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Abstract

This paper considers several types of two-dimensional loop structures for transmitting and receiv-

ing low-frequency magnetic fields to and from nearby targets. Such targets may be “inside” the coils, or

on the opposite side of a boundary (e.g., the ground surface) from the coils. Various desioa considera-

tions include zero mutual inductance between transmitter and receiver coils, receiver-coil insensitivity

to externally incident low-frequency magnetic fields, and uniformity of target detection over some test

volume. Using complex-variable( conformal-transmission) techniques a large number of such desio~s are

considered.
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1. Introduction

There are various applications of coils (loops) operated in a quasi-mauwetostatic regime, includ-

~g detection ~d identification of metallic targets [7, S, 13]. In this case the target is in the near field

of th~-coils and an analysis of th_estatic mao~etic fields is appropriate. Such coils can take various

shapes such as rectano~lar and circular. If a rectanonla loop is sufficiently elongated it can be

analyzed as a two-dimensional problem, much as a TEM transmission line, with parameters considered

on a per-unit-length basis. Such loops consist of two or more wires parallel to the z axis with a zero sum

for the currents (in the z direction).

This type of loop can be used to give a uniform magnetic field in some limited spatial domain.

Combining two coils as transmitter and receiver one can measure components of a target’s maognetic

polarizability dyadic. In this case one would like that one coil not couple to the other so as to maxi-

mize the siO~al-to-noise ratio in the receiver coil. One might also desire some uniformity of detection

over some spatial domain, this involving the combined properties of the two loops. Another design

consideration for the receiver coil is to make it insensitive (zero equivalent area[l O]) to an external

incident magnetic field (e. g., from 50 Hz or 60 Hz power lines).

There are t~vo general classes of coil geometry with respect to the target. In one case (such as for

security applications) the target may pass through the coil set w’here a good region of uniform detection

is readily attained. In another case (such as for detecting /identify in: targets buried in soil) the coils

are on the opposite side of an approximate planar boundary from the target, makin~ uniform detection

more difficult. t’arious examples of such coil systems are considered in fiis paper.
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‘7-. Coils for Uniform Maegnetic Field

Consider now some cases of coils for producing a uniform mao~etic field “inside” the coil ensemble.

Around some appropriate point (0, related to the symmetry of the problem, one can expand the

maoti-etic field in a power (Taylor) series as

which has a radius of convergence given by the nearest sine@ arity in the complex ~ plane

With the assumption that

I-f(((J) * o

one can relate the coefficient of the next term to some effective distance as

[1~~((o) -lH((0)D1=—
Li<o

[ w’+”””]
H(() = H((o) 1+

(2.1)

(2.2)

(2.3)

Larger values of D1 (related to some characteristic cross-section dimension of the coil) imply a more

uniform field. If, howet’er, the first derivative is zero (a desirable situation) one can look at higher

order derivatives. Ii the LNthderivative is the first non-zero derivative, then we have

.N.[+$$b)po)r
(2.4)

[ [L#+...]H(() =H((o) 1+

Again, Div represents some characteristic distance for field uniformity, with now the first “error” term

given by the Nth-power term.

Often the symmetry of the loop currents and resulting magnetic field will make certain deriva-

tives be zero on planes or axes of symmetry. For present purposes reflection symmetiy is quite important.

4
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This is an involution group (two elements) [11]. In the present context we have important reflection

planes, the x = O plane with

Rx = {(1), (Rx)} (group)

(1) = identity
—

(Rx) = reflection

(RX)2 = (1)

and dyadic representation

(001
J

0

0

11[0 o

(2.5)

and the y = O plane with a similar form. These can, of course, be rotated about the z axis for additional

reflection planes.

With respect to such symmetry planes the fields are symmetric or antisymmetric depending on
-+

\vhether H is perpendicular or parallel, respectively, to the symmetry plane (.+ppendix D). For

present purposes we will sometimes have two symmetry planes and the fields ~vill be symmetric ~vith

respect to the x = O plane and antisynrnetric wi~h respect to tie y = O plane. This git’es a two-fold

rotation axis (the z = O axis) with axial symmetry planes w’i’h group desi=mation

CZa = Rx @ RY (2.7)

This will assure that all odd-order derivatives are zero at < = O, giving D2 as the first “uniformity

distance.” Note that on reflection symmetric means currents preserving sio~, and antisymmetiic means

currents reversing siow. So the geomehy (location) of the current filaments is what has the C2a s)mme-

try; the siOgnsof the currents still need to be considered.

HiSher order symmetries are also possible, making yet more derivatives zero at the origin.
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2.1 Two wires

Our first case has filamentary currents of *I at < = Ajb respectively, as in fig. 2.1A, giving an x-

directed magnetic field at the orioti. S umming terms from Appendix B for line currents we have

— ()<-ijb
w(() = –01(( – jb) + trz(< + jb) = h —

~-jb

H(c) = --& j{~~-jb]-l -i~+ jbj-l} = ~b[g2 + b2]-1

H(o) = Hx(o) = +

(2.s)

The symmetry makes odd derivatives of H(<) zero at the origin. So looking at the second deri~’ative

we have

(2.9)

hlore details concerning this confio~ration are found in [1],

2.2 Four wires

As indicated in fig. 2.1 B, let there be four wires symmetrically located with respect to the x = O

and y = Osymmetry planes with currents as indicated to give a uniform H.r near the origin. For this

purpose it is convenient to define

A=a+jb=lA@@ (2.10)

