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Abstract

This repo~ examines the Eh4jiela% produced by a pxm antenna, which consists of”
orthogonal electric and magnetic dipole elements operating together. At Iowj%equencies,
this antenna produces a radiation pattern having a maximum jield in one direction and a
wave impedance identical to that of a plane wave in Pee space. Moreover, the
elect~omagnetic power densi~ in the direction of the main lobe is real, indicating the
absence of reactive power. Two dajierent types of pxm antenna conjlgurations are
&amined in this report, and a detailed numem”cal study of their radiating characteristics
in presented.
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1. Introduction

Testing of electromagnetic (EM) responses in ground based facilities induced by
the electromagnetic pulse (IMP) from a nuclear explosion, high-power microwave
@M) weapons or nati threats, such as lightning, can often be done using a swept
continuous wave (CW) EM field excitation [1]. This technique involves radiating an EM
field at different frequencies and observing the induced internal responses in the facility,
both in magnitude and phase.

While such testing is relatively straightfonvard at frequencies above about 30
MHz, there are difficulties in obtaining meaningful measurements at low frequencies.
This is due to a number of reasons:

1. Antennas radiate poorly at low frequencies.

2. At low frequencies, the test object may be in the near field of the antenna.
Moreover, the wave impedance of the excitation fields can be larger that the free
space value of 377 S2 (for an electric dipole radiator), or it may be lower than this
value (for a magnetic loop antenna).

3. It is difficult to produce a plane wave type field at low frequencies, not only due
to the impedance fluctuations mentioned above, but also because other field
components (i.e., cross polarized fiekls) may exist.

While these difficulties arises from fundamental constraints in the field radiation
process, as described by Maxwell’s equations, it is possible to improve on the simulation
quality by considering a class of specially designed antennas. Known as the pxm antenn%
this type of radiator was proposed by Baum [2] for the purpose of improving the low
frequency behavior of EMP simulators and other antennas.

The pxm antenna is essentially a combination of an electric and magnetic dipole
antema which radiate fields having more desirable characteristics than would the single
dipoles radiating alone. This concept has been studied theoretically by Yu [3] and has
been applied to the design of radiating impulse-like antemas in [4, 5, and 6]. In addition,
the pxm theory has been applied to receiving antennas in the form of EM field sensors, as
documented in [7 and 8].

The present report serves to review the basic theory behind t.h@type of antenna,
and to illustrate its radiation characteristics. In Section 2, the EM fields produced by a
general distribution of electric charge and current are discussed, and then specialized to
the case of simple electric and magnetic dipoles radiating in free space. Plots of the near
and fkr fields from these idealized sources are presented to illustrate the spatial
distribution of the EM fields away from the dipoles.’ Later, the pxm combination of the

o
electric and magnetic dipoles is investigated. The E- and H-fields produced by this
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idealized point source combination are plotted for various observer distances, and the
.

wave impedance for the primary field components is evaluated. In addition, expressions
for the complex power in the EM field away ilom the sources are developed. o

In Section 3, a physically realizable pxm antenna is analyzed using an integral
equation solution. This antenna consists of a straight wire antenna coincident with a loop
antenn~ both of which are excited by independent voltage sources. The fields produced
by these antennas are explored, and the proper ratio of antenna excitation voltages is
determined to insure that the pxm radiation condition is met. Various E- and H-field
patterns from this antenna are presente~ and the primary field component wave
impedance is plotted as a function of distance away from the antenna. These results may
be compared with those of the idealized point pxm source to gain insight into the
practical realization of this type of antenna.

Section 4 discussed the behavior of the traveling wave, or transmission line,
antenna. This antema is known as a Beverage antenna at higher frequencies, but at low
frequencies, it acts as a pxm antennz with the main radiation produced in the backward
direction from the source, and with the correct free space wave impedance in the near
zone. As in the case of the wire-loop antenn% the radiation efficiency of this antenna is
very small, leading to possible difficulties in implementing this design in practical cases,
Finally, Section 5 summarizes the important observations from this study and offers
comments about the practical implementation of this antenna concept for EM test
purposes.

2. EM Fields Produced by Current and Charge Sources

The evaluation of the EM fields produced by a set of time

charge distributions ~(;) andp(;) shown in Figure 1 have been

varying current and

discussed in many

different references [9-1 6]. Assuming a time harmonic variation of the form ~~ (which is
suppressed throughout this discussion), the E and H fields can be written as general
integrals over the volumetric source distributions as

(1)

(2)

where 7 denotes the observer’s location, 7’ is the location of the current or charge

source within the differential integration volume d v’, and R = l;–~’l. In these

expressions, o is the radian frequency given by o = 27cj the parameter k = aJc is the

propagation constant in the space surrounding the so~ces, c = 3.0 x 108 rrds is the speed

of light, go = 8.85 x 10-12 F/m is the free space permittivity, and PO = 47t x 10-7 H/m is

the permeability of free space. o

8
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Figure 1. Geometry for calculating radiated E and H fields. (a) Coordinate system,
(b) fields produced by a general current and charge distribution, (c)a low frequency
approximation of the fields by elementary electric and magnetic dipoles.

Equations (1) and (2) are general in that they maybe used for any frequency and
for any distance of the observer, as long as the source current md charge distributions are
lmown. It is possible, however, to sirnpli& the task of determining the radiated fields in
certain cases by considering expanding the current and charge into dipole and higher
order multiples. In this way the E and H-fields can be represented by an infinite sum of
vector fields, each arising from the radiation of one of the multiples [17].

This multipole representation for the fields is usefhl at “low” frequencies (when
the typical dimension of the source region d in Figure lb is much smaller that the
wavelength, i.e., kf =2nd/L << 1), and for observation distances r >> d. In this case, the
radiated fields from the general source distribution can be approximated by the fields
radiating from point electric and magnetic dipoles — the first terms in the general
multipole expansion [3].

As discussed in [18], to be consistent with Maxwell’s equations, these dipole
sources must produce both E and H fields. In the vicinity of the source, the E-fields tend
to be strongest for the electric dipole source, and conversely, the H-fields are dominant
for the magnetic dipole. Away from either dipole, the E and H fields approach the plane
wave ratio of lE1/1~ =20 = 377 Q the impedance of fi-ee space.

