogeneous media supporting

TEM modes. This synthesis is based on a differential-geometric scaling of coordinates, fields, and media.

One form of wave, say a TEM plane wave, is thereby transformed into a TEM wave propagating in some

curved manner. The question then arises as to whether the new types of solutions can also be cast into

this differential-geometric format so as to extend this method to new classes of solutions. This is the

subject of this paper.

*
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f 2. Inhomogeneous TEM Plane Waves in Uniform Isotropic Media

e A discussed in [7 (Section 2.4)] we have inhomogeneous TEM plane waves of the form

z=ik,q)f(t-~)
F’ = ;b(ul,q)f(t-:)
+ + + +
13 X E~(ul, u2) = &~(ul,u2) , &~(ul,u2) =– 13 X E~(ul, z42)

[1Z’ = $ = wave impedance

c’= [L’ #]-1/2 = wave speed

+
E~(141,u2) =–V;Cbe(Ul, U2) , V;2Q(U1,U2) = O

(2.1)

+
~~(ul,q) =–v@~(ul, u2) , V;%k(l+tiz)= O

~(t – ~) = waveform function

+13+’L3
v;= 11—

1%~
+ 12—

Ehlz

p’ = permeability, E’ = perrnittivity

m Here the right-handed orthogonal curvilinear coordinate system (UI, u2, u3) describes the formal fields,

i.e., fields that satisfy the Maxwell equations with the coordinates treated as Cartesian. All the primed

parameters and operators have this interpretation. As a special case, these coordinates can be taken as (x,

y, z), in which case (2.1) describes fields appropriate to a TEM transmission line derivable from a scalar

electric potential @ ~ or scalar magnetic potential 0~, including the complex form ~~ + j cDi and

E~ = j Z’ H~ with complex coordinate UI + j U2 as in [1, 8].

In [7] this type of wave is then transformed by a coordinate transformation where U3 is in general

curved to form what are called the real fields, etc. In this process e’ and H’ are changed to &and # which

may, in general, bed yadics. It is important to note that these constitutive parameters have the forms

(2.2)



\

where the components operating on the third components of the fields can be anything since these field
e

components are zero by hypothesis. This gives a certain degree of freedom on selection of suitable

orthogonal curvilinear coordinate systems for (UI, UZ, U3).

.
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t 3. Generalized Inhomogeneous TEM Plane Waves in Inhomogeneous but Isotropic Media

e Still thinking of our (u1, uz 143)coordinates as though they were Cartesian, let us allow .s’ and

A’ to be inhomogeneous and derive a more general form of TEM plane wave. Let us look for solutions,

again in the (zq, u2, u3) coordinates as formal fields, etc., of the form

+ +
E’ = E@l,u2) f(f–7(u3))

+ -)
H’ = Hij(ul, u2) ~(f-7(u3)) (3.1)

+ +
E~(ul ,u2) “73 = O , H~(ul, u2) “iq = o

Again, restricting the fields to have no third components makes Ej and p~ in (2.2) play no role.

However, now we let # and p’ be functions of the coordinates (i.e., inhomogeneous). Note also that

U3 /c’ in (2.1) is replaced by the more general Z(U3) in (3.1). Thus the wave is propagating in the U3

direction, but perhaps with vanable speed.

For convenience we have

V’ = [/4’E’]–1’2 = wave speed

, 1/2

[1z~=.P_=wave impedance
&’

/f ’>o, E’>o

where now these may be coordinate dependent. Note also that

[1df ~f d7 ~f dr—. — —— .— _ _
du3 at-r) du3 at du3

Consider one of the Maxwell equations

+
~, ~ ;, _ 13B’ ,dii’_.— =

a ‘p at

(3.2)

(3.3)

(3.4)

where we think of the (uI, u 2, u 3) formally as Cartesian (x, y, z) coordinates. This leads to the

requirements (given the constraints of (3.1)) .

m
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The second Maxwell equation

similad y leads to

ll.-l~l = ()~ H~2 – ~2
Jq

+ + dr + ‘, d7 +
13x H~—= –E’E(j , Ho— =

du3 du3
E’73 X E~

With our constraints, satisfaction of (3.5) and (3.7) is equivalent to satisfying the Maxwell equations.