The wires are then located at A and – A *, each with current I, and at –A and A ●, each \\,ithcwrat -

1. This case is also discussed in [1].

The complex potential and mao~etic field are now
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.
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/
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B. Four wires

Fig. 2.1. Filamentary Currents
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w(<) = –@n((– ii)+ /n(( – A*) - tn(< -I-A*) + tn(~+ A)

‘en(E)+’n[s)

W(() = -+j{[( - fl]-1 - [~~ A *]-1 +[~+ A *]-1 -[<+ A]-l
}

21 Im[A] 21 sin(wo) 21 b
~(o)= Hx(o)=— —’— —-————’——

~ IA12 rr lAI iT ~2+b2

(2.11)

~gain odd derivatives of the mae~etic field me zero at tie orio~. Loc)&g at tie second derivative of

the field we have

d2H(<)
—=-~j(2!){[< -A]-3-[< -A*] -3+[~+A *]-3 -[~+ A]-3}

d<2

d2H(<)

[
‘j A-3

d<2 ~=o = ~
-A *-3] =~lA[-3sin(3w~)

(2.12)

The second derivative can be set to zero at the orioti by making 3% some integer multiple of z. For

convenience we take

~o=lz
3

1

lAl=[a2+ b2]~=2a=&b=l.155b

b = &a ‘1.732r

lNext consider the fourth derivative as

d4M0_ 12[

d<4 {
~ j [<- A]-5- [<- A*]-5 +[<+A *]-5 -[<+A]-5

1

#H(~) =241. -

& f=o
[

~] A–3– A* “]=+I.Al-’sin(5~O)

2.JJ[——— +1,41-5 sin(y/~) = -~jA\-5

D:=-lAf = -[a2 + b2]2 , :T = [-1]+

(2.13)

(2.14)



--—

For further insight into this special four-wire case, consider the points in fig. 2.lB on the x axis at

~lAl. ~a@e ~at these are wties with zero current. This gives six wires uniformly spaced on a circle

of radius [Al with an angle of z /3 between adjacent wires. This geometry has C6a syrrunetry including

the 6 axial symmetry planes. Such a structure has a variety of field patterns corresponding to various

combination of currents on the wires. Special cases of these correspond to eigenrnodes of the bicirculant

impedance matrix that describes such a structure [6, 11]. The case being considered corresponds to one

such mode.

7J Two line magnetic dipoles on the x axis

-+
Consider two line magnetic dipoles m’ at x = +~ as illustrated in fig. 2.2.%. Here w,e take

4 +

m’=m; lx , m’ = m; (real) (2.15)

This particular orientation is chosen to give an Hz near the origin with the two symmetry planes as

discussed previously. Summing terms from Appendix C for line maOwetic dipoles v..e have

{ }
tL’m(<) = j [<-a]-l +[<+H]-l = &

<?+n?

H(() = :{[<-fl]-~ +[<+fl]-~}

/

H(0) = Fix(0)= ~
*-

(2.16)

.A@n, odd derivatives of H(<) are zero at the origin. The second derivative gives

a’2H(<) 6m’.—

~c2 (=0 m’
(2.17)

D:=< QLJ-=*.577
3’a &

9
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iii’
-m,

A. Two on x axis

B. Two on y a,xis

C. Four

Fig. 2.2. Line MaOgneticDipoles
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2.4 Two line maognetic dipoles on the y axis

A similar result (to that in Section 2.3) is obtained if one positions the two line magnetic dipoles
+
m’ at y = fb as illustrated in fig. ?.2B. Again we have

—
+ +
m’=m~lx , m’ = m: (real) (2.18)

This gives a negative FIX at the Orioti with the same two symmetry planes. In this case we have

j2~
ZUm(O = j{[( – jb]-l + [c + jb]-l} = ~

H(c) = :{[{ - jb]-2 -i [(+ jb]-2}

,
H(o) = Ffx(o) = –+

nb -

The first derivative being zero at the origin, the second deri\~ative gives

CFH(;)3m’~=y{[w’ w+w’}

(2.19)

(2.20)

2.3 Four line maO~etic dipoles

Consider four line maowetic dipoles as illustrated in fig. 2.2B. Located at ‘d and M* as defined
+ +

in (2.10), the line dipoles are two each m’ and m’o with

+ ++ --+ + + +
m’o= Ry-m’ , m’ = m’o = m ‘

(2.21)

A = a+ jb = lAlej~l

11



T& preserves the fields and currents symmetric with respect to the x = Oplane and antisymmetric with

respect to the y = Oplane, as with the other cases considered.

The complex potential and magnetic field are now

Irn’1 21m’/
H(O) = Hr(0)-{e’v”l A–2 + e–;y”; A *2} = —Cos(lym –21#fJ)

Jr 7rl,4/~

With odd derivatives of the mao~etic field zero, look at the second derivative of the field as

Setting the second derivative to zero gives

%l-Wl=:; /t:/”””--

lNext consider the fourth deri\rative as

d4H(C)

{

2401m’11201m’1 ,j~m A–6 + e–jv~ ~ *–6
- .

dC4 <=0
}

= —COS(l//m –6w1)
7r 7r[Af

(2.23)

(2.24)

(2.25)

One can try to make this fourth derivative also zero, but with (2.24) this restricts VI to degenerate

cases of Oor x / 2 w-ith Iym = z / 2 which, in turn, makes H(O) = O (not desirable here). So let the fourth

derivative be nonzero giving (with (2.24))

12
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1 ~ Cos(iym –4wl)cos(2wl) –sin(wm –4vl)sin(2vl)
=:IAI --

Cos(ym –4tyl)cos(2yl) +sin(vm –4vl)sin(2vl)

..
=-;IA14 -

1-— 1

fi=[-l]+s 4 = .669[-1]1

So with the constraint of (2.24)

esting choice has

we have some flexibility of choosing ynl and tyl. A rather inter-

(2.27)

because such a loop confio~ration does not couple to a uniform externally incident quasi-static maO~etic

field, regardless of orientation. This is then an interesting candidate for a receiver coil for the

maognetic field scattered by a target near the z axis..