9



As illustrated in Figure 2, the electric dipole can be thought of as arising from
J

positive and negative charges q, separated by a distance 2h. Similarly, the magnetic
dipole can be considered as resulting from a cunent 1 flowing in a loop of radius b. As o

noted in the figure, as long as the observer is far from the sources (i.e., if r >> 2A or r >>
b), the shape of the lines of constant E and H are identical and appear to be produced by a
single source located at the center of the distribution. Near to the sources, however, the
details of the current or charge separations becomes important, and the field patterns are
no longer the same. This illustrates the requirement that for a simple dipole representation
of a current or charge distribution it is important that the observation point be sufficiently
fiir from the sources so that they appear as point sources.

Lines of
constsnt E

(a) Electric dipole (b) Magnetic dipole

Figure 2. Examples of the dominant fields produced by a finite electric dipole (a)
and a finite magnetic dipole (b).

The fields produced by these elementary dipole sources are important in 0

describing the low frequency behavior of the pxm antenna. Explicit expressions for both
the E and H fields from these sources are reviewed in the following subsections.

2.1 Electric Dipole Fields

As discussed in [3] the electric dipole moment ~ is defined in terms of a static

moment of the electric charge density p as

~= J?’p(r)dv’. (3)
sources

For this dipole located at the origin of the coordinate system shown in Figure 1a, the
vector E and H fields at an observation location ? are given by the expressions:

(4)

(5)

*

10



I>..-:,J

where the following terms are used:

()
Gl = jk+~

r

G,= ( 1

)
jk+~+—

jkr2

G,= ( 3

)
jk+~+—

jkr2

(6a)

(6b)

(6c)

k= o/c and ZO is the impedance of free space, given by ZO= ~~” = 377S2.

of theThe fields produced by this source depend on both the spatial direction
observer identified by the angles 6 and $, and on the distance r from the source. Consider
as an example, a z-directed electric dipole moment p~ III this case the E and H-fields are

given by Eqs.(4) and (5) as

;[(G2-G3)cos0f-G2 shOd]pzJ?e(;)= –$zo~ (7)

(8)

To visualize the spatial distribution of the E-field from this source, consider the

mabsolute value of the E-field Etil = E= + EY + EZ Figure 3 presents the spatial

distributions of Etot for difkrent values of the normalized distance from the source kr,

ranging from kr = 0.1 (i.e., r = 0.63 A) to kr = 10,000 (r= 63,000 A). Note that for very “
small kr the term (G2 - G3) dominates, and the E-field plot tends to resolve the two point

sources that constitute the dipole, with the maximum value of E-field occuning along the
z-axis. As the value of kr increases, the spatial pattern changes and slowly evolves into
the toroidal radiation pattern that is commonly associated with the electric dipole. In the
far zone for kr >>1, the pattern is seen to be very different from the near field because the
term G2 is dominant. In this case, the radiation pattern has a null in the direction of the

dipole, with a maximum of the field in the broadside direction.

For the z-directed electric dipole, the H-field behavior is much simpler than that of
the E-field. From Eq.(8), it can be noted that the H-field has only a @component, and its
spatial distribution remains constant as the observation distance kr is changed. Thus, the
field pattern denoted as “fhr field” in Figure 3 also serves to describe the H-field pattern
at any distance.

11
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Figure3. Plot of thespatial patierns of thetotalE-field from apointelectric dipo1e
at different normalized radial distances kr.

Away from the point electric dipole source, Ea and Ho are the principal

components of the field. The ratio of these transverse fields can be thought of as defining
a wave impedance ZW,expressed as

Eti
zw=—

(
=Zog=zo 1+

1

)
n.

H+ I jkr(l + jkr)
(9)

Notice that this impedance is greater than the free space value of 2., signif@g that the

point electric dipole is a high impedance field source.
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A usefid quantity for describing the behavior of the EM fields surrounding the

dipole source is the complex Poynting vector [19] defied as

F= EX2. (lo)

This quantity can be used to calculate the total complex power lV.passing thouglva closed

surface surrounding the source. For a general field containing both 0 and $ components of
the E and H fields, this complex power is given by the integral of the radial component of

Pas

2ZX

w=
f

F -a’=
H

< r2sin Od6d~
clomi wface 00
2XX

. (11)

=
H( }

E@H”+ - E4H*e 2sin 6dOd~
00

The real part of this complex power represents the
away from the dipole:

() LRE[7t7](Watts),76”=2

time average power radiated

(12)

while the imaginary part represents the reactive power in the near field:

(13)

This latter reactive power does no useful work, but represents a constraint on the
radiating system in that its source must be able to support the cument and the voltage
levels needed for this reactive power, together with the real power.

From Eqs.(7) and (8), we see that the E4 and He field components are identically

zero and the radial component of the Poynting vector is

E(7)=(:)2zo[G2G:llPzrs~2@

()
2

()

(14)
@ 1“

ZOlpz12Si112 O kz +—
= 47rr jkr3

Notice that this expression contains both a real and imaginary part, indicating that the
fields produced by the elementary electric dipole require the source to provide reactive
and real power.

Integrating this quantity as indicated in Eq.(11) provides the total complex power
in the field,

13



w= [)~.ds’= ‘;>,: I-& .f
closed su#ace

In this manner, the time averaged real power flowing away from the source is

and the reactive power contained in the fields at any distance r is

() k4c2Z
ZJh =– , p: (vars).

12z@r;

.

(15)
o

(16)

(17)

~s reactive power is a negative quantity, signi&ing that the source is essentially
capacitive.

2.1.1 Far field approximations for the electric dipole

In the fhr field (or radiation zone) the terms Gi in the previous expressions can be

simplified and the fields take on a simple form. Under the assumption that kr >>1, (G2 -

G3) + O and G] + G2 +jk The radiated fields produced by the dipole source are

e- jhr o
Ee(;) = –*a)Zpz —sine@ (18)

r

~-jb

I@) = –&fpz ysined . (19)

Note that the E and H fields are orthogonal and have a characteristic wave impedance of

E@
zw=— _Po_z ~377*

H+ C 0
Y (20)

which is the plane wave impedance of free space. Moreover, in the fw field, the power
radiated by the field is given by Eq.(1 6), with no reactive component.

