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Abstract

The response.characteristics of the multi-gap cylindrical loop are
calculated for nonconducting media with certain restrictions on the loop
design. .The.loop gaps are assumed to be.evenly spaced.around the loop and
to have the same.shape and.identical resistive loads. As the number of ..

loop gaps is,increased.the sensitivity to the direction of wave incidence
is decreased and..the.upper.frequency response (for sufficiently small
cable conductance loading the loop) is increased.

Foreword

This note is.a sequel to a prev’iousnote concerning the single-gap
cylindrical loop. This note follows somewhat the same format as tile
previous note with the figures grouped together at the end. We would like
to thank AIC Franklin Brewster, Jr. for programming the numerical calcula-
tions, and he and Mr. John N. Wood for preparing the graphs.
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I. Introduction

,

J*
In a previous note we considered the response characteristics of a

~ In a highly conducting external medium it wassingle-gap cylindrical loop.
found advantageous to.enclose the sensor in an insulator ~o as to increase
the upper frequency response of the sensor for measuring B. Tnis use of

an insulator to enclose the sensor also simplifiedthe niathemcticalform
of the.sensor response by reducing an infinite sum to a single term for
frequencies of interest, For what was termed the exposed cylindrical loop,
the use of such afiinsulator then removes the dependence of tl-.asensor
response on the angle.of wave incidence;..solong as the direction of wave
propagation’.isconsidered .as:perpendicular to the loop.axis~ For the case
of.a.negligibly conducting external medium (with no added insulators} the
response..ofthe..sensoris dependent on the angle .ofwave.inci<.encefor
frequencies of interest, evenwith. the direction of wqve.,prop,-.gation
perpendicular,to.the loop.axis. .Howeverj in the previous not~?.the varia-
tion of the sensor..response’with the.angle of wave incidence “as noc
considered; in this..noteit is considered,.although.stillwit;.:the restric-
tion that.the..waue.is propagating perpendicular to the loop anis.

In.this note we.consider the responseof.a multi-gap.cylindrical loop,
one case of.which.is illustrated in figure..l..,A,previous.notehas considered
some of the techniques for,,appropriately combining..thesignalz from all the
loop.gapsfor the.case that.thenumber of loop.gapsis of the form 2M-1 whkre
.M,.is..apositiveinteger.2 .For the.present calculationswe ccmsider the
case.of N loop gaps; all.of the.same:angular gap width, 2$., and with each
gap separated.from.the.adjacent gaps by:the angle, 21T. For the graphs,

however, we take!N as 1, 2, 4, and 8.
T

‘l%eloop axis is taken as the z axis
and the x axis is talcenas.the directionof propagation of ac incident plane
wave. The angle.of the center of the mth loop gap is @m, Chaosing ~ and
N then establishes.the positions of all the loop gaps. Note that +1 $s allowed
to vary and.as,+l is varied the loop response changes, at lecst’for frequencies
such.that theradian wavelength, X, is of the order of the leap radius, a.
The magnetic field in the incident wave is taken parallel to the z axis,

,While the expressions for the loop response apply in the general case where
the medium inside .the.loop..hasdifferent..parameters than the external medium,

.,the.graphs apply only to the case..:thatboth .mediahave the sr,meparameters.
Also, for the numerical.results in the:graphs we only consider the case in
which+..theconductivities in the two.media..arenegligible.

The.assumption.sused.for the calculations are.essentially the same as
those used:for.the single-gap,.cylindrical.loop.irinonconducting media in
.reference.l. Let.the..looplength; 2; be sufficiently long so that !LY>a,and
the,.solution involves.only:two spatial dimensions. .Paramete~s such as the
resistive gap.loadi.ng.areassumed independen~ of.z~ Practically,the
resistive gap loading.may.be”at discretepositions, uniforml:;spaced along
the loop gaps, although the spacing,,between.ad~ace.ntload pcsitions on the

1. Capt Carl.E. Baum, Sensor and SimtslationNote.XXXThe Single-Gap
Cylindrical Loop.in Non-Conductingand Conducting Media, January 1967,
2. Lt,Carl.E, Baum, Sensor and Simulation Note XHII, A Technique for
the..Distribution.of.Signal Znputs to Loops, July 1966,
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same.gap should be.small compared to the loop radius and to the distance
between.the loop.gapsso as to approximate a unifoum distribution, The
parameters,.c, p, and.o, of the two media are assuned.to be scalar constants,
independent of position and.time and.have a subscript> R, applying to inside
the Ioop.ancl.nosubscript for the external.medium. Other complications such

as scattering.of the fieldsfrom signal cables connected to the loop are not
,. ..,,, considered.