3. Combining Transmitter and Receiver Coils for Uniformity of Detection

The transmitter coil produces an incident mao~etic field ;inc, such as discussed in Section 2. T&

in turn produces a scattered maognetic field associated with an induced maognetic dipole moment
---—

+ z s
~(S) = M(.$) “h’i~c(~)

G’
(3.1)

G
M(f) = M(s)= magnetic polarizability dyadic (reciprocity)

Here we have included the frequency dependence of the target scattering through the two-sided

Laplace transform and complex frequency s = Q + jco as in [7, S, 13], since even in the quasi-static regime

for the loops the targets of interest have important frequency dependence which can be utilized for

identification.

The induced maognetic dipole moment gives the leading term in the scattering, but this is a good

approximation provided the dimensions of the scatterer (say largest d) have d << IAI where [Al is a

characteristic cross section of both transmitter and receiver coih (e.g., as in Section 2). One carI compute

the scattered mao~etic field from ~ in the usual way [7, 13]. This is then integrated over the receiver

coil to give the intercepted maO~etic flux, the time derivative of which is the open-circuit voltage in

Lhe recei\’er coil.

.As discussed previously the coil length f in the z direction is assumed large compared to the

+
cross-section dimensions. This allows us to translate the tar~et in the z direction, in w,hich case Hinc is

+
unchanged as are m and the siugnal in the receiving coil. Then let us as a gedankenexperiment

subdivide the tar~et induced dipole moment into many (proportionally smaller) maognetic dipoles,

which in the limit can be thought of as a line dipole moment gi~~enby

=)
z m(s)
m’eff(s) = ~ = effective line maagnetic dipole moment

(3.2)

G i=)
M’efl(s) = f M(s) = effective line magnetic polanzability

14
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hrote that Hi,lc has no z component and the receiving coil is not sensitive to a z component of :. SO for
+

present purposes we can regard ; as having only x and y components (transverse dyadic), and
+)

similarly for M’eff.

.---
Now line maognetic dipoles give fields as discussed in .4ppendi,x C. These fields in turn couple to

the two-dimensional receiver coil via the linked maognetic flux, or change in u (the real part of the

complex potential) between the wires of the receiver coil (as discussed in .Appendix D). By reciprocity

one can look at the magnetic field at the target when driving a current through the receiver coil to

obtain the same result. The response of a line maOgnetic dipole to a (transverse) maO~etic field is

proportional to the dot product. So let us form

-+
HI = maognetic field from transmitter coil (3.3)

-+
H? = maognetic field from recei~’er coil driven as transmitter

\,:here the frequency dependence has been suppressed, noting the quasi-static nature of the problem.
-) +

Looking at the form of (3.3) we can see that it is basically the product of FfI and H? at some (x,y) coor-

dinates which governs the sensitivity of our detection system. Ho\v uniform this is over the cross

~ection is a measure of the uniformity of detection, and it is this that \\’e~~’ouldlike to quantify

%
Consider the case first that M’e/~has only an x,x component. Then ‘.~e reduce (3.3) to the consid-

eration of

u .t-,.r= HliHz.r (3.4)

.+s irr Section 2 let there be two symmetry planes (x = Oand y = O). Let the hvo coils produce only x

components of the field at the origin (z axis). Then we can look at derivatives of the above product to

find the uniformity of detection. So we let

(3.5)

and consider the series expansion as in (2.1) through (2.4) for this product, replacing H(<) by U(c).

For the cross-polarized (xty) component of ~~’efi let the transmit coil produce an x-directed field

at the origin while the receive coil produces a y-directed field there. The symmetry conditions in

Section 2 (symmetric/ antisymmetric with respect to the two symmetry planes) then have the roles of

15



the two symmetry planes interchanged when considering the receiver coil (y directed) as compared to

the transmitter coil (x directed). Then we consider

L1X,y = ~lJf2y (3.6)

._

To c&sider the uniformity of this we again form the product in (3.5) as an analytic function of <. Note,

however, we have

{

real for Hi(0) and Ff2(0) x - directed
u(o) = (3.7)

imaginary for Hi(0) and IY2(0) respectively x - and y - directed

As discussed in Section 2 there are various ways to produce a rather uniform mao~etic field for

which various derivatives are zero at the origin. These can be combined in transmitter and receiver coil

to achieve uniformity in the field product. Form

if first derivatives of both fields are zero and note furthermore in general that

if all derivatives m = 1,2,.. ., n of both fields are zero.

This can be extended by using (2.4) with origin no~v at <0 and letting

N1 = N for “error” term in HI (<)

N? = N for-” error” term in Ff~(<)

Then let

No = lesser of Nl, N?

‘ u(co)[l+[~~+]forN1.N2

u(() =

<‘(~o)[1+[&~1+[&~2+!for~=N2

(3.6)

(3.9)

(3.10)

(3.11)

(3.12)
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In the first case it is the lowest order “error” term in either field; in the second case both contribute.