2.2 Magnetic Dipole Fields

The second basic elementary source of electromagnetic fields is the magnetic
dipole. A magnetic dipole moment carI be created simply by letting a quasistatic current 1
flow in a loop of radius b. In this case, the dipole moment is [18]

(21)

14



where ii is the unit normal to the surface of the loop and A is the loop area. For more
complicated current distributions, ref.[3], defines the equivalent magnetic dipole moment
by the integral

In a manner similar to the electric dipole, the E and H-fields produced by this
magnetic source can be expressed in terms as

:[-(,X:)G,]Em(7)=–:zc~ (23)

(24)

where the terms Gi have been defined in Eqs.(6), and c is the speed of light c = 1/ ~POSO.

For the special case of a z-directed magnetic dipole, m,, the fields in Eqs.(23) and

(24) become

o

● “

fim=-~+[(G2-G3)cos0 ?-G2si1106]~.

(25)

(26)

Note that the E-field in Eq.(25) is of the same form as the H-field for the electric dipole in
Eq.(8), with the exception of a sign change and the free space impedance term, ZO. “

Similarly, the H-field in Eq.(26) is of the same form as Eq.(7) for the E-field of the
electric dipole. This is a consequence of electromagnetic reciprocity [9], and implies that
the plots for the E-field in Figure 3 also describe the behavior of the H-field for the
magnetic dipole source. Conversely, the plot of the E-field from this magnetic dipole will
be the one labeled “fm field” in Figure 3.

Away from this source, the E+ and He components dominate and the wave

impedance ZWbecomes

– E+ G,
Zw=—= —=

Z.

Ho ‘0G2 ~+ 1 ‘
jkr(l + jkr)

which has a value less than ZO.

(27)
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The radial component of the complex Poynting vector for this source is

q= -%M=(:)2ZO[WJP2sin2@
‘(%)2zk-12sti2e(k2-+

(28)

which is seen to be the complex conjugate of Pr for the electric dipole moment in Eq.(14)

with p= replaced by mJc.

Integrating this quantity again as indicated in Eq.(11) provides the total complex
power in the field,

w= f ()~.&=Azm2,+_& .
C1.OsuiS@cc 67r z

In thismanner, the time averaged real power flow

and the reactive power at a distance r is

is

(Watts)

() “Z0
W- =

127r(kr)
, m: (Vars).

(29)

(30)

(31)

This reactive power has a positive sign, which is typical of.an inductive field arising from
the low impedance current carrying loop.

2.2.1 Far field approximations for the magnetic dipole

Making the approximations that only the l/r terms in the field expressions
contribute to the far fields, the radiation E and H components for the magnetic dipole
become

1 - jhr
Rm(F)

,mze~_— co ——sin68 .
4ZC c r

(32)

(33)

o

AS in the electric dipole case, in the fa zone the wave impedance for the magnetic
dipole in Eq.(27) becomes equal to ZOand the radiated power is given by Eq.(30). o
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2.3 The Ideal PxiUAntenna

● An interesting idea for combining electric and dipoles for an electrically small
antenna has been proposed by Baurn [2]. Consider the case illustrated in Figure lb, in
which a small electric dipole @ and a small magnetic dipole Z are used to approximate a

more general distribution of cument and charge. By superposition, the E and H-fields
from these sources are given by

4?(7)= Ee(7)+Em(7) (34)

R(F)= z=(?)+Em(F), (35)

where the subscript e denotes the electric dipole component of the fields from the fields
from Eqs.(4), (5), and m represents the fields from the magnetic source given by Eqs.(23)
and (24).

Of special interest is when the ~ and fi vectors are orthogonal — giving rise to

the texm “pxm”. Considering the special case of a z-directed ~ and a y-directed fi, the

total fields from this set of sources are expressed as

[ ( ) 1
“b(G2-G3)PZCOSL9;+ G,:cc)s+G2p,sinf3 a-G,+cosesin@ J (wE(7) = –:z+
r

A(7)=.:< [ ( )](G, - G,)zsindsin$; +G, zcos%in$ 6+ G, 5COS4- Glpz Sin@ ~ “(37)
c c c

If we assume that the strengths of the ~ and FI sources are related by

my,
— = –P.c

(38)

the fields become

e- jkr

E(;) = –:ZO —[(G2 –G,)cosO ?-(G, cos@+G, sin6) d+G, cos6%in@ ~]pz (39)
r

fi(~)= –~~[–(Gz – G,)sin#sin@ F– G, cos~sin $ d -(G, COS$+ G, sin8) ~]p, .(4o)

These expressions contain all three vector components of E and H. However, in the far
zone when kr >>1, the principal fields produced by this mtenna are the E61 and H4

components. Moreover, in the fa field the cross polarized E4 and He components may

also exist. Additional details of the radiated fields horn the pa antenna are provided by
Baurn in [6], Eqs(6.3)-(6.5).
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As an example of the fields produced by this pxm point source, Figure 4 plots the 4

~~, ~~ md Er field components for kr = 0.1, 1, 10, and 100, the latter which is denoted as

the “far ‘field” case. Figure 5 presents similar plots for the H@ , H@ and Hr field
Q

components. In these plots, the relative sizes of the r, e and @ field components are
consistent with each other for a particular value of the parameter kr. In this way, a relative
comparison of the strengths of each field component can be made.

At observation locations close to the source (i.e., for small kr), the largest fields
are the radial components of E and H, with E being large along the z axis and H being
large along the y axis. The principal tangential fields, Ed and Ho, occur along the x-axis

and for small kr, these fields are large in both the +x and the -x directions. The cross
polarized E4 and He fields, however, have a null in these directions, as do the radial E,

and Hr fields. This indicates that the fields along the x-axis are entirely transverse and

appear to an observer like a local vertically polarized plane wave propagating away horn
the source.