The,electromagnetic.fieldexpansions for thisproblern are of the
form3

m

a C(g)(kr)

[)

cos(n$)
Hz = Hz

I
nn

o sin(n$)
n=O

[

\
m

C(L)(lcr)

I

-sin(n+){
Er = -jZHz

n? ,..
a
n kr n

o n=O
cos(n$))

and

m

I
{1

cos(n+)
~ C(l)‘‘kr) sin(n+)

‘$
= jZHZ

nn
o
n=O

(1)

(2)

(3)

where a time dependence.of the form e
jut

is assumed.but is suppressed from
all the expressions. One of the Bessel functions is denoted by C~L)(lcr);

a prime over..a13essel.function denotes.the derivative with respect to the
argument. The braceswith the.trigonometric.functions indicate a linear

... . combination..ofthese.functions (the same.combination..forthe three field
,., ,.. components). .Thepropagation consianttis of the form

. .. ... . . . k =~ -jull(a+juc) (4)

where,for uc~uc this reduces to

The..waveimpedance.is.of the form

z =V-ML
a+j LoC (6)

These.two.parameters are subscripted to apply to the two media. Since

9

Hz and E+ are sufficient to match the boundary conditions on the circular
cylinder, then for convenience..Eris not listed with the field expansions.

. 3. Units are rationalized MKSA,

5
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As..with.the,case-of the.single-gap cylindrical Ioop.previously considered,
,we.first.calculate.the..surfacecurrent.density.onthe .cylinderwith the gaps
.shorted~.The surface.current.derisity.at.the.li.gaps.isaveraged and normalized
to.the,.magnetic.field:.inthe incident wave..,This.averaging.is appropriate
since.we.assume.that.the.signal connections to..theloop gaps are such as to
add,.the.signalsfrom.each of the,loop,gaps and that each gap presents an

c thesignal. common to.all the loop gaps.identLcal impedance..~o.that pare,o.
The..si.gnal.network.connectingthf loop gaps..is..alsoa.ssumed,to.reject signals
not+.common.to..allthe loop gaps. The.short circuit current,transfer function
obtained,in,this.manne.r:isan infinite.series in which the index, n, (as in
equations:.:(l),Chrough .(3))takes,on.values of.zero and integer multiples of
.,N9.the..numberof loop.,gaps.The.reduetion of..the.shoxtcircuit current
t’r~n&fed.iuneCion~~Co:thiS.:form,rejeccing.,terms..,inlthe surface current density
expansion,depends on symrnetryin the spacing and.dimensions of the loop gaps,
and in,the.impedances at.the loop gaps. .Suchsymmetry is assumed for the
calculations in this.note.. Theshort.circuitcurrcnc transfer function is
afunction of.baththeinumber of loop gaps and the angle of the first loop
gap in.relation.CO the direction of wave incidence- As.H is increased the
dependence of.the loop.response.on $1 is decreased for frequencies of
interest,. The dependence of the loop response.on $l.is contained in the
terms for,mzl in the field expansion,and ‘s,everalof these terms are
significant. One might thinlcof zhe n=l twm.as associated with the
electric fieldinear the sensor. Thenthedependence of the response on
$1 isnot-appropriately called an.electric field sensitivity, at least
for.%.of the order of a, because ce~rmsto: n12 are also rathex significant,
In,.fact,-the.two-gap.loop has.no contribution to its response from the n=l
term,.but.the.response.is still dependent an $1. Thedependence of the
response on.+l canmore appropriatelybe called a directional sensitivity,