The characteristic distance in (2.4) can then be applied to the t;vo-field problem as

I
DNO for Pil * N2

Div = D/vO =-.—

[

~NO1- ‘Vo
D;~ + Divz ,

For ~V1# N2 the characteristic distance

( DN1 and DNZ ).

(3.13)

for IVl = N2

DN is then less than that for each of the two fields

Some cases of interest have the first derivatives of the fields non-zero. The derivative of the

product can still be zero provided

[

1 CWl(() 1 dHz(O
o= —— ——

HI(O d< + Hz(() ~< 1 4-=(0

[

= d In (HI(<)) + d (n (H2(<))

d< d< 1-c<—o
(3.14)

Another way to view this is to require that the D1 coefficients in (2.4) for the two iields sum to zero. If

this requirement is met then one can go on the look at higher derivatives which generalize (3.14) to

more complicated forms.

17



4. Two Copkuw LoopS

Section 2.1 has considered the two-wire loop as in fig. 2.1A. Let us now take two such loops, one

for transmission and another for reception. As in fig. 4.1 let the two loops be coplanar on the x = Oplane.
-- —

~Note-tie symmetrical positioning of the two loops with respect to the y = Oplane. Relating to Section

2.1, note the shift with

y2+y1=2b (4.1)

for the wire spacing in each of the two loops.

The transmitter coil \vith current 11 at y = y2 and – 11 at y = –yl produces a complex potential

()

~+ jy~
w(() = –en(g–jy~)+ /72((+ jyl) = en —

C-k

= u(()+ jv(~)

For zero coupling between the two loops we have from .4ppendix D that the change in u (proportional to

maO-etic flux) linking the second loop (with I? at y = yI and – [~ at y = –y? ) be zero. ms is

‘Relp’’E%J
(1 14[/11/7

–Fn ‘--7—

](Y2 - Yl)-

Setting this to zero gives

(Y2 - Y1)2 = ~YlY2

y; –6y1y2 + y; = O

y7=. 3+& ’5.s3
yl

(4.3)

(4.4)

where the plus sinn is chosen to make y~ > yl. In terms of the half-spacing b of the two wires in each

coil we have

1s
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Fig. 4.1. Two Coplanar Loops
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1 1
7–3 = 1.7(J7n=l_2-2..293, y=l+_ -

b

fixingthe wire positions in fig. 4.1.

-.-me two mao~etic fields are
—

ffl(c) = -*j{[c - jY2]-1 - [< + jYl]-l}

i-f?(() = - J#{[< - jyfl -[;+ jyfl}

giving at the origin

(4.5)

(4.6)

(4.7)

showing the symmetry in this two-coil coti”iomration. The first derivative of U is zero there by symme-
try. The second derivative is

961112—_—
~~b~

Then we can write

(4.8)

(4.9)



.-

as a measure of the uniformity of the field near the orioti (symmetrv axis). The third derivative is

again zero by symmetry.

One can consider a target located near ~ = O as “inside” the coil system, and in this case a certain

detection uniformity is achieved. Another case of interest concerns when the target is away from the._—
coils (away from the orioti, in particular) as in the case of a buried target.

A first case for an external target is that of a target located on the +x axis away from the origin.

(For a buried target the reader carI rotate his head 90° down to the left when looking at fig. 4.1.) The

~~ound surface is at some x = x >0 and the target is at .r > .xg o, Y = O. For this case the incident mag-
0

netic field HI(x) has both x and y components, while H2 (x) has the same x but opposite y components

(i.e., conjugate). For an isotropic target (e.g,, a sphere) one may consider I-fl(.K)H2(X) for sensitivity of

detection, while for a target with a dominant M X,.T component it is just the x components (vefical in

this case) or real parts in the form Re[H1(x)] Re[Ff2(s)] that one may consider for sensitivity of detec-

tion. For large x these reduce to the same thing as both coils are approximated as line maometic dipoles

(.~ppendix C) in this limit giving

[ ] II~1(.K) =+X-z 1+ 0(.r–1) as .r + -

/
ff2(.r)=~.r

[
–2 1+ 0(.r-1) ] IIas,r+m

—,L

(4.10)

While the fields fall off like .~–2, the product falls off like t-A.

By placing the ground surface on a plane of constant y = y: < –y2 ~~riththe target at y < yX ~t’ith x

= O, the x mis in Jig. 4.1 is parallel to the ground surface and tie x-component of the field is horizontal

in the ~ground near the target. So by rotating the coil pair abo~’e the ground surface one can rotate tie

polarization in the ground to obtain a second component of the target magnetic polarizability.

(Furthermore, rotating this about the y axis gives a third component). By symmetry the y fields on the

x = Oplane have onfy x components. For large negative y these are

/

[~l(jy) = –~ y-z1 + O(y–l)] IIas y+=

(4.11),
f-h(jy)=-%y[–21+ O(y–1) ] IIas y+=

lNote that the fields are pointed in the -x direction (for positive currents). Otherwise the fall off for

large Iyl in this case is the same as for large [xl in the previou5 case.



5. Three Coplanar Loops

Impose more symmetry with the three-coplanar-loop configuration in fig. 5.1. In this case the

transmitter loop has both x = Oand y = O as symmetry planes (wires at < = *jb). Likewise the receiver—

loops (two) have the same symmetry planes (wires at K = tjy3, * jy4 ). Note that the two receiver

loops can be operated in two different modes depending on the upper or lower signs on 12 in one of the

coils (the one on ~ = –jy3, – jy4 ). If the receiver coils operate in differential mode (lower signs), then

the reception is insensitive to a uniform externally incident maemetic field (quasi static). Unfortu-

nately, we do not have such luck in the case of the common mode (upper signs).