As the observation point moves into the fa field, the radial E and H components
become vanishingly small and the fields become completely transverse with the primary
components E6 and H@ having a large response in the +x direction and a null in the -x
direction. Notice that the shape of the EO component of the field does not change at all

with the distance. That this observation is conect can be seen from the fact that the
electric dipole produces no field component in this direction, and the only E-field
component produced by the magnetic dipole has a distance independent pattern shape
(see Eq.(25)). The same observation can be made regarding the Ho component.By taking o

the ratio of the two sets of transverse fields (E#HJ and (-E#H6), we Cm define two

wave impedances

(41a)

(41b)

where the superscript (v) has been used to denote the impedance for the vertically
polarized field component (i.e., the field having an Ed component) and (h) denotes the

horizontally polarized component (the field with E@ ). Notice that the impedance for

horizontal polarization in Eq.(41b) is identical to that in Eq.(27) for the magnetic dipole
source — a fact that is evident because this polarization results oniy from the magnetic
dipole in the pxm combination. The impedance for the vertical portion of the field is
different, however, because it arises from both the electric and magnetic terms of the
source.
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Along the x-axis, sin6 = 1 and cos~ =1, so that ~Wv)=20 for any observation

location, even in the nearjield. Because (E4 and He) and (E, and llr) are zero on this

axis, the fields appear like a transverse plane wave with the comect flee space impedance
near the sources. in the far field, note that both of the wave impedances are equal to 2., as

required for a radiating antenna.

Figure 6 presents the magnitude of the wave impedance 2$) given in Eq.(9) for

the electric dipole, in Eq.(27) for the magnetic dipole, and in Eq.(41a) for the primary
fields from the pxm source, under the assumption that the observation location moves
along the x axis. Note that near the source, the impedance changes dramatically for the
electric or the magnetic dipole. For the point pxm source, however, this impedance is a
constant 377 Q.

,.

,~5 ~

n

7K--10 “,,’
Magnetic dipole

10”k

1=
o “1 2 3 4 5

kr

Figure 6. Plot of the magnitude of the vertically polarized wave impedance as a
function of kr along the x-axis.

The wave impedance of the primary Ed and f14 fields varies with the observation

angles 9 and ~ and with the distance from the source. Figure 7 illustrates spatial plots of

the magnitude of Z:) for several different observation distances. In all cases, the

impedance along the x-axis is 377 S2. At low frequencies, this impedance is not isotropic,
with a relatively large value occurring in the @= 90° plane. As the frequency increases,
however (or equivalently, as the distance r increases), the impedance becomes more
isotropic, and in the fiw field, the impedance is a constant 377 Q everywhere. The wave
impedance of the cross polarized components is given by Eq.(41b) and is isotropic.
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It is usefhl to compute the power of the EM field for this pxm source. The radial
component of the Poynting vector is expressed as

~= ()[(:220 G, COS@+G, sin(?)(G; COS~+ G; Sine) + G,G; cos%in$] ,(42)

and along the x axis, this becomes

?I..=.=(:)2Z.[(G,+G,)(G;+G;)] “
01

2 (43)
D

= 4nr
ZOG1+G22

which is entirely real. There is no reactive power along this axis; however, in other radial
directions from the source, a reactive power will exist. Integrating Eq.(42) over a sphere
of radius r gives the expression for the total complex power

f
F -a%’=

k4c2Z0
w=

( “)
24X P: 7–—

clasais~ace ($’ “

In this manner, the time averaged real power flow away from the source is

(44)

(45)

which is 1.75 times the power radiated by the point electric
reactive power at a distance r is

() k4c220
mm =–

48n@j
, p: (vars).

dipole given in Eq.(16), The

(46)

2.3.1 Far field approximations for the pxm source

In the far field simplifications to G1 , G2 and G3 give rise to the following

expressions for the fields

‘~b [(cos@+sin@ ~-cosesi”~ d]pzz(;) = ~zo — (47)

fi(~) =
– 02 e-jb
~~[cose sin~ 6 +(cos~+sin@) J]pz, (48)

from which it is immediately evident that 2.’)= E&~= ZOand Z.h)= -E~6 = ZO.
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3. The Combined Loop and Linear Element PxM Antenna
,

The radiation characteristics of the pxrn dipoles discussed in the previous section 0

are only idealizations of the low frequency behavior of an actual pxm antema. Several
diffbrent types of physical antema configurations have been proposed by Baurn [2], one
of which iS the combined
discussed in this section.

3.1 Antenna Geometry

As shown in Figure

loop and linesr antenna. This ar&&a and ‘its beha~or are

8% this antenna consists of a thin wire of length 2h and radius
a , located along the z axis, together with a conducting loop located in the x-z plane. The
loop has a radius b and a wire radius a. The wire antenna is excited by a lumped voltage
source VWireat the midpoint of the wire, and the loop is excited by a similar voltage

source of strength VbOP at the x = b location on the loop. These sources act together to

induce charge and current on the wires and these result in an electric and magnetic dipole
moments PZ and my as shown in Figure 8b.

z z
A

vhe radii a

(a) 0)

Figure 8. The combined loop and linear element pxm antenna. (a) The physical
configuration of the antenn% (b) low frequency equivalent dipoles.

At low frequencies, the EM fields from this combined antenna can be computed
from a knowledge of the electric and magnetic dipole moments given by Eqs.(3) and (22).
As indicated in Figure 9% the charge induced on the conductors appears on both the
straight wire and on the loop, and as a result, pz is a fbnction of both of the source

voltages, Vwire ad y~o~p. The magnetic dipole moment, however, depends only on the

current flowing in the loop, as shown in Figure 9b, and as a result, it depends solely on
the loop excitation voltage VLOOP.Although there is current induced in the straight wire, it

is noted from Eq.(22) that the contribution from this current to the magnetic dipole
moment is zero for a thin conductor, because the cross product is zero.
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(a) 0)

Figure 9. Illustration of the charge separation for the calculation of pz (part a), and

the current flow for my (part b).

3.2 Analysis of the Individual Antenna Components

The radiation from the antenna in Figure 8 has been discussed in [3]. In that
analysis, however, the mutual coupling between the two antennas was neglected snd a
detailed examination of the fields produced by this antenna was not undertaken. Only the
behavior of the various multiples were presented. In the present study, we will continue
the investigation of this pxm antenna and illustrate the behavior of the wave impedance
and the field spatial patterns around the antenna. For this numerical study, a specific
structure has been used:

Loopradiush=lm
Wire length 2A= 1.8 m

Conductor radii a = 0.2 cm

Given a specification of the excitation voltages, it is possible to compute the
induced current and charge on both conductors by an integral equation solution [9] which
is subsequently solved numerically by the method of moments [20]. Several standard
numerical codes are available for this purpose, one of which is the Numerical
Electromagnetic Code (NEC), [21]. ‘his code has been employed for the analysis
described here.