From the two forms of the cross products in (3.5) and (3.7) we have the constraint

1 d~ , du3_—
E’ du3 ‘P77

d7— = *[/f’&’] 1/2 = f ~rl
du3

Choosing the + sign for convenience (propagation in the +u3 direction) we have

dT=n
‘–1 (U3)

du3

U3

J
du~r= — = T(U3 )

V’(uj)
o

(3.6)

(3.7)

(3.8)

(3.9)

where we have taken the lower limit of integration as zero, but any convenient value of U3 can be used.

Note that we have also shown that

# = [v/e/]-1/2 = v’(u3) (a function of only u3 ) . (3.10)



a so that the product I.J’E’ is a function of only u3.

9 .
The requirements of (3.5) and (3.7) may now be summarized as

(3.11)

Note the local TEM wave condition with the local field ratio given by the local wave impedance (Z’ in

general being coordinate dependent). There are three conditions in (3.9) now to be satisfied (the last two

equations being equivalent). Note that since El and H+~are not functions of U3 (by hypothesis in (3.1))

we have

# 1/2

[1
z’=~ = Z’(U1, U2) (not a function of u3)

E
(3.12)

so that the ratio p’/E’ is independent of U3.

The forms of these equations suggest that we try solutions of the form

+ +
E~(ul, u2) = –VtO:(ul, u2) , H~(ul, u2) = –V#D~(ul, u2) (3-13)

where the transverse gradients in the formal coordinates make this a two-dimensional potential problem.

As usual, the electric potential is solved subject to specified potentials on the conductors passing through

the lens, and the magnetic potential has to allow for a discontinuity in passing around a conductor (the

discontinuity being equal to the cument in the conductor).

Consider first constructing the solution via the electric potential. Then

satisfying the first condition in (3.11). The magnetic field has the form

+
i&z ‘–1;3 x E~ = z‘–1‘Qj,;2 – E(j2

+

1 111 *

(3.14)

(3.15)

II –



Then require

o= &~2 -$aq ’61‘+l[a++s$l

[1
+
E~

[
= v; “ ~ = –v; “ Z’-l V;@e]

Consider the fact that

+
V’” D’ =0=

o=v~ .[.3)]=v; +-lzq=v-% +-%]

(3.16)

(3.17)

O= v;” [z’-=’,]=-V+’-lV;‘d

where the fact that v’ is a function of only U3 has been used. Hence, requiring that cD; satisfy a Laplace-

type equation for an inhomogeneous medium (variable E’) gives a two-dimensional potential which

satisfies all three conditions ((3.14) – (3.17)).

The alternate approach to the solution is to usc the magnetic potential. Then

satisfying the second condition in (3.11). The electric field has the form

+ +
E~ = –Z’i3 xH~

Then require

(3.18)

(3.19)

(3.20)

.
Consider the fact that
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~+a=v’ “[v’-’~l=v=v’-’v’ “[Z’4
(3.21)

[1
o = v; “ Z’iib = –v; “ [z’v; qJ

where again v’ is factored through the transverse divergence, being a function of only U3. Hence,

requiring that Ok satisfy a Laplace-type equation for an inhomogeneous medium (variable u’) gives a

two-dimensioml potential which satisfies all three conditions ((3.18) – (3.20)).
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4. Examples of Discrete Changes in Permeability and Permittivity i,

As an aid to understanding the properties of such generalized inhomogeneous TEM plane waves, a

let us consider some simple special cases. While L’ and &’ can have continuous variation with the

coordinates, let us consider two simple cases of discrete variation. As illustrated in fig. 4.1, we can think

of dividing a parallel-plate waveguide (infinitely wide) into two regions. Here we take two examples

designated parallel and series. Both cases are approached from the electric-potential point of view.

We are still regarding the (UI, Ii2, u3) coordinates as Cartesian as illustrated in fig. 4.1. In this case

the formal fields and the real fields are the same. Note that the two regions (subscripts 1 and 2) have

“pi &~ = pj &j

required by (3.1 O).