The transmitter coil produces a complex potential (as in (2.8))

()~-jb
w(g) = en —

~+jb
(5.1)

for zero coupling from the transmitter coil to each of the receiver coils separately (and hence to both

common and differential modes) we need zero magnetic flux to link each of the loops. For the first

receiver coil (at ~ = jy3 , jy4 ) this is

‘2’=Re[’n(:::~)-’n(i::L)l
(=/n (Y4 - b)((b +Y3)

(Y4 + b)(b -Y3) 1

(5.2)

Setting this to zero gives

Y3Y4=b2/ Y4>b~o<Y3<b (5.3)

By symmetry this applies to the second receiver coil as well. Note that (5.3) allows the receiver coils

to be line magnetic dipoles in the limit of y3, y4 + b, or rather large coils in the limit of y3 + O,

yq-+’=.

5.1 Behavior near the origin in common mode

The field of the transmitter coil is treated in Section 2.1. That of the receiver coils is

22



.

1

2
0

+1

N-

6-
0

J-4
)-J

N

.%

&



(5.4)

This field is -x directed (for positive 12) at the origin. By symmetry the odd derivatives are zero at

the origin.

Our uniformity function is

u(() = Hl(OH~(<) , EIl(o) = Hlx(o) = ~

Lr(o) = l-- fl(o)lv~(o)= +
[_b !d - Y;l 1IT

Odd derivatives at the origin are zero. Looking at the second derivatives we have

r12f-f2(<)_
rlp - -J$j{[c- jY4]-3 -[HY5]-3 +[W!E]-3 -[c+j!/4]-3}

D$)2=_b2 <0

Our uniformity function is then

[()] -
2

U(;)= LI(0) 1+ -& +...

D;2 = D\l)-z + D~)-z <0

(5.5)

(5.6)

(5.7)

For a given b, D2 is maximized in magnitude by m~ximizing D\2) which occurs for



I

(5.8)

So the second derivative (normalized) of the uniformity funtion cannot be made zero in this configura-

tion, but can be minimiz ed in maomitude by making the receiver coils line maowetic dipoles.

5.2 Behavior near the oriati in differential mode

The receiver coil now has a ma=gnetic field

f-f?(c) = -+j{[c -j!/4]-1 -[(- jy3]-1 - [<+jy3]-’+[<+jy4 ]-*}

——+x{[f’+Y;]-’ -[<’+Y:]-l}

HZ(O) = o

So the differential mode is not suitable for targets near the origin.

5.3 Behavior on the x-axis in common mode

For large & the field of the recei\’er coils is

(5.9)

(5.10)

which is the field of a line magnetic dipoIe with

m’= 2(y4 – y3)I~ (5.11)

LNoting that H(x) is real, is negative at the orioti, and is positive for large x, this implies that there is

at least one zero on the +x axis. From (5.4) this occurs at x = b, and by symmetry

If2(tb) = O (5.12)

For x > b there is a peak in the H2(x) where its derivative is zero. However, wifi (from (z.~))

HI(() = :b[<2 + b2]-1 (5.13)



I

HI(x) has no peak for x >0. So let us look for a peak in the uniformity i%nction. Corresponding to (3.13)

we fonm

@(()‘~’c)- -2([<2+b2]-*
-_—

(5.14)

Setting the sum to zero gives the location of the maximum. Noting the constraint in (5.3) one can then

find the location of the peak with y3 / b or y4 / b as a parameter.

Concentrating on the case of line-dipole receivers we have

H?(<)= ~{[C-jb]-2+[(+ jb]-2}

=%{[wk’+f’’l-’}
mj = (Y4 –Y3)12 (constant as y3, y4 -+ b) (5.15)

suImnin g this last expression with the first in (5.14) gives the location of the maximum on the x axis as

co-~;-ffi=fl.~lq—_ —_
b

(5.16)

Continuing the development we have

/

U(<O) = q%27b4 )-1
Tc-

(5.17)

ciL[— =0
dt <=<0
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.u(,o,~+(&L]d%(<)

M2 {={0

3 z DZ ~.&
D: =–zb ,~=-]~=h.866j

._—

So one can envision a region near .ro = fib for measuring target magnetic polarizability (x,x

component). This can be a region below the ground surface (surface of constant x with Oc .x< xo ).

3.4 Behavior on the x-axis in differential mode

For large ~ the field of the receiver coils is

~2(0=+jL53[!/~-y~][l+0((-2)]as ( + -

;~’hich is the field of a line mao~etic quadruple. Noting that Ho (.K) is imaginary we have

H2(x) = -jH2Y (x)

H2Y(x)=–; x
{[~’+yr-[~’+y:r}

——-+~-’[y:-~:r’-[’+o’-)l’)l“x+tm
so that on the t-x axis the maO~etic field is the ~y direction

There is a peak in H2Y (x) where its derivative is zero. From (5.9) we have

dHT (<)
- = +j{[c-kl-’ -[<- jY3]-’ -[W,]-’ +[W,]-’}

cl<

This has a zero on the x axis at

which simplifies in the case of line dipoles ( y3, y~ + b) to

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)



..,,,.. ,,,. ..!.!..! ----II —— ——.. — ..—

However, HI(x) does not have a zero here.