An important aspect of this analysis is that the mutual coupling between the
straight wire and loop antenna can be included. That such interaction is necessary can be
noted in the plots in Figure 10, which illustrates the magnitude of the input admittance of
the straight wire antenna, defined as Yin = lwir~vwire, where lwire is the induced current

at the input of the wire. This figure shows the admittance for the isolated straight wire
(dotted line), together with the admittance of the wire &d the unexcited loop antenna
with its source terminals short circuited (solid line).

It is evident that the presence of the loop antenna has a marked effect on the input
admittance, as well as on other nesr field quantities, such as the charge on the wires. In

●
this plot, the peak of the response occurs at a normalized frequency of kh = z/2 = 1;57, or
when the total length of the straight wire is about % wavelength long. With the loop
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present, the input admittance is about a factor of 10 higher than for the isolated wire and 4
there is a small bump in the response at kh = 1 arising fi-om a loop resonance occurring e
when the circumference equals a wavelength. We can conclude that it is important to
consider mutual coupling efkcts in analyzing this antenna.

lYinl

(Mhos)

0.01 ~
— VW@with parasiticloop y

--------- Isolatedwire
1E-3 r

1E4 r
...----..-..-..-..-

1E-5 r ...” .

1E+ , I , I 1
0.01 0.1 1 10

kh

Figure 10. Input admittance magnitude of the wire antenna with and without the
parasitic loop antenna.’

The frequency behavior of the input admittance of the loop antenna with and
without the unexcited parasitic wire antenna is illustrated in Figure 11. Here, we see that
the loop has periodic resonances at frequencies where the circumference is an integral o

number of wavelengths. Because the total length of the loop is significantly longer than
the wire antenna (6.28 m vs. 1.8 m) we note that the loop resonances occur at lower
frequencies than for the wire antenna. In this plot, we see that the loop is not affected very
much by the presence of the wire.

0.01

lYinl lE-3
(Mhos)

1E-4

1— Loop with parasitic wire

--------- Isolated loop
I

1E-5 I I I

0.01 0.1 1 10
kb

Figure 11. Input admittance of the loop antenna with and without the parasitic wire
antenna.

26



.
It is instructive to show the far field radiation patterns for the various elements

comprising the antenn% as well as for the complete antenna. As a first step, Figure 12
plots the spatial dependence of the radiation patterns for different values of nommlized
frequency kh for the isolated wire antenna. Because the antenna is located along the z-
axis, symmetry requires no @variation of the fields. Moreover, only an Ee component of

the E-field exists. Shown in this, and other plots of this type, are the magnitudes of the
complex valued Ee and E+ field components, together with the total E-field, Etofi defined

as

z

x

E., = WIE@2+E+2. (49)

% %

Null

kh = 0.03 z

z

Null

kh = 0.6 II

z

Null

kh=l.2z

z

x

x

Figure 12. Far field radiation patterns at different normalized frequencies, kh, for
the isolated wire antenna of total length 2h.
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At the relatively low frequency of kh =
.

0.037L (f= 5 MHz for the 1.8 m wire,
which is well below the first resonance of the wire), the radiation pattern appears much
like that iiI “the far field for the ideal electric dipole shown in Figure 3. As the frequency a

increases, however, the radiation pattern begins to change and eventually “side lobes”

begin to appear. At a normalized fi-equency of kh = 1.27r, well above the first antenna
resonance, it is clear that this antenna structure is not behaving like a simple electric
dipole; higher order muhipoles have been excited and are needed to adequately represent
the fields.

The effects of adding the unexcited parasitic loop antenna to the linear antenna are
illustrated in Figure 13 for the same set of normalized ilequencies used in Figure 12.
Notice that in this case, there is a small E+ component to the field, in addition to the E6

field. At low frequencies, the shape of the principal E-field component Ee is still like that

of the isolated wire. However, as the frequency increases, it is evident that the parasitic
loading of the loop antenna has significantly altered the shape of the radiated field.
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kh = 0.03 n

z z
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kh = 0.6 n

z

x

Y
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Y

kh=l.2z

%

L
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●

z

x

L

x

Y

Figure 13. Far field radiation patterns at different normalized frequencies, kh, for
the wire antenna of total length 2h with a parasitic loop.
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0
Similar plots for the excited loop antenn~ without and with the unexcited

parasitic wire antenna, are shown in Figure 14 and Figure 15, respectively. In this case,
the normalized frequency is kb, which is related to the characteristic size of the loop. In
these plots, it is evident that the mutual coupling between the loop and the wire is not
very important and that the field patterns for the two cases are virtually identical. As in
the case of the wire antenn% at low frequencies, the fields appear like that of the magnetic
dipole. However, as the frequency increases, the higher order multiples became—
fiportant and the field shape changes.

z

x

z

x

Y

kb = 0.033 x

z

x

kb = 0.67 n

z

Etot

x

z

x

z

z

x x x

kb=l.33n

Figure 14. Far field radiation patterns at different normalized frequencies, kb, for

o “
the isolated loop antenna of radius b.
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Figure 15. Far field radiation patterns at different normalized frequencies, kb, for
the loop antenna of radius b with a parasitic wire.
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3.3 AnaIysis of the Composite PxMAntenna

For the composite antenna shown in Figure 8, only certain combinations of
voltage sources will cause the antenna to radiate as a pxm sntenna. Given arbitrary wire
and loop excitation voltages, Vwire and VbOP, the electric and magnetic dipole moments

can be expressed by a linear matrix relationship

(50)

where the four coefficients Ku are to be evaluated from the integral equation solutions.

Considering two cases where v~ire =1 and VbOP = 1 ad Vwire = -1 and VhoP = 1

( )permits the calculation of two sets of diflkrent dipole moments p; and m; and

(p; and m; ) using the NEC codel. This process results in 2 equations for the 4

unknowns. The other two equations result from the requirement that p, and mYarerelated

by Eq.(38):

(51)

and by a normalizing assumption that

vw~= 1. (52)

With these 4 equations, the normalized loop voltage V’oflwire can be

evaluated. Note that because the mutual coupling between the wire and loop antennas
changes with the frequency, the required nonrmlized loop voltage is frequency dependent.
Figure 16 presents a plot of the ratio Vboflwire for the optimal pxm operation of this

antema as a fimction of normalized frequency kb. Notice that the region of operation of
the antenna is indicated on the plot, and a clear variation of the loop voltage is indicated.
At low frequencies, the required loop voltage approaches zero, because the inductive
reactance of the loop becomes small and the current grows without bound. Thus, at low
frequencies a very small loop voltage can create a large magnetic dipole moment. For
other frequencies, the ratio of v~ooflwire must be cont~uously adjusted = the frequency

changes — a requirement that makes this particular antema difficult for practical use.

