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Abstract

The response. characteristics of the multi-gap cylindrical loop are
calculated for nonconducting media with certain restrictions on the loop
design. .The. loop gaps are assumed to be.evenly spaced.around the loop and
to have the same.shape and identical resistive loads. As the number of
loop gaps is.increased. the seansitivity to the direction of wave incidence
is decreased and-:the. upper frequency response (for sufficiently small
cable conductance loading the loop) is increased.

Foreword

This note . is.a sequel to a previous note concerning the single-gap
cylindrical loop. This note follows somewhat the same format as the
previous note with the figures grouped together at the end. We would like
to thank Al1C Franklin Brewster, Jr. for programming the numerical calcula-
tions, and he and Mr. John N. Wood for preparing the graphs.

774/7/4 ! 7’/ 277

pL PH-077



Contents
Section
I. Introduction
II. Short Circuit Currents
III. Admittances
Iv. Frequen;y Response Characteristics

V. Summary

List of Illustrations

Figure 1. Multi-Gap Cylindrical Locop, Illustrated for N=4:

Cross Section View

Figure 2. Short Circuit Current Transfer Function: K=1

Figure 3. Short Circuit Current Transfer Function:

N=2

Figure.4, Short Circuit Current.Transfer Function: N=4

‘Figure:5. Short- Circuit Current Transfer Function: N=8

Figure.6. Normalized Internal Admittance:
Figure 7. Normalized Internal Admittance:
Figure 8, Normalized Internal Admittance:
Figure 9. Normalized Internal Admittance:
Figﬁre 10. DNormalized External Admittance:
Figure 1l. 'Normalized External:Admittance:
Figure .12.  Normalized External Admittance:

Figure 13. Normalized .External Admittance:

Figure 1l4. [Effect.of Admittances on Response: N=1, ¢, =1
Figure 15. Lffect of Admittances on Response: N=2, ¢o=°l
Figure 16. . Effect of Admittances on Response: N=4, ¢0=ol

" Figure :17. Effect.of Admittances on Response: N=8, ¢O=,l

2

N=1
N=2
N=4
N=8
N=1
N=2
N=4

N=8

11
15

17

22

23

24

25

26

27

28

29

30



~@

Figure 18.

Figure 19.

. Figure 20.

Figure 21.

Figure.22. .

Figure 23.

. Figure. 24..

Figure 25,

Figure 26.

Artificial Response.Characteristics:
Artificial Response. Characteristics:
Artificial Response Characteristics:

Artificial .Response.Characteristics:

Dependence .of . Frequency Response on Cable

Conductance: TR M =1/

' o'y % V2
Response.Characteristics: N=1, ¢ =.1,
Response Characteristics: N=2, ¢ =1,
Response.Chafacteristics: N=4, ¢ =,1,

Response.Characteristics: N=8, ¢ =.1,

= .3

37
38
39
40
A
42

43



I. Introduction ' J.

In a previous note we considered the response characteristics of a
single—-gap cylindrical loop.l In a highly conducting external medium it was
found advantageous to .enclose the semsor in an insulator so ac to increase
the upper frequency response of the sensor for measuring B. This use of
an insulator to enclose the sensor also simplified the mathemetical form .
of the.sensor response by reducing an infinite sum to a single term for
frequencies of interest. Tor what was termed the exposed cylindrical loop,
the use of such an insulator then removes the dependence of tha sensor
response  on the angle.of wave incidence,..so long as' the direction of wave
propagation. is.considered.as: perpendicular to the loop.axis. TFor the case
of .a negligibly conducting external medium. (with no added insulators) the
response..of the.sensor is .dependent on the angle .of wave.incicence for
frequencies of interest, even with. the direction of wave prop-gation
perpendicular to. the loop.axis. .However, in the previous note the varia-
tion of the sensor.response with the angle: of wave incidence :ras not
considered; in this.note-.it.is .considered,. although .still witih the restric—

“tion that .the wave.is propagating perpendicular to the loop axis.