Concentrating then on the case of line-dipole receivers we have

-. ff2(~) = @-{[(-jb]-2 -[~+ jb]-2}
—

= ~m~jb~[<2 +,b2]-2

rn~ = (y4 – y3)12 (constant as y3, y4 + b)

Summin g this with the first in (5.14) gives the location of the m~xi.mum on the x axis as

&_ X()
—=k~’*.447

b–b&

Continuing the development we have

()llbm~ 2 5 3b-~
U((o)=j —— –

#&6

C/u
=0

‘~ <={~

(5.23)

(5.24)

(5.25)

There is then a region near X. = b/& for measuring the y,x component (cross pol) of the maognetic

polarizability. This can also be a region below the ground surface (surface of constant .x with

O<x<xo).

,,



6. Two Pairs of Collocated Line Maeqetic Dipoles

AS we progress to more complex loop structures, the analytic expressions for the fields and related

optirQzation become more elaborate. For coils of small cross section (two-dimensional sense) these can

be ap~roximated as line maugrtetic dipoles. As we have seen in previous sections this simplifies the

expressions somewhat. So now let both transmitter and receiver coils (two each) be line maognetic

dipoles. The receiver coils are aliOmed antiparallel for insensitivity to externally incident low-

frequency mao~etic fields. Three cases are considered as indicated in fig. 6.1. Transmitter coils and

fields are denoted by subscript 1; receiver coils and fields are denoted by subscript 2. As before the x = O

and y = Oplanes are symmetry planes, about which the transmitter and receiver fields are symmetic or

antisymrnetric, to determine the appropriate maognetic-polarizability components. AS indicated in fig.

6.1, the line dipoles are located at (x, y) = (O, fb), and the transmitter coils do not couple to the receiver

coils due to the symmetry. Our interest is in the maagnetic fields on the +y axis away from the ori=ti.

6.1 Transmit x, receive x: i~x,.l

.4s our first example, consider the case depicted in fig. 6.1A. The transmitter coils and fields are

the same as the case in Section 2.4. The fields and their derivati\’es are

Similarly for the fields of the receiver coils we have

ffz(()=~ {[4- jb]-2- [<+jb]-z]

%=i{-[<-~bl-’+[<+~bl-’}

(6.1)

(6.2)
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Fig. 6.1. Two Pairs of Colocated Line MaO~etic Dipoles
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Form the field product and derivatives

The

d%(<) = 5m~m;
— ~{-[4W-’-[}’}

ci<~

derivati\’e has zeros on the x axis at

Choose for convenience, the zeros farther from the coil at

(6.3)

(6.4)

(6.5)

at which we have an effective uniformity distance of
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6.2 Transmit y, receive y: A’fy,y

The second case is depicted in fig. 6.lB. The fields and the uniformity function are

(6.6)

(6.7)

Except for a coefficient due to the rotation of the line maowetic dipoles by –z /2 from the previous case,

the formulas are the same as in Section 6.1. The solutions are the same and need not be repeated. As

indicated in fig. 6.1 B, along with the rotation of the m’s there is a rotation of the Hs (opposite sense).

6.3 Transmit x, receive y: My,x

The third case (cross polarization) is depicted in fig. 6.lC. The fields and their derivatives for

the transmitter coils ( HI) are the same as for H2 in (6.7), or as for Ff2 in (6.2) ~vith the line maometic

dipoles rotated. Summarizing we have



HI(() = ~ {[(- jb]-2 - [~+ jb]-2}

Ho(O = #{[ Gjb]-2 -[C+ jb]-2}

(6.S)

Note that, except for the coefficients, the two fields have the same form. This is due to the fact that

both sets of coils are in differential confioarations.

While (6.8) is cast in the form of h-ansmit x and receive y, the role of the coils can be interchanged

(by interchanging 1 and 2 subscripts) to obtain the same result. This merely results from reciprocity

( My,.. = M,, Y). Each pair of coils having antiparallel line-magnetic-dipole moments, both coil pairs

are insensitive to externally incident low-frequency maometic fields. Said another \vay each coil pair

is a Line mao~etic quadruple.

Forming the uniformity function we have

The derivative has zeros on the x axis at

(6.9)

(6.10)

the effective uniformity distance is
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(6.11)

6.4 Extension to loops of larger cross section

While the foregoing discussion has been for line maonetic dipoles, the important features of the

desiOms are extendible to loops of non-zero cross section dimensions as indicated in fig. 6.2. While the

confio~ration has reflection symmetry with respect to both x = O and y = Oplanes, it is the x = Oplane of

concern here.

DesiO~ate the two Ioops at y = y~, y6 and y = –y~, ‘y6 on the x = Oplane as the x loops due to the

fact that their I.ine-mao-etic-dipole moments have only ~x components. These loops product a symmetr-

ic maometic-field distribution [5, 11] with respect to the x = Oplane, regardless of whether the moments

are parallel or antiparallel. Designate the two loops at (x, y) = (+fl, b) and (x, y) = (trI, –b) as the y-

Ioops due to the fact that their line-maaqetic-dipole moments have only ty components. These loops

pioduce an antisymmetric maugnetic-field distribution [5, 11] with respect to the x = Oplane, regardless

of whether the moments are parallel or antiparallel. This fundamental symmetry property assures

that no x-loop couples to any y-loop, and conversely. Enlarging the loops from zero-cross-section line

magnetic dipoles to larger dimensions as in fig. 6.2 then preserves this zero-coupling property.