‘ The NEC code does not computedipole moments directly.To do this, the NEC code is fmt run with the
appropriateexcitation voltages, and the cument and charge distributions on the wires determined. Then, a
separate program is used to numerically evaluate Eqs.(3) and (22) for the dipole moments.
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Figure 16. Plots of the ratio of the loop to wire voltage source strengths for the
optimal pxm operation of the antenna, shown as a function of normalized frequency
kb.

An alternative view of the excitation of this pxm structure is obtained by
considering the loop antenna to be excited by a constant current source, lLOOP,as shown

in Figure 17. In this manner, the ratio of the excitation loop current source to the wire
voltage source will approach a constant value at low frequencies. This behavior is noted
in Figure 20 which plots the normalized ratio of the sowces, 20 lLOO~~~ire. Here, 20 is

the impedance of free space (= 377 Q) which has been used for convenience.
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Figure 17. The finite pxm antenna with voltage excitation on the linear antenna and
current excitation on the loop.
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Figure 18. Plots of the normalized ratio of the loop current source to the wire voltage
source for optimal pxm operation of the antenna, shown as a function of normalized
frequency kb.
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3.4 HU Fields Produced by the Wire-Loop Antenna

For the proper V’O#’wire voltage ratios, calculations of the far zone E-fields ●
radiated by the pxm antenna have been made, and the results are presented in Figure 19
for nommlized frequencies of M = 0.0337c, O.lZ, 0.27r, 0.337t, 0.67z and 1.337r. Notice
that for low frequencies the field patterns are very similar to the ideal pxm dipoles of
Figure 4. These plots exhibit a primary E6 field in the +x direction, with a null in the

backward direction. For the secondary E4 component, there is a null in the +x direction.

As the frequency increases, however, the field pattern begins to degenerate into a multiple
lobe structure, indicating that higher order multiple moments are present in the current
and charge distributions.
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Figure 19. Far zone E-field radiation
kb, for the wire-loop pxm antenna.
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Figure 19. Far zone E-field radiation patterns at different normalized frequencies,
kb, for the wire-loop pxm antenna (concluded),
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Of special interest is the operation of this antenna in the low frequency regime
*

where the pxm antenna properties are optimal. Considering a normalized frequency of kh o
= 0.033n (f= 5 MHz), the ratio of excitation voltages for the pxm operation of the
antenna was found to be

vLap
—= -0.01318 +jO.06724 .
vWh

At this iiequency, Figure 20 presents the near field Eo, E+ and Er components at various

distances from the antenna. Similarly, Figure 21 plots the HO, H+ and & near field

components. Note the similarity in these plots with those in Figure 4 and Figure 5 for the
point pxm antenna. In these plots we note that even at a distance of about 5 times the
physical antenna size (i.e., at r = 10 m), the radial component of the field is large.
However, along the x-axis where the principal field components are the largest, both the
radial and cross polarized field components are nearly zero, indicating that in this
direction the fields appear locally like a plane wave.

One of the main advantages of the pxm antenna is that near the antenna the ratio
of E/H remains close to the impedance of free space, implying that the fields appew as
local plane waves. This behavior was noted in Figure 6 for the idealized point dipoles.
For the extended pxm antenna of Figure 8 a similar calculation has been performed, and

the results are reported in Figure 22, where plots of the wave impedance Z:) for the

principal Ed and H~ fields produced by the isolated loop, the single wire and the o
composite pxm antenna at normalized frequency kb = 0.033z.

Notice that there is a non-ideal behavior of the impedance for the pxm antenna
arising from the fact that very close to the antenn% the fields of the extended source
cannot be represented by a single point dipole. For this case, a spatial distribution of
electric and magnetic dipoles is needed. However, at a distance of several loop radii
(about 3 meters), the impedance approaches a stationag value — an indication that the
fields are close to a plane wave configuration at this distance.
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Figure 20. Plots of the E~, E+ and Er near field components at various distances

a normalized frequency of kb = 0.033z.
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Figure 20. Plots of the Ea, Et and Er near field components at various distances for a
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Figure 22. Plots of the wave impedance for the principal ~~ and H+ fields for the

loop, linear element and pxm antenna at normalized frequency kb = 0.033z, as a
function of position along the x-axis.
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3.5 Eflects of Impedance Loading
*

The. source excitation models in Figure 8 are unrealistic because most physical a
sources will have a non-zero i.ntemal impedance, with a 50 Q impedance being a typical
value. To examine this case more carefidly, the impedance loaded pxm structure shown
in Figure 23 has been considered. The wire antenna source impedance was chosen to be a
fiXCd value Of ZW& =50 Q, and the impedance of the loop source, ZhOP was permitted

to vary. The resulting loop to wire excitation voltage ratio for this case is illustrated in
Figure 24 for ZhOP = O, 50, 450 and 1000 Cl. Notice that for the case of Z~OP = 450 Cl

the voltage ratio fluctuation is small, indicating that this may be a reasonable choice of
impedance loading in a practical case. Of course, for a real antenna of this type, more
extensive calculations would be warranted for a final design. The small imperfections in
the results in the vicinity of kb = 0.2 are artifacts of the calculation, arising horn

inaccuracies in the NEC solution for loop type antennas.
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Figure 23. PxM radiating structure fifi sources fiti btern~ impedances Zwire and
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Figure 24. Plot of the ratio of loop to wire voltage for the pxm antenna for various
loop source impedances.