In .this note we.consider the response..of.a multi-gap cylindrical loop,
one case of . which.dis illustrated in figure.l. A previous.note has considered
some of the techniques. for.appropriately combining.the signals from all the
loop. gaps . for the.case that.the number of loop.gaps is. of the form oM=L where
M.is.a positive integer.Z .For the.present calculations:we ccnslder the
case.of N loop gaps,.all.of the same.angular gap width, 24:0, and with each .
gap separated. from.the. adjacent gaps by: the angle, 2w . For the graphs,

however, we take'N as 1, 2, 4, and 8. The loop axi§ is taken as the z axis

and the x axis is taken as: the direction: of propagation of an incident plane
wave.- The angle. of. the center of the mth loop gap is bpe Choosing ¢, and

N then establishes.the positions of all the loop gaps. Note that ¢1 %s allowed
to vary and as.¢; is varied the loop response changes, at least for frequencies
such .that the radisn wavelength, ¥, is of the order of the lcop radius, a.

The magnetic field in the incident wave is taken parallel to the z axis.

.While the expressions for the loop response apply in the gencral case where

the medium dnside .the loop.has different. parameters than the external medium,
. the. graphs apply only to the. case.that botli media .have the scme parameters.
Also, for the numerical.results in the:graphs we only consider the case in
whichs the conductivities in the two media.are negligible.

The. assumptions. used.for the calculations are essentiaily the same as
those used:for the single-gap.cylindrical .loop-in nonconducting media in
.reference .l.. Let .the.loop lengthy %, be sufficiently long so that &>>a:and
the. sclution involves.only.two spatial dimensions. . Parametevs such as the
resistive gap.loading.are assumed independent of.z. Practically,the
resistive gap loading.may.be at discrete-positions, uniformly; spaced along
the loop' gaps, although the spacing.between adjacent load pecsitions on the

1. Capt Carl E. Batm, Sensor and Simulation Note XXX, The Single-Gap
Cylindrical Loop. in Non—Conducting.and Conducting Media, January 1967. .
2. Lt.Carl .E. Baum, Sensor and Simulation Note XXIII, A Techanique for B

‘the. Distribution. of. Signal Inputs to Loops, July 1966,
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same. gap should be. small compared to the loop radius and to the distance
between. the loop.gaps so as to approximate a uniform distribution. The

parameters,.e, U, and.c, of the two media are assumed.to be scalar constants,
.independent of position and.time and. have a subscript, &, applying to inside
the loop: and. no subscript.for the external medium. Other complications such
as scattering:of the fields from signal cables connected to the loop are not

considered.

" The. electromagnetic.ficld expansions for this problem are of the

form3
O %) cos (no)
B, o= H Z a_C" (kr) ey,
0 sin(né)
n=0
) ' )
o C:"(kr)  |-sin(n¢)
E_ = -jzd a —E——n ; (2)
r z E: n kr {
o 20 cos(n¢)/
and
® , ' cos(né¢)
E. = jZH Z a cM (iery (3)
¢ z ~ R sin(ng)
n=0
jwt

where a time dependence. of the form e is assumed. but. is suppressed from
all the expressions. One of the Bessel functions 1s denoted by C§2>(kr);

a prime over.a Bessel. function denotes.the derivative with respect to the
.argument. The: braces. with.the: trigonometric. functions indicate a limnear
" combination..of these.functions (the: same combination.for the three field
. components).. .The.propagation constant:is of the form

ook =\ -Fuu (okjwe) (4)

where. for o<<we this reduces to

= Vo ==

k= g\ue = = (5)
The.wave impedance.is.of the form

7 o=\ /L (6)

o+jwe

These. two. paremeters. are subscripted to apply to the two media. Since
Hz and E¢ are sufficient to match the boundary conditions on the circular
cylinder,-: then' for convenience..Er is not listed with the field expansions.

3. Units are rationalized MKSA.



As.with. thes case: of the single~gap. cylindrical loop.previously considered,
.we.first. calculate: the.surface current. density.on the.cylinder with the gaps
.shorteds. - The; surface. current. density. at. the. N. gaps. is averaged and normalized
- to: the.magnetic.field.in the incident wave..  This.averaging is appropriate
. since. we. assume- that. the. signal connections to.the loop gaps are such as to