With the greater sensitivity of larger loop cross sections, the desio~s discussed previously irI this

section become more practical. Of course, the previous formulas then have some error when applied to

such a confio~ration as in fig. 6.2. If desired, the formulas can be corrected by use of the formulas for

line currents (eight of them here), thereby giving more exact but more complicated results.
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7. Crossed Loops

Returning to the case in which the target of interest is “inside” the loop structure consider the

two-wire and four-wire loops discussed in Section 2. Now let there be two such loops in a cross-

polarized confiearation as illustrated in fig. 7.1. As in the previous sections the transmitter loop and

associated fields are denoted by subscript 1, and for the receiver by 2.

The symmetry of these confirmations has the transmitter fields symmetric with respect to the x =

O plane and antisymmetric with respect to the y = O plane. For the receiver fields the roles of these two

planes are interchanged. As such there is no mutual inductance coupling the transmitter and receiver

coils, except via the target. Ho\vever, the receiver coil is sensitive to externally incident low-frequency

mao~etic fields. The target is assumed to be near the z axis so that this configuration is suitable for

measuring MI ~ (= MY,..). For added symmetry the ~ansmitter and receiver COdSare identical except

for a rotation of 7r/2

7.1 Two-wire loops

For the confiOnration in fig. 7.1.~ we have, related to Section 2.1, the fields and uniformity

iuncdon

~1(0 =-+;{[(- jb]-*-[C+jb]-l}=~b[<2+-b2]-1

H2(<) = -~j{[(-b]-l -[<+-b]-l}=-~ jb[(2 -62]-1

$ ‘[”’-’”l-’U(<)= H1(<)Hz =– ~- j’- s

From this we conclude that the first “error” term is of fourth order and \\”eha\e

(7.1)

U(0) =-j
jz-b-

(7.2)
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AS we can see this is a quite uniform configuration for targets near the coordinate origin. The direction

of field increase for one coil is the direction of field decrease for the second coil, the two second deriva-

tives canceling each other and leaving the fourth derivative as the first “error” term.

7.2 Four-wire loops

For the confio~ration in fig. 7.lB we have, related to Section 2.2, the wires for loop 1 are located

at

<=&A, *A*

For loop 2 the configuration is rotated by –Z /2 giving locations

The fields and uniformity function are then

H1(~)=-~j{(~ -A]-* -[<- A*]-l+[C+A *]-l -[g+ A]-l}

(7.3)

(7.4)
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H2(<) = -~ j{[~ +jA]-l -[~+jA *]-1 +[~-jA *]-1 -[g- jA]-l}

, .

U(O = HI(OHZ(O = ~jb2
p _,A,4

Z- [+4][+”4]

.<ga~ fie f~st“error”tem isOffoufi Ordermd we have

u(o) = -y+-
91~[7

/=--

r\ Al- &b2

(7.5)

(7.6)
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8. Concluding Remarks

This paper has considered a number of analytically tractable, two-dimensional coil desie~s.

Thesg-desiOas are a progression of cases from simple to more complex geometries. For certain regions of

space (inside or away from the coils) these can produce a uniform maegnetic field or uniformity of detec-

tion appropriate for determining g components of target magnetic-polarizability dyadics.

Besides the relation of the coils to the target there are other conditions to consider. Vmioti

examples here have no mutual coupling (ideally, with perfect geometry) between transmitter and

receiver coils. Furthermore, various receiver-coil designs are insensitive to externally-incident wniform

low-frequency magnetic fields. The basic unifying concept in these considerations is symmetry.

Note that the idea of two-dimensional coils is only an approximation, the coils being of finite

length in the z direction compared to cross-section dimensions. So end effects will need to be considered.

In addition, one would also like to transmit and receive z-directed maOgnetic fields, but this requires a

different type of coil, one that will need to be combined with the foregoing designs.
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Appendix A. Complex Potentials and Fields

For two-dimensional electromagnetic-field problems where the cross-section fields are governed

by th~ Laplace equation (quasi-static problems and TEM modes) it is convenient to use

(=x + jy = WejO = complex coordinates
(Al)

w(~) = u(()+ jv(<) = complex potential

where w({) is a complex analytic function of g and is also referred to as a conforrnal transformation.

For electric problems we have

Oe(.x, y)=

v.

h =

4

E (x, y) =

~ u(c) = electiic potential

voltage between appropriate conductors

change in Z(between these conductors

-Vcb(x, y) = electric field

For maugnetic problems we similarly have

O~(x, y) = ~v(() = magnetic potential

I = current on appropriate conductor (positive in + z direction)

Au = change in v in going around this conductor

+
H(.Y,y) = –v@ll (x, y) = maometic field

(.4.2)

(.4.3)

where there is a discontinuity in ZJ(but not the maumetic field) in traversing the branch cut as one goes

around the conductor.