It is of interest to examine the frequency domain behavior of the E8 field as a

fiction of distance along the x-axis. Figure 25 shows the normalized E-field magnitude

lrE6/~Wirel for the pxm ante~a with the 100P somce impedmce ZLOOP= 450 Cl, the wire

source impedance of 50 S2, and the loop voltage given by the appropriate data of Figure
24. In this plot, the distance r is measured along the x-axis. o
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Close to the antenna and at low frequencies, the fields approach a constant value

● which are due to the static fields from the dipoles. Unlike the static fields from a point
electric or magnetic dipole, however, the impedance of the fields in this near zone is 377
CL As the frequency increases, the fields approach the fhr field limit. These result
suggests that EM field testing in the near zone can be considered as an alternative to
plane wave illumination in the fiw zone.
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Figure 25. Plot of the normalized frequency dependence of the normalized principal
Ed field from the loaded loop-wire pxm antenna at various distances along the X-

axis.

3.6 Radiation E~ciency

Finally, it is useful to consider the efficiency in the radiation process for the pxm
antenna. As may be expected, the loading of the antennas by the source impedances will
significantly reduce the radiated power, Since a large ih!tion of the available power is
absorbed by the impedances. By defining the power delivered by the ideal voltage “
sources as Pin and the total radiated power from the sntenna as Prad, Figure 26 presents

the radiation efficiency defined as

-. Ef=+ x 1000/0. (53)
m

At low frequencies, this antenna is seen to be very inefficient in its radiation, a price that
must be paid to have the desired plane wave characteristics in the near field.

o “
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4. The Transmission Line PxM Antenna

Although the wire-loop combination discussed in the previous section yields the
proper field behavior and other radiating characteristics of a pxm antenn% there are
practical difficulties in its realization:

. ‘I’he antenna requires two voltage sources, one of which must track the other with a o
specific complex voltage ratio Vboflw.re as the frequency changes.

. The antenna is located in free space and any power cables or feeding conductors from

the two sources will couple to the antenna structure and adversely affect the pxm
antenna radiation.

. The strong mutual coupling between the antenna elements makes it difficult to design
other realizations of this type of antenna without the use of extensive numerical
calculations.

As a result of these difficulties, it is usefid to consider other types of pxm antenna
structures, one of which is a transmission line antenna. This structure has been discussed
in [3], and like the wire-loop structure, under low frequency operation, this antenna can
be used to radiate pxm fields if certain conditions are met. This antenna will be discussed
in the following subsections, with detailed field and impedance plots being developed.

4.1 Antenna Geometry

The transmission line antenna under discussion here is illustrated in Figure 27.
1%.is antenna consists of a conductor of radius a and length L over a perfectly conducting

o
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ground plane. It is fed by a voltage source VOat the x = L end of the line, and has a

terminating impedance Z~ at the x = O end.

Known as the “Beverage antenna” [22, 23], this is a traveling wave structure and
at high frequencies (when A c L), it produces an end-fire radiation field in the -x
direction. However, at low frequencies (when A > L), the radiation characteristics of this
antenna are different, with the main beam of the fields occuning in the +x direction. If the
tenni.nation impedance is chosen properly, it has the desired pxm radiation
characteristics.

Figure 27. Geometry of the transmission line pxm antenna.

4.2 Analysis Methods

4.2.1 Transmission line model

The low fkquency radiating behavior of this antenna can be explained much in
the same way as for the wire-loop structure. The voltage source induces a current I in the
conductor with a return through the ground plane connection. This creates a magnetic
dipole moment -mY as pictured in Figure 28. In addition, the source induces a positive

charge on the top wire and a negative charge on the ground plane (or equivalently, on the
image of the wire in the ground), and this creates an electric dipole moment Pz. me Pxm

combination of these dipole moments is a vector in the +x direction, indicating that the
low frequency radiation horn this antenna will be backfire — away from the line at the
source end.
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Figure 28. Induced curren~ charge and dipole moments on the transmission line
pxm antenna.

While not an exact theory, transmission line modeling of this antenna allows a
straightforward understanding of its characteristics [18]. The induced cwent on the
transmission line can be approximated by a forward and backward traveling wave of the
folm

I(x) = a,e-jh + aze+jb (54)

where al and a2 are unknown constants determined by the excitation and loading

conditions on the line, and k = 27cj7c.

The charge on the line is related to the current distribution through the continuity
o

equation

–jcf)p(7) = V“J(?), (55a)

which for this 2-dimensional problem becomes

d I(X)
– jmp(x) = ~ = – jk[a,e-jh – aze+b]

or

p(x) = j[a,e-jh - a,e+h].

(55b)

(56)

To obtain a pxm radiating condition, consider matching the line at x = Oby setting
the load impedance to the characteristic impedance of the transmission line:

ZL=zc=g=$h(?) (57)
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where L’ and C’ are the per-unit-length inductance and capacitance of the line and ZO is

the free space wave impedance introduced earlier. For this matched load there is no
reflected wave from the load end of the line. With the voltage excitation at x = L, both the
current and charge are represented by negative traveling waves of the form:

I(x) = -;e-) (58a)
L

p(x) = j~e~’(x-L).
L

(58b)

From these current and charge distributions, the dipole moments of Eqs.(3) and
(22) can be evaluated by a direct integration. At frequencies sufficiently low so kL <<1,
the exponential tams in Eq.(58) are unity and the dipole moments are given as

,. =]P(x)2hdx=:g2Ahp
o

(59)

where AbOP = hL is the area of the loop formed by the transmission line conductor and

the ground surface.

Note that in this case, the relationship between p= and mY is identical to the pxm

condition of Eq.(38), and we expect that at low frequencies and for distances far from this
antenn~ the fields will be like those horn the ideal point pxm source. However, near he
antenna or at higher kquencies, we will expect deviations from this ideal source
behavior, much as encountered for the wire-loop radiator.

Note that the simple transmission line analysis neglects the contributions to the
dipole moments from the currents and charges flowing in the vertical ends of the line. As
discussed in [3], however, such contributions are not very important (see Figure 4 on
page. 31) and do not add to the basic understanding of this antenna operation. While
.transrnission line modeling techniques could be applied to include these effects [24], this
has not done here.

4.2.2 Integral equation model

Aside from the enors in the transmission line model discussed in the previous
section in not accounting for the effects of the vertical ends of the line, there is another
fimdamental error in such a model: it does not properly account for radiation losses. As a
result, the current and charge distributions on the line as computed from the transmission
line model are not correct, However, as mentioned in [18], the errors in these
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distributions for a line over a ptiect ground plane as in Figure 27 are not too large, and
J

the resulting solutions are usually acceptable.
m

For a more accurate solution for this antenn~ an integral equation solution is
possible. Once again the NEC code may be used to evaluate the current and charge
distributions, along with the radiation and near zone fields. As in the previous case of the
wire-loop structure, care must be used in running this code — especially if the structure
being modeled contains loops as they can cause spurious “noise” in the solution at low
frequencies.