add. the .signals from. each. of the. loop. gaps. and that each gap presents an
identical impedance. to. that part. of the signal common to. all the loop gaps.
The.signal. network .connecting the loop gaps.is.also assumed. to. reject signals
not:common. to.all the loop gaps. The. short circuilt. current transfer function
.obtained: in. this. manner.is an .infinite. series .in which the. index, n, (as in
~equations.{l). through (3)) takes. on.values of.zeroc and integer multiples of
N, . the.number of loop..gaps.. .The.reduction of.the short circuit current
transfed. funetionwtorthis. form, rejecting. terms.in’ the surface current density
expansion, .depends on symmetry.in the spacing and. dimensions of the loop gaps,
and in. the- impedances at. the loop gaps.: .Such symmetry is assumed for the
calculations. dn this ncte.- The: short. circuit . current transfer function is
a-function of.both. the: number of loop gaps and the angle of the first loop
.gap in.relatiom: to the direction of wave incidence. As N 1Is increased the
dependence of. the loop. response.on ¢1 is decreased for frequencies of
interest., .  The dependence of the loop response.on $,-1s contained in the
.terms for.n21 in the field expansion.and several of these terms are
significant.. One might: think. of the n=l tewrm.as associated with the
electric field.near the sensor. Then.the. dependence of the response on
¢1 is not- appropriately called an. electric field sensitivity, at least
for. X of the order of a, because terms for nx 2 are also rather significant.
In. fact, -the .two—gap- loop. has. no- contribution to its response from the n=1
- term,.but .the: response.is still dependent.on ¢1+ The dependence of the
response on.¢j can' more appropriately be called a directional sedsitivity,

Next. the.admittances. per unit.length at.the loop gap are considered.
. There. are three. such admittances to comnsider, one associated with the
interior: of the: loop, a second associated with the. exterior of the loop,
and a third associated with:signal cables. The first two of these admit-
. tances per: unit . length require expansion of the electromagnetic flelds
.insilde:. and outside..the. loop structure. - Since we are concerned with
a loop.structure which is periodic in. ¢ with a period of 2m , and since

werare: only interested (for.the loop response).in signals:gommon'to all
the: Lloop. gaps;. these: admittances. can:. be callculated by.driving all the gaps .
with. the. same: voltage.- Then we only use terms:in.the.field expansions

for which'n is: zero: or: an: integer multiple of N to obrain the currents
at.the loop gaps. The symmetry of the loop structure.simplifies the admit—
tancesrsomewhat. .The- boundary condition: for the: electric field at the

. loop.gap which.is used. in calculating these admittances is the same
quasirstatic-approximation used- for the single-gap loop in the previously
referenced note.: .Allsthe admittances .per unit length are-normalized by
dividing each: by the low" frequency form of the loop admittance, that
associated with a-simple inductance.. The sum of the normalized admittances
then conveniently goes. to.one: in the low frequency limit.

4, For.an. example: of .such. a. signal connection network. see reference 2.



As mentioned-before,. increasing the number of .loop. gaps has the
effect of reducing the directional sensitivity of the sensor. Another
effect of increasing the.number of loop gaps ‘is that of improving the
high frequency response characteristics of the sensor. This latter
effect is associated:iwith.the changes in the admittances as the number
of loop gaps. is increased. Thus, the multi-gap cylindrical loop has
some. distinct advantages-over the single-gap cylindrical loop. Note that
while. the calculations.in this note are made for a .circular cylindrical
loop, as illustrated in. figure 1, they also apply to a half cylinder on
a perfectly conducting infinite plane, providing .that the conducting
plane is symmetrically positioned with respect to the loop gaps. Then
the image of the half cylindrical locop combines with the loop to give a
full cylinder with uniformly: spaced,.didentical loop gaps. In the case
of. such an image problem there is, of course, an additional wave to be
considered which is the reflection of the incident wave off the conducting
plane, or.if one prefers, the image of the incident wave.

II. Short.Circuit Currents

.Consider the surface currentfdensity on the multi-gap cylindrical
loop with all the .gaps shorted. along the full length of the loop. This

.leaves.a continuous: perfectly conducting cylinder of radius, a.