The fields also can be cast in a convenient complex form [2, 4, 9, 12] as

-)

E(x, y) = –~~o(.t,y)

+ + --)

eO(x, y)= Vu(.x, y)=eO= lx+eoY ly

L-h)(g)
co(<) = eo, (<) – jeoy (() = ~

V dzu(<)
E(C) =E, -jEy=–~eo(Cl=-—— Au d<

(A.4)
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-+ 1+
H(x, y) = -~ h O(.Y,y)

+ +
h ()(x,y) = Vv(x, y) = ho,, 7X+hoy 1 y

. dw(;)
--- ho(() = ho= (() – jhoY (<) = -) ~ = -jeo (~)—

So fields can be conveniently and simply expressed via dzu / d~. For present purposes it is the maognetic

fields that are of interest. The field components are directly obtained from the real and imaginary

parts of dw/d~.
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Appendix B. Potentials and Fields of Line Currents

For a single filamentary current I (typically on a wire of small radius) located at ~ ={’= x’ + jy’,

we haye a complex potential—

w = –t’n(~ – ~’) (B.1)

consistent with the usage in [I]. One could add an arbitrary constant to this. However, our interest in

this type of potential is as a sum over two or more such terms weighted by the currents (including siugns)

on t-he wires at the various choices of ~’. Including a constraint that the sum of the currents be zero for

any of our two-dimensional loops, an additive constant cancels. Also for large < the above form has

= as \<l+ -, but with the consimi.nt of zero current sum the resulting potential goes to zero for

I(I. There is a bm.nch cut in the logarithm function which can be placed at our convenience, consid-

tie ensemble of wires at the various <’. In going around a wire we have

For computing the fields we need

~= -[<- ~’]-1 = e~(c) = j~lo(()

andfor later use we need

when considering the uniformity of the maognetic field produced in the vicinity of selected points.

Specializing to the ma=gnetic field we have

(B.3)

(B.4)

Again note that when constructing the fields as well as the potentials for an ensemble of wires (twm-

dirnensional loop), one wrns over terms as above with the constraint t-hat the sum of the currents be zero.
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Appendix C. Potentials and Fields of Line Magnetic Dipoles

Stzwt from two line currents near the origin as indicated in fig. Cl. With current I at complex

coord-tiate -.

()
j >t/m

<m=de - = djejvm = d[-sin(vm) + jcos(vm)]

and -f at –(’ we have a line magnetic dipole moment

l;’] =2dl

The potential is formed from (B.1) as

Let d + O with ~’ fixed

w(<)
w’(()= lim —= jel~m <–1= IL’(()+ j~’(()

d+O 2d

1:’1z)(() 1~’1
o~=lirn---= —v’

d-+0 2d Au 2X

(Cl)

(C.2)

(C.3)

(C.4)

This allows us to write a complex form for the line maoaetic dipole as
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Fig. Cl. Line Magnetic Dipole
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giving the complex potential and mabgnetic field

In this complex form m’ has orientation (argument) Ym.

This line magnetic dipole caq be shifted to a complex coordinate ~’ giving

We also have the various spatial derivatives

mum(<) ‘

d<”
= j~(-l)nn![< –< ’]-”-1 for n 20

\rn’1

(C.5)

(C.6)

(C.7)

(C.8)

dnH(<) m’
--=- = ~(-l)n(rt+ 1)![<-~’]-n-2for n 2-1

d(n

By summing over such terms corresponding to various line-mao~etic-dipole positions with various <’,

tie resdtig pot&tials and fields apply to the ensemble. These Cm alSO be added to some set of co~e-

sponding terms for line currents from Appendix B.
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Appendix D. Conditions for Non-Coupling of Two-Dimensional Magnetic Fields and Loop Structures
(Zero Mutual Inductance

In measuring the maegnetic field scattered by a target into a receiver coil it is desirable to minim-

ize the direct coupling of the transmitter coil into the receiver coil to maximize the signal-to-noise
:_

ratio .-This is accomplished by making the maognetic flux from one coil linking the second zero. The flux

per unit length linking a coil characterized by two complex coordinates cl and ~2 is just

(D.1)

using the general form for the magnetic field from a two-dimensional primary coil in Appendix .\. Thus

we obtain 0’ = O by placing the receiver coil conductors on contours of constant u(<) from the transmitter

coil.

.4 special case of interest for zero coupling involves a common symmetry plane S for &ansmitter

and receiver coils. For maometic fields we have

+
symmetric (sy) tield - HJ-S on S

+ (D.2)
an[isymmetic (as) field = H//S on S

for appropriate confio~rations of currents in the coils (driving separately each coil as a transmitter). If

under these conditions one coil produces a symmetric field and the other an antisymmetric field these

coils do not couple to each other. They are in effect “cross-polarized.” For a more detailed treafrnent of

this type of symmetry see [5, 11].

If the receiver coil takes the form of a Line magnetic dipole (when driven) as in Appendix C, it is

merely necessary that the orientation Vm of the receiver be orthogonal to the magnetic field of the

transmitter. This is expressed as

--++
H-m’ = O= Hxrn; +Hyrnj = Re[H(onl’]

(D.3)
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[ 1Re H(~)ejV~ = O

‘[%’’””1=0

This @ves a convenient complex form for deterrninin g line-dipole orientation Vm.

Applying (D.3) to the case of two line dipoles, let the first be situated at the origin as in fig. Cl.

Desiomate parameters associated with this case with a subscript 1 so that its mao~etic field is

(D.4)

The second line magnetic dipole is at some coordinate ~, with @ as in (D.4) being the important part.

Using a subscript 2 for this with orientation Vmz gives from (D-3)

(D.5)

as the condition for zero coupling. Without loss of generality we can take Vml as defining @ = O. Then

for parallel ~1 and ~Z

+ +
and for perpendicular m 1 and m z

(D.6)

(D.7)

as special cases of interest. There are analogous cases for zero coupling between circular loops in the

limit of point maagnetic dipoles [3].

Note that for an ensemble of coils forming the receiver the conditions in (D.1) and (D.3) are

replaced by summations of such terms, appropriately weighted.
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