Next-the.,adrnittances.per unit.length at the loop gap are considered.
.,There.are three.such admittances to cousider, one associated with the
interi.orof the.loop~.a.second associatedwith the.exterior of the loop,
and a.third associated wirh.signal.cables. The first two of theseadmit-
.tancesper uni.t.lengthrequire expansion of the.electromagnetic fields
inside.and outside..the.loop stzuct~~e~ Sincewe are concerned with
a loop.structurewhich is ~eriodic in.+with a period of.q , and since

N
we:.areonly interested.(for.the.loop response).in signals:common to ail
the:.loopgaps+.these:admittances.can.be calculated by.driving.all the gaps
with.the,same}.sroltage~-Then we only use texms~in.~he..fieldexpansions
for which,n is;zero..or an,intege~ multiple~of N tc!obtain the currents
at..the.loop gaps. The symmetry ofthe loopstructure.simplifies theadmit-
tances!.somewhat..The.boundary condition,for the!electric field at the
Ioop..gapwhich,,is.used,in ca~culating-theseadmitl:ances is the same
quasi-static’approximation used.for the single-gap loop in the previously
referencednote’..All:the:~dkittances.per unit length are.normalized by
dividing each:by.the low’frequency form of.the loop admittance, that
associatedwith a.simple inductance. The sun of che.nomalized admittances
thenconveniently goes.to one in the low.frequency Iimic.

4,,For.an.example of.such.a.signal connection network.see reference 2.
-J”
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As mentioned.before, increasing the number of loop.gaps has the
effect of reducing the directional sensitivity of the sensor. Another
effect of increasing the.number of loop gaps is that of improving the
high frequency response characteristics of the sensor. Tlnislatter
effect is associatecl.with-the changes in the admittances as the number
of loop gaps.is increased. Thus, the multi-gap cylindrical loop has
some:distinct advantagesover the single-gap cylindrical loop. Note that
while.the calculations-in this note are made for a circular cylindrical
loop, as illustrated in figure 1, they also apply to a half cylinder on
a perfectly conducting infinite plane, providing.that the conducting
plane is symmetrically positioned with respect to the loop gaps. Then
the image of the half cylindrical loop combines with the loop to give a
full cylinclerwith uniformly spacecl,..i.denticalloop gaps. In the case
of.such an image problem there is, of course, an additional wave to be
considered which is the reflection of the incident wave off the,condu$ting
plane, ‘or.ifone prefers, the image of the incident wave.

11, Short.Circuit Currents

Consider the surface current’density on the multi-gap-cylindrical
loop with all the.gaps shorted along the full lengt!lof the loop. This
leaves.a continuousperfectly conducting cylinder of radius, a.

The incident plane wave is of the form (for tilemagnetic field)

(7)

Note that the angle, ~, in figure 1 is defined as zero on the positive x
axis in this note. In the previous note on the single-gap cylindrical
loop $ was.defined as zero on the positive y axis because of the fixed
position of the loop gap as centered on the y axis. In this note the
position of the loop gap is allowed to vary, making the present defini-
tion, as in figure 1, more convenient. Expanding equation (7) in the5
characteristic functions appropriate to cylindrical coordinates gives

[

co

HZ = HZ Jo(kr)+2z
1

(-j)nJn(kr)cos(n+)
inc o n=1

(8)

From equations (1) through.(3) the associated azimuthal electric field
is

%
= jZHz

inc o

. m

J~(kr)+2
I 1(-j)nJ~(kr)cos(n+) (9)

. n=1

5.See AMS 55, Handbook of Mathematical Functions, National Bureau of
Standards,1964, forthe expansions of cos[krcos(+)] and sin[krcos(+)].
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Add.to this incident wave a reflected wave of the form

.1izrefl=11zo[aoH~2)(1cr+2~-j)nanH~2’(kr)c.s(n+~(m)

and

‘$refl=jzH.o~.H:2’ikr)+2j(-j)nan’11)

Setting”the tafigentialelectric field to.zero at r=a gives, from equations
(9}and (11),

J~(ka)+an11~2)tka)= O

or

J: (ka)
a =_—
n

H~2){ka)