The incident.plane wave is of the form (for the magnetic field)

H = H e Koy omikreos(d) (7)

zZ, Z Z
ince o} o)

Note that the angle, ¢, in figure 1 is defined as zero on the positive x
axis in this note. In the previous note on the single-gap cylindrical
loop ¢ was .defined as zero on the positive v axis because of the fixed
position of the loop gap as centered on the y axis., In this note the
position of the loop gap .is allowed to vary, making the present defini-
tion, as in figure 1, more convenient. Expanding equation (7) in the
characteristic functions appropriate to cylindrical coordinates gives

H, =1, Jo<kr)+22(—j)an<kr>COS<n¢) (8)
inc o n=1

From equations (1) through. (3) the associated azimuthal electric field
is

E = jz, Jé(kr)+2 E:v(-j)nJé(kr)cos(n¢) %)
inc 0 n=1

5..8ee AMS 55, Handbook of Mathematical Functions, National Bureau of
Standards, 1964, for the expansions of cos[krcos(¢)] and sin[krcos(¢)].



Add. to this incident wave a reflected wave of the form

H = a H(z)(kr)+2§zz(—j)nanH(2)(kr)cos(n¢) (10)
Z o5 z | o0 | s n
n=1
and
E¢ = jZHz aoﬂéz)zkr)+222: (—j)nanHéZ)Ekr)cos(n¢) (10
refl o el

Setting the tangential electric field to.zero at r=a gives, from equations
(9} and (11),

J;l(ka)-i-anl-léz)zka) =0 (12)
or
J'(ka)
& = - (13)
Hn {ka)

The short circuit.surface current density is

(o}

I, @ = - [Hz. (2,8) + 1 <a,¢>>] (14)
inc refl

For. convenience we. define a function of the form

J' (ka)

= ) - 82— (2
.Tn = Jn(ka) H(z)éka) Hn (ka)
ol
~1
=[jf-§§- 1 (ea) } (15)

where the last form is obtained by the application. of a Wronskian
relationship to the.Bessel functions. From equatioms (8), (10), (13),
(14), and (15) the short circuit surface current density is then

0

JS ($)-= -Hzo [To-i-ZZ (-j)n’l‘ncos(ndﬁ:‘ (16).
n=1



Now define the short circuit current transfer function as the average
of the short circuit surface current densities.at the N loop gaps, divided
by -Hz to normalize the. result. The short. circuit current transfer function

“is thed
N
TG, = ) 3 (6)
1° . NH s
z m=1 "o
[0}
N
; ..:.1:. Z Z - o o) :
=% {Tow (~3) T cos (ndpm) (17)
m=1 n=1

Here.we have ignored the variation of the surface current density over the
angular width (2¢ ) of the. loop gap and hawve taken the value of the surface
current densityAa% the center, ¢ , of the loop gap. Thus, the width of the
loop gap is assumed to be small compared to both the radius of the cylinder
and the distance to the next loop gap. Again we. take the average of the
current densities. at. the N loop gaps because of .the. symmetry. in the structure
and in any signal cable network connected to the loop gaps.

. . 27
Since the loop gaps are spaced a uniform angle, 7—, apart the short
circuit current transfer function simplifies to some extent. Equation (17)
can be written, by interchanging the oxder of the summations, as

= N
T 42 Zl(“j>nTn [—i— Z cos(ntbm)]
n=

m=1

(4,1

;

o N ’
4" f—_l_ Z 2n(n=1).
T +2 ;1< 3T LN m='1cos[n(¢l+ el (18)

1

Solve for the inside sum as

N N
cos[n(¢l+ Zﬁl%:il )] o=
1 m=1

eJn<§bl+ N )

=
1
AT
=3
)

5

N
. §: . 2tn(m-1)
- ._I_:, Re ejn¢)l GJ N
m=

N 1
1 ind vl . 27nm
=I\I—Re eI "1 Z el N
m=0 (19)

where.Re. indicates that only the real part of the .complex number is taken.
If n = MN where M is a positive integer, then



N-JV-.

B ' N=-1

%{Z ¢os [n(cpl—!- ME———D- )} = %I‘Re‘ ejm?l}—‘ 1| = cos(n¢) (20)
' m=1 =0 .

On the other -hand if n # MY we have a finite geometric series which can be
summed. giving .