As a check of the validity of the analysis snd stability of the solution, the input
admittance (or impedance) of the antenna is a good quantity to calculate and plot.
Consider the case of a transmission line antenna having the following dimensions:

Wire length L =30 m
Height over ground h = 3 m
Conductor radius a = 0.1 cm

For this structure, Figure 29 presents the magnitude of the input admittance as a fimction
of normalized frequency kL and for different values of the termination impedance ZL. For

either the nearly open circuited or short circuited cases, there are high resonance pesks
and antiresonance nulls, arising from reflections of the traveling waves on the line. The
electrically matched case, for which ZL = 522 f2, is seen to provide a very smooth

admittance function through the first few resonances, but at the higher frequencies, small
variations of the admittance are present. These are due to the effects of the vertical risers o

on the solution and to the radiation effects becoming important in the solution.
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Figure 29. Computed input admittance magnitude of the transmission
antenna using an integral equation analysis.
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4.3 EM Fieldsfiom the TransmissionLine Antenna

Selecting the load impedance ZL = 522 f2, a series of calculations were performed

to illustrate the E and H fields under different conditions. Figure 30 presents the far zone
E-field radiation patterns for this antema for different values of the normalized
frequency, kL. In these plots, the bottom half of the patterns shown in the plots for the
wire-loop antenna of the previous section are not present because of the fields within the
perfect ground plane are zero.

The EM fields produced by this antenna are very similar to those of the ideal point
pxm source and the wire-loop antenna. At low fkquencies, the now familiar pxm pattern
of the principal Ee field component is evident, with a small cross polarized E~ field that

vanishes along the +x axis. The pattern degenerates into higher order multipole lobes as
the frequency increases and the line length becomes comparable to a wavelength. For
electrically long lines, the Beverage radiation pattern results.

The development of the near fields into the far zone pattern is illustrated in Figure
31 and Figure 32 for the E-fields and H-fields, respectively, for a frequency ofj= 1 MHz,
corresponding to kL =0.27K.Note that the distance r in the figures is measured from the
coordinate system center. Thus, a value of r = 30 m will pass through the voltage source
at the end of the line. The closest distance to the antenna that has been examined for these
calculations is for r = 35 m — comesponding to a distance of 5 m fkom the x = L end of
the line.
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Figure 30. Far field radiation patterns for the transmission line pxm antenna as a
function of normalized frequency, kL.
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For observation locations closer than about 300 to 500 m (i.e., a distance of about
10L) the radial field components still have appreciable values. However, along the +x

axis, the ratio of the primary fields E~H$ is expected to be close to the value of 20 =

377S2. Figure 33 illustrates the wave impedance magnitude ~W’) for there components as

a fimction of the position xZL along the +x axis, for three different values of normalized
frequency fi. Observe that for low frequencies, a distance of 3 to 4 times the length of
the transmission line should be maintained from the voltage source.
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Figure 33. Plot of the wave impedance magnitude for the principal Ed and H+

components produced by &e transmission line pxm antenna along the x-axis, for
different normalized frequencies kL.

Finally, the fkquency dependence of the principal J??6field at different location

along the +-x axis is of interest. Figure 34 presents the normalized E-field magnitude

rEO/ YO as a fimction of nommlized frequency kL. Unlike the point dipole sources, the

spectrum of this radiated field is a constant over the range ~f low frequencies for which
the pxm radiation occurs. .
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Figure 34. Plot of the normalized Ee field produced by the transmissiori line pxm

antenna at various radial distances along the x-axis, as a function of normalized
frequency kL.
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4.4 Radiation E~ciency

& @ht be expecte& the radiation from this antenna is very inefficient. In fact, it
is even less efficient that the wire-loop structure because the tidssion line structure
does not radiate well, even under unloaded conditions. This fact, combined with the
added loss in the load impedance at the end of the line, gives rise to a radiation efficiency
significantly less that for the wire-loop. Figure 35 illustrates the computed radiation
efficiency for the transmission line antenn~ and we note that at a frequency of kL = 1
(about the limit for the pxm operation), this antenna has an efficiency of only about
0.15~0, while that of the wire-loop structure is about 23~0.
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figure 35. Radiation efficiency of the transmission line pxm antenna as a function of
normalized frequency 4Z.

5. Conclusions

This report has provided a brief overview of the radiation properties of elementary
electric and magnetic dipoles. At low frequencies, these sources can be used to
approximate the radiation from many different types of antennas.

One particularly usefi.d type of antenna is the pxm antenna which cont~s
orthogonal electric and magnetic dipoles having the special relationship rnY/c= -pz. In

this case, we have noted that the radiation appears to propagate mainly in the +x
directio~ with a null in the field in the -x direction. Moreover, the wave impedance in the
forward direction is equal to the impedance of flee space (377 !2) and the power
contained in the EM field is entirely real. Away from the x-direction, this “ideal”
behavior of the fields changes and there are variations of the impedance levels as a
fimction of distance from the source and the observation angles. Moreover, the power in
the field contains reaetive components in other directions.

A disadvantage of this type of antenn% however, is the very low radiating
efficiency. A significant amount of energy is lost in the impedance loading placed on the
s@ucture to maintain proper pxm relationships. Furthermore, parallel conductor
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transmission line structures do not radiate well. This implies that a practical design of
these antennas must carefidly consider the power handling capabilities of the antenna
wires, loack and sources. Notwithstanding this difficulty, however, this type of radiating
antenna provides a possibility for conducting field illumination tests at low frequencies,
primarily due to the ideal behavior of the fields in the x-direction.

Future work in this area must include the design of a practical pxm antennas for
use in the field and optimization of the power radiated. Practical details about how the
antennas should be constructed and deployed over a lossy earth also need to be addressed.
Some of these issues are discussed in a companion SSN note, entitled Z%ePkiWAntenna
and Applications to Radiated Field T~ti”ng of Electn”cal Systems, Part-2 Experimental
Considerations.

. .
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