= V’-2 (4.1)

Here we have a cross section as a plane of constant U3 on which to solve ouras

potential problem. Variation with U3 of the above products is allowed, but does not affect the results.

4.1 Two media in parallel

As our first example, fig. 4.1A shows a region bounded by two equipotential surfaces (perfectly

conducting) as planes on U2 = O, d. The two media meet on the U1 = O plane. The symmetry of the
a

problem allows us to choose a solution of the form

0; = ~ Vo
+ V. -) (4.1)

E(j =–T12

in both media. Finishing out the solution we have

, 1/2

[1

, 1/2

Zi=$ ,
[1

z~=~

(4.2)

.
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A. Twomedia inparallel

Q.O ~,E~

o — — —— . . — — —— — ——— ._ __ *
/J..i,Ei Ill

-dl ,T,77-,,,,,,,,,,,, ///////////////// ////

@ = -VI

B. Twomedia in series

Fig.4.l. Examples of Discrete Changes inp’andd.
.
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On the boundary (UI = O) we have continuity of the tangential electric field as in (4.1) and continuity of
1..

the normal magnetic flux density as
e

(4.3)

So the Maxwell equations and boundary conditions are satisfied.

4.2 Two media in series

As our second example, fig. 4.1 B shows a region bounded by two equipotential surfaces

(perfectly conducting) as planes on U2 = -dI, d2. The two media meet on the U2 = Oplane. Now we have a

solution of the form

+
EO =

I~ VI for u~<O
dl

~ V2 for u2>0
[d2

[

vl +–— 12 for u2c0
dl

V2 +–— 12 for 1/2>0
d2

Making normal electric displacement continuous through the bounda~ (u2 = O) gives

‘1‘1 for U2 e O
‘i ~

;~ = E’E(j =
,

~ foru2>0
‘2 d2

VI _ &j dl
— — (cortstminton potentials)

~–&~d~

m
(4.4)

(4.5)

The magnetic field is then

.

—
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● (4.6)

showing with (4.1 ) and (4.5) that tangential magnetic field is continuous through the bounda~ (u2 = O).

Again the Maxwell equations and boundary conditions are satisfied.
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5. Scaling Generalized Inhomogeneous TEM Plane Waves

Summarizing our generalized form of TEM wave we-have

-+
E’ = ~(ul,u2)f(t-(u3)) , ~“i3=o

2’ = F~(uI,u2)f(t–(u3)) , 76 “T3 = 0

+ + + +
13x E() = Z’H~ , ;O=-Z’-l 13x~

, 1/2

[1
z,= ~ = Z’(UI, u2) (a function of only UI and U2)

v’= [;’E’~/2 = v’(u3 ) (a function of only u3 )

(5.1)

U3

J
du~

7(U3 ) = —
V’(U3 )

o
+
E~(ul,u2)= -V; Cb~(U1,U2) , V; “[E’V; q] = O

+
H~(ul, u2) = -V@h(uI, u2) , v; “[u’ v; CI%]= o

Here ok maybe multiple valued (as in a conformal transformation) as one goes around a conductor.

Now regard the fields as formal in the sense of [7] and let the (UI, u2, u3) coordinates be some a

orthogonal curvilinear coordinate system. Then we have a distinction between E’ and E and between p’

and p in (2.2). The general transformation equations have the forms

+ +
E’ = (an,m) .2, +’H = (an,m) . H

(E;,m) = (Yn,m) “ (&n,m) , (~,m) = (Yn,m) . (A,m)

(an,m) =

)qoo 10 hz o , (yn,m =

(0 O h3)

h2h3 o 0

hl
h3h1 oo—
h2

hl hy00+

(52)

This lets both the formal and real media be inhomogeneous but isotropic, noting that only 1, 1 and 2, 2

components are relevant since the 3-components of the fields are zero. The scale factors and line element

are

.
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h

(d02 = ~~(duJ2
n=l

(5.2)

Since the first two diagonal elements of the constitutive-parameter dyadics are equal we have