N .
. . Jj2m
27 (m=1) 1 =
%'E :C°S [é(¢1+ =N *J =gy Re | T"Egzﬁﬁ =0 (21)
m=1 ‘ 1-e N

Thus, the only terms which contribute to rhe short circuit current transfer
function are those for. n = MN. The short.circuit current transfer function

. can then be written a36

< N
T(¢1,N) = TO+2 zzj (~j)nTncos(n¢l) (22)

n=N
giving a. compact form for the result

This short- circuit current transfer function is plotted versus %/a in .
figures' 2 through'5 for N equal to 1, 2, 4, and 8 for various values of ‘
¢1. DNote that T(¢,N) is both even in- ¢; and perigdic in ¢; with a period -
of 2w . Thus, we. choose ¢7 only in the range O”SDE}. <1. TFor convenience

PRSI,

. : v
wengultiply'T(¢l,N) by &3ka £or the plots. We also include this factor

.for any later plots which include T(¢1,N) or T as factors .in the equations.

This. just adds ka.to the phase since for the ggaphs only the case of o <<we
is considered. Note that T($1,N).dis independent of ¢, for #fa>>1, but
that, progressing toward smaller %/a, T(¢7,N) departs from one and becomes
more. and' more. dependent on ¢3. Note also that as N is increased T($1,N)
maintains its. approximate. independence: of ¢  to smaller and smaller values

.of X/a. As a limiting case we define

T(=) = lim T(N,$;) = T, (@23

N+

which is independent of ¢, for all %/a. This is included in the four
figures for comparison.

The region of interest for the maximum frequency response of the loop
is given by 4/a of the order of-one. Looking at figures 2 through 5 we
can. see that the first several terms in the expansion of the surface current
density are significant in the loop response. As N is.increased more and
more of the. terms corresponding to n>l are removed and the directional
sensitivity of the loop is decreased for frequencies of interest. As N is
increased 'l‘(cpl,N) behaves like T(«).to smaller and smaller %X/a. .

6. As.in reference 1 the second term above the. summation sign is the
increment-in' n (starting at.the lower .limit) for the successive terms
in the summation.

10



.‘

III. Admittances

Consider_now the admittances associated with the multi-gap cylindrical
loop. Since we are concerned only with signals common to all the loop gaps,
then for the admittances we drive all the gaps with the same voltage, vgap/N’
and calculate the 'surface current densities produced. This gives three
admittances per unit length, one associated with the loop interior, cne
associated with the loop exterior and one associated with the signal cables
loading the loop gap. Tor these admittances the loop gaps are assumed to
be electrically in series. If configurations other than series (but still
with the necessary symmetry) are used the results still apply if proper
factors are introduced to account for the changed number of turns, etc.
Since for the admittance calculations there is no incident wave, then b7
is arbitrary and it is taken as zero for convenience. Also the loop gap
widths are considered sufficiently small such that 2¢5<<1l and 2¢,%< 21,

N

A. DBoundary Conditions at Lgoop Gap

To calculate the admittances associated with the interior and
exterior of the loop we use the same quasi-static approximation as in
reference 1 for the electric.field in the loop gaps. Then for r=a and
]¢-¢mk<¢0 the azimuthal electric field in the mth loop gap is

v 69
, < n
(a9 = - §EE £ |1 (26)
where
-1/2
£(g) = = [1 - 52] (25)

For r=a, but ¢ not in one of the loop 2aps. E¢(a,¢) is zero.

Again this field distribution in the loop gaps 1s somewhat approxi-
mate, ignoring the presence of disturbing objects such as signal cable
connections. Within the limitations of our assumption of z independent
geometry, however, this is a reasonable field distribution to use.

B. Internal Admittance

Consider the internal admittance per unit length of the multi~
gap cylindrical loop. The loop structure and the azimuthal electric field
in the loop gaps are periodic in ¢ with a period, 2n . The fields inside

the loop then have the same periodicity, and thus the only terms in the
field expansion are those with n an integer multiple of N. Since we
take ¢.=0 for these calculations the loop structure and the azimuthal
electric field are also even in ¢. Thus, we have the field expansion
inside the loop as

-

o, N
'Hz(r,¢) = HZO aoJo(kzr)+2 22; aan(kzr}cos(n¢) (26)