The short circuitlsurface current density is

.[

J~ (4) = - Hz (a,f+) +-H

,1

(a,@)
o inc ‘refl

,
I?or.conveniencewe.define a Function’of the form

(12)

(13)

(14)

(15)

where the last form is obtained.by the application.of a Wronskian
relationship to the.Bessel functions. From equations (8), (10), (13),
(14), and (15) the shors circuit surface current density is then

(16),

e-./
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Now define the silortcircuit current transfer function as the average
of the short circuit surface current densities at the N loop gaps, divided
by -IIW to normalize the.result. The short.circuit current transfer function

LY

1,, ‘xJ (Om)T(($l,~)‘-~ ~=~ ‘o

o

(17)

Here.we have ignored the variation of the surface current density over the
angular width.(2$ ) of the.loop gap and have taken the value of the surface
current density.a? the center, $m, of the loop gap. l’hus, the width of the
loop gap is assumed to be small compared to both tileradius of the cylinder
and the distance to the next Ioo,p,~ap. ASain we take the average of the
current densities.at.the N loop gaps because of.the.symmetry.in the structure
and in any signal cable network connected to the loop gaps.

Since the
circuit current
can be written,

T($l,N)

Zn
loop gaps are spaced a uniform angle, —, apart the short
transfer function simplifies to some eltento Equation (17)
by interchanging the order of the summations, as

Solve for the inside sum as

[

N

z 1ej 2.U$!W
=$Re ejn~l

m=1

[

N-1
1 . 27rnm
~ Re ejn$l=—

z
e3 N

m=O 1
(19)

1
$ where,Re.indicates that only the real part of the complex number is taken,

,, Ifn= MN where M is a positive integer, then

9



On the otherhand if n # MN we have a finite geome~ric series which can be
summed.giving

(21)

Thus, the only terms which contribute to tl~eshort circuit current transfer
functionary those forkn = NN. Thesl-iortcircuit current transfer function
can thenbe written as

“1?

T(@l,N) = TO+2 E (-j)nTncos(n$l}
n=N

giving a compact form for the result

(22)

:(;> This short”circuit current transferfunction is plottedversus X/a in
figures2 through5 for N equal to 1, 2, 4, and 8 for various values of

‘< 41’ Note that T($I,N) is both even in.$1 and peri~dic in $1 with a period
A of 2T . Thus, we.c’noose$1 only in the range ()~~1 ~1. l?o~convenience

T
we,multiply ‘T(+l,N)by F3]cafor the plots. We al]o include this factor
for any later plots which include T($I,N) or To as factorsin the equations.
This.just adds ka.to the phase.sincefor the graphs only the case of U<<US
is considered. Note that T(#l,N)..isindependent of 41 for %/a.>>1,but
that, progressing toward smaller S/a, T(@~,N) departs from one and becomes
more.and”more.dependen.ton $1, Note also that as N is increased T($l,N)
maintains its.approximate independence.of $1 to smaller and smaller values
of X/a, As a limiting case we define

T(m) = lirnT(N,$l) = To (23)
N-WQ

which is independent of ~1 for all X/a. This is included in the ‘four
figures for comparison,

The region of interest for the maximum frequency response of the loop
is given by’~/a of the order of-one:. Looking at figures 2 through 5 we
can.see that the first several terms in the expansion of the surface current
density are significant in the loop response. As N is.increased more and
more of the terms corresponding to n~l are removed and the directional
sensitivity of the loop is decreased for frequencies of interest. As N iS
increased ‘l’(@ljN)behaves lilceT(m).to smaller and smalle,rX/a.

6, hin reference 1 the second term above the-summation sign is the
increment in n (starting at.the.lowerlimit) for the successive terms
in the summation.

.

.
., m~
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111, Admittances—. —

“(

Consider-now the admittances associated with the multi-gap cylindrical
loop. Since we are concerned only with signals common to all the loop gaps,
then for the admittances we drive all the Raps with the same volta~e, V

gapl~>and calculate tile“surfacecurrent densitic.sproduced. This gives three
admittances per unit length, one associated with the loop interior, one
associated with the loop exterior and one associated with the..signalcables
loading the loop gap. For these admittances the loop gaps are assumed to
be electrically in series. If confi~urations other than series (but still
with.the necessary symmetry) are used the results still apply if proper
factors are introduced to account for the changed number of turns, etc.
Since for the admittance calculations there is no incident wave; then II
is arbitrary and it is taken as zero for convenience. Also the loop gap
widths are considered sufficiently small such that 2+.<<1 and 2$o<<&.