(5.3)

which implies (taking the positive square root)

hl = h2 (5.4)

This, in turn implies [7 (Section 2.4),6] that su~aces of constant U3 can only be spheres or planes. Furthermore

we have

h3p, &’=h’E

~ (a function of U1 and U2 only)
E

[1
& 1/2

= z’ (a function of U1 and U2 only)

[: E]-1/2 = h3[p’ @’2= h3 V’

(5.5)

While v’ is a function of only u3, v has the extra factor h3 which can in general be a function of the

various Un.
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6. Uniform Permeability Lenses

Now add the requirement that

P= iJo (6.1)

i.e., the permeability is uniform, typically taken as the permeability of free space for some practical lens

applications. The perrnittivity is allowed to be more generally variable. For physical realizability we also

require in the lens region that

&2&m~2&fJ (62)

i.e., a permittivity bounded below by that of free space. Note that V’ and E’, being formal, do not have

the same restrictions. For the wave speed we now have

r)= [~&]-1’2s [#o&o]-1’2= Z(J

which is the basic causality restriction in the lens region. For the wave impedance we have

z=[g’2. [q’2=Z(J

From (5.5) we have

[1

1/2
z=m~

&

& = E(U1,U2) (a function of U1 and U2 only)

Then we also have

ZJ = [JfoE]-1’2 = V(z.q, 242) (a function of U1 and U2 only)

This restricts h3 to the form

(63)

(6.4)

(6.5)

(6.6)

h3 =
V(UI,242)

V’(U3 )
(6.7)

.
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x 7. Example of Dielectric Bending Lens Based on Modified Cylindrical Coordimtes

● Consider the usual cylindrical coordinates (w, @Z) ~th

x = Y Cos(fj) , y = Y sin(o)

Then identify the (UI, u2, u3) coordinates as

Ul=Z, U2=Y, U3=ymax@
+ ++
11 = 12, 12=

Note that o has been scaled

h1=h2=l, h3=~
max

-+
lY, 13=74

+

to Ymax@ to give it distance units (meters). The scale factors are

Y

satisfying the constraints (5.4) and (6.7).

For convenience set

v’ = c = [/4_l&()]-1’2=[p’ E’]–1’2
.

giving

v=h3v’=h3c

~ Yn-axis the maximum

Y.—c<cforo<w< Ymu
Y max

Y for our lens domain. With our assumption of permeability PO we have

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

[1
&Q_1/2Z= z’= = h3Zo =T Y ZOSZOfOr OCYSII’maX

& max
.
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Note that while p’ < w in the lens region this is not important since here L’ is merely formal.

Now the formal fields can be found from an electric potential as

+
G= -V; CD; , H~ = $i@x E(j

+

o = vi “[&’Vjq

With

the potential equation becomes

(7.7)

(7.8)

(7.9)

This is precisely the same equation as for YAoO in [51, derived by an entirely different procedure. From ●
(7.3) we also have the real fields

+ + + +
EO=E~,HO=H~ (7.10)

So the present differential-geometry scaling method gives the same results as the rotationally symmetric

static-vector-potential.

Installing (perfect) conductors in a @independent manner over an appropriate range% s @ < ~

then gives a TEM waveguiding structure through the inhomogeneous dielectric lens. From (7.8) one can

solve for cD; subject to choice of appropriate potentials (two or more) on the conductors. The fields then

follow directly. In [51 this was discussed in the context of a bend in a coaxial cable, although it can apply

to other forms of TEM structures. See this, for example, in the context of a different kind of bending lens

with both p ands variable [7 (Section E.S)].

.
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.( 8. Concluding Remarks

The generalized form of a TEM plane wave involving inhomogeneous constitutive parameters

can then be used for the formal fields for generating lens designs based on differential-geometric scaling.

Among other things this allows one to have purely dielectric lenses (free space permeability). Of course

one can have a dual case with a variable-permeability, constant-permittivity lens.

The current procedure has essentially given an extra degree of freedom on transient lens design

via differential-geometric scaling. Perhaps other interesting examples of such lenses can also” be

developed utilizing this new kind of formal field.
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