N
A. Boundary Conditions at L,bopGap

To calculate the admittances associated with the interior and
exterior of-the loop we use the same quasi-static approximation as in
reference 1 for the electric.field in the loop gaps. Then for r=a and
I@$ml< $0 the azimuthal electric field in the mth loop gap is

v ()$- $m
E$(a,$) = -~f —

o $0 (24)

where

[]

-1/2
f(c) =+l-gz (25)

For r=a, but @ not i,none of–the loop gaps, E$(a,$) is zero.

Again this field distribution in the loop gaps is somewhat approxi-
mate, ignoring the presence of disturbing objects such as si~nal cable
connections. Within the limitations of our assumption of z independent
geometry, however, this is a reasonable field distribution to use.

B. Internal Admittance

Consider the internal admittance per unit length of the multi-
Zap cylindrical loop. The loop structure and the azimuthal electric field
in the loop gaps are periodic in $ with a period, 2K . The fields inside—.
the loop then have the same periodicity, and thus yhe only terms in the
field expansion are those with n an integer multiple of N. Since we
take $1=0 for these calculations the loop structure and the azimuthal
electrlc field are also even in $. Thus, we have the field expansion
inside the loop as

.

(26)

11
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B
<

and

[ E

MN

E+(:>$) = jZgHz aQJ~(kLr)+2

1

anJ~(kkr)cos(n+) (27)
o n=N

Equate E (a,$) from equations (24) and (27). Multiply by cos(n$) and
integrat$ from O to Zn giving

or, since @m = ~. (m-1).and.cos.(n4) is periodic with a period of%

(fern an integer multiple of N), this becomes

!0

J!&12H)f $ cos(n$)d$ = j2nZLHz anJ~(kla)
a@
o

$0 0
0—.

(29)

This expression was evaluated inreference 1, giving

(30)

The surfacecurrent density associated.with the internal admittance
is . .

J = Hz(a, $&@o) = l~z(a,t@o) (31)
‘2

Define
Jn(k@

‘2 = -- (32)
n

The admittance per

J
‘!L

YE ‘—~ -
gap

unit length is then
m,N

=. - [12raZk ‘L. + 2 1YRJo(n$o)cos(ri$o) (33)
n

n=N

Multiply this by juvkra2, -thelow frequency form of the loop admittance,
to give the.normalized,.internal admittance as,,

kga

[

@,N

YE(Q)= jmPgra2yL = —2
‘Yg + 2

E JXLJo(n$o) cos(n~o) (34)
o n

n=N

0
1

12 ,



Note that for N=l this reduces to’the result for a single-gap loop considered
in reference 1.

The normalized internal admittance is plotted versus %/a in figures 6
through 9 for N equal to 1, 2, 4, and 8 for a few values of $.. For these
plots CL= c, pi = B, and OB = u = 0+ Tor Z/a>>l the normalized internal
admittance is approximately one. As X/a is decreased Yg(N) departs from
unity, but for the larger values of $0 the normalized internal admittance
stays close to one to smaller values of %/a. In the fi8ures Y!(N) is plotted
to small enough K/a to include the first few infinities. These infinities
are associated with the zeros of J~(kia). As N is increased and terms are
removed from tilesummation in equation (34), some of the infinities are
removed from YL(N). As a limiting case we define

(35)

which is independent–o-f@o and is included in the graphs for comparison.
Note that as N is increased,,Y9(N)approaches Y8(~), which we might consider
the ideal case. There is a particularly noticeable improvement as N increases
past 1 and 2 because the first two infinities, in order–of decreasing </a,
are removed, until we are left with the infinity at X/a = .261 associated
with the n=O term. Thus, increasing N decreases the ~/a to which YL(N) is
approximately 1, thereby possibly increasing the upper frequency response
of the sensor.

c. External Admittance

The external.admittance is calculated in a manner similar to the
internal admittance. Expancltileelectromagnetic fields outside the loop as

[

CO,N

llz(r,$)= H a H(2)(kr)+2
x

and~z)(kr)cos(n~)
2 00 1 (36)
o

n=N
and

r ~,N -1

E@(r,+) = jZHz
o 10 :2){kr)+2‘aH

L
n=N

(37)

These expressions are the same as those for the internal admittance except
that the Bessel functions of the first kind have been replaced by Hankel
functions of the second kind, and the parameters for the internal medium
are replaced by those for the external medium. The coefficients are then

‘a=
n

jV~:pJo(n$o)

21TaZH H(2){ka)
zn
o

(38)

13



The surface

J~ =-
ext

Define
H~’J(ka)

Y=
ext

n H:z)tka)

The admittance per unit

J~
ext

Y =— =
ext v“gap

The normalized external

length is then

r ~,N

with the external admittance is

(39)

~

(40)

[z-~ y +’2 y

JJ (n+ )cos(n$ )
ext extn,:o,!,:10. ...:,0 (41)

o ,:, ,..n=N “
.4

admittance is given by

(42)

.

.

.!

The no~alized external admittance.is plotted versus X/a in figures
10 through13 for,N equal to 1, 2, 4, and 8 for a few values of + . I?or
these plots Pi = B and a.= O. Note that for i/a>>l the.normalize~ external
admittance is small compared to one and thus, small compared to the normalized
internal admittance. As a limiting case we define

‘kk.
,

Y
ext(m) HW

= lim Yext(N) = jj_j-Yext
o

which,is independent of +0 and is included in
Note that as N is increased, YE(N) approaches
consider the ideal case.

D, Cable Admittance

(43)

the graphs for comparison.

yfl(m),which we might

The admittance per unit length associated with the signal cables
is defined as gc; This is calculated from

gc=~
c.

(44)

where.!tis the length of the cylinder and Zc is the cable impedance at
the loop gaps, the gaps being.”consideredas driven in series. Thus, Zc
is the sum of the cable.impedancesassociated with each loop gap, or N
times.the ,impedance.,associatedwith any one loop gap,



.

In normalized form define

which we call the normalized cable

where

Y=;

(45)

conductance. Rewrite Gc as

(46)

(47)

and is the wave admittance. For the special case of c1 = c.= E ,

UL=!J = v , and ok= a = O which is used for the plots, we hav~ a Llormalized
cable cond~ctance of–tile–form Y

where gca/Yo is a convenient dimensionless parameter and Y. is the wave
admittance of free space.

Iv. I’requencyResponse Characteristics

As an intermediate step in obtaining the frequency response curves
for the multi-gap cylindrical loop define ~ r~sponse function which includes
only the admittances as

[ 1
-1

RY(N) = y2(N) “+yext(N) + Gc (49)

This i.sgraphed versus X/a in fiZures 14 through 17 for an N of 1, 2, 4,
and 8 with gca/Yo as a parameter f~r the curves. Tor Rca/Yo = O note
that as N is increased the first peak (in order of decreasing X/a) in the
response curve is both made smaller and moved to smaller X/a. Increasing
N would then seem to improve the frequency response characteristics of
the cylindrical loop. We choose $0 = ,1 for tilcseand subsequent response
curves.

Including the short circuit current transfer function, define the
response function for the multi-Gap cylindrical loop as

For comparison.corisiderthe limiting case of
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R(m) = lim R(@l,N)
N*

gc=o gc=o

.[ 1
-1=To Yk(+ + Yext(+

(51)

where for th@ response function we have used El = E, P = P, and GE = u.
Note the relatively simple form for this last response !unction; fOra=O
this function is a purely real number.

Before considering the dependence of R($I,N) on +1, let us consider
just its dependence on X/a, g a/Y , and N. To do this we consider an
artificial response functiono ~’th’?form, TO%(N). Referring to figures 2
through 5 note that To (or T(co))approximates T(~l,N) above some A/a of
the order of one and chat as N increases.the approximation improves, holding
down to smaller K/a. Also.i.fwe were co average T(41,N) over b for
.0<41~2mwe would have precisely To. iIn figures 1.8through 21 t ere is
p~otted TORY(N) versus %/a for an N of 1, 2, 4, and 8 with gca/Yo as a
parameter for the curves. The tompatisOn;function from equation (51) is
also included in these figures. Note for gca/Yo = O that as N is increased
the response.curves approach R(Q) closer and closer and the frequency response
of the loop increases.

Based on TOR (N) we
value of {/a for w~ich

\ToRy(N)l = ~

r 2

define an upper frequency response as the maximum

(52)

Referring to figures 18 through 21 note that for sufficiently small g a/Ye,
then ITOR (N)l has a significant peak (in the vicinity of X/a = 1) Before
it falls ~ff for decreasing X/a. For sufficiently large gca/Yo this peak

.
is removed> giving a smo’otherresponse curve. There is a smallest value of
gca/Yofor which \To~(N)~ does not rise above one before falling off. We
call such a condition a maximaily flat frequency response. In figure 22 the
I/a for upper frequency response (as defined in equation (52)) is plotted
versus gca/Yo. Two values of $0 and four values of N are used for these
curves, and each~curve is arbitrarily ended at approximately that value of
gca/Yo corresponding to a maximally flat frequency response for the
particular ~. and-N. ..Notethat as N is increased and/or $0 is increased
one can use smaller values of gca/Yo to obtain a larger frequency response
for a given loop radius.
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Finally, we have R($I,N) plotted in figures 23 through 26,”illustrating
the dependence of the loop response on 41. For these graphs $0 = .1 and
gca/Yo is chosen for each N to give an approximately maximally flat frequency
response, based on the previous calculations with TORY(N). As with the short
circuit current transfer function we choose @ in the range O <~$1 < 1,.——

Note.that.for an N of 1 or 2 the loop respons~ is significantly ;ependent on
41 for frequencies,for which the response is still significant (i.e., for
11<($I,N)\ near one). I’oran N of 4, l~owever, the region of significant
dependence on 41 is confined to smaller X/a where IR(41,4)I is significantly
lower than one. Finally, for an N of S, the dependence on $1 is essentially
absent from the response for frequencies for which the response is significant.
Thus increasing N can significantly reduce the dependence of the loop response
on $1.

v. Summary

We have considered the response characteristics of the multi-gap
cylindrical loop under some simplifying assumptions. The incident wave is
considered propagating perpendicular to the loop axis and the length of the
loop is assumed much larger than the radius so as to leave a two-dimensional
problem. For the same reason the resistive loading is assumed to be uniformly
distributed along the loop gaps. The loop response is also assumed to be
insignificantly affected by close proximity to other field scatterers such
as signal cables connected to the loop. One should be cautious because
these various assumptions are often only very approximately correct.

The response of the multi-gap cylindrical loop is analyzed based on
a Norton equivalent circuit. The short circuit current transfer function
is first obtained, followed by the admittances. The multi-gap cylindrical
loop is constrained to be periodic in,$ with a period of 2Trwhere N is the

Tnumber of loop gaps; the loop gaps are evenly spaced around the loop
and all loop gaps have the same widtl~$resistive loading, etc. This
periodicity in the loop structure simplifies the mathematical forms of
the short circuit current transfer function and the normalized internal
and external admittances,. AS N is increased two significant effects on
the loop response are observed for frequencies of int-e-rest(for X/a of
the order of one): the dependence of the loop response on the direction
of the wave incidence isdecreased, and the upper frequency response
(presuming sufficiently small gca/Yo) is incr~ased.

*
h

Tilemathematical expressions developed in this note are very similar
to those in reference 1. For 10>1certain terms are merely not included
in the sums. As a result the accuracies in the computations are essentially
the same as for the corresponding computations in the previous note on the
single-gap cylindrical loop, Thus, one may refer to the appendix of
reference 1 for a more detailed discussion of these accuracies, which
are held to a few percent as in this previous case.

/
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FIGURE 26.

R(#l,8) vs.‘/aWITH $1 AS A PARAMETER
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