11



and o N

E¢(?’¢) = jZRHéO —aOJg(klr)+2Ei anJé(klr)cos(n¢) 27

Equate E (a,$) from equations (24) and (27). Multiply by cos(n¢) and
integratg from 0 to 27 giving

v a N gﬁm+¢o ¢—¢m
. s 1
- EEER }:; f J cos(n¢)d¢| = j2vz B aan(kza) (28)
. ¢ &/ o o}
¢m_¢o
. 27 - . . e , . 27
or, since ¢m = ﬁ-=(m—l).and.cos(n¢) is periodic with a periocd of N
(for n an integer multiple of N), this becomes
¢o
\Y) a ¢
- —2ap = 4 1
") £ (¢ ) cos(n¢g)de jZﬁZEHZ aan(kga) (29
o A o o
)
This expression was evaluated in.reference 1, giving
. anapJo(mbo). 309
4 T
n 2waZ£EIOJn(k£a)

The surface-current density associated with the internal admittance

is
JS£ =H (2, o £ ¢ ) =H (a,£ ) : (31)
Define
' J (k,a)
3
Y, =-S5 (32)
o I, (kga)

The'édmittance per unit length iS then .
w N
¥

J
S
o X _ 1 E ‘
v, = - = Sraz Yz + 2 Yz Jo(n¢o)cos(n¢o) (33)

gap L ° n

n=N

Multiply this by jwu Haz, the low frequency form of the loop admittance,
to give the. normalized.internal admittance as

. 2 kea ], =
YQCN)= jmuzﬂa Ve =57 Y£O + 2 E: .anJo(néo) cos(n¢0) (34)
n=N

12



Note that for N=1 this reduces to the result for a single-gap loop considered
in reference 1.

The normalized internal admittance is plotted versus %/a in figures 6
through 9 for N equal to 1, 2, 4, and 8 for a few values of ¢5. For these
plots ¢, = g, 4, = u, and o, = o = 0. Tor X/a>>1 the normalized internal
admittance is approximately one. As X/a is decreased Y (N) departs from
unity, but for the larger values of ¢, the normalized ifternal admittance
stays close to one to smaller values of %/a. In the figures YQ(N) is plotted
to small enough X/a to include the first few infinities. Thesé infinities
are associated with the zeros of J;(k a), As N is increased and terms are
removed from the summation in equation (34), some of the infinities are
removed from YR(N). As a limiting case we define-

‘ kéa
Yz(w) = lim YQ(N) == T (35)
Nreo o)

which is independent of ¢, and is included in the graphs for comparison.

Note that as N is increased, Y, (N) approaches Y (=), which we might consider
the ideal case. There is a particularly noticeable improvement as N increases
past 1 and 2 because the first two infinities, in order of decreasing %/a,

are removed, until we are left with the infinity at %/a = .261 associated
with the n=0 term. Thus, increasing N decreascs the %X/a to which Y (V) is
approximately 1, thereby possibly increasing the upper frequency response

of the sensor.

C. External Admittance

The external admittance is calculated in a manner similar to the
internal admittance. Expand the electromagnetic ficlds outside the loop as

@, ]
Hz(r,¢) = Hz aOHé2>(kr)+2 E: anﬁéz)(kr)cos(n¢) (36)
n=N
and
@, 0
Ed)(r,qb) = jZHzO a 1{<2><kr)+zz anHI(lD&kr)cos(nd)) (37)
n=N

These cxpressions are the same as those for the internal admittance except
that the Bessel functions of the first kind have been replaced by Hankel
functions of the second kind, and the parameters for the internal medium
are replaced by those for the external medium. The coefficients are then

(no,)
C . = Veapds (38)

2wazZl H<2>(ka)
z,n

13



The surface current density associated with the external admittance is

JS = - Hz(a’¢m_t¢o) = -Hz(axi qbo) (39)
ext
Define -
H(z)(ka)
Y = S (40)

ext, Héz) (ka)

The admittance per unit length is then

J

s . -
= —8xt _ _ ] J o
Yext Vgap Tnaz | ext +2§: 3<?$9?9 §(??9) (41)

n=N 7

i

The normalized external admittance is given by

oc’N
Y _(N) = juu Wazy = 2 ka Y 2y ¥ e I (n¢ }cos(n¢ }
ext JeHy ext v 2 exto , n 9
n=N

(42)

The normalized external admittance.is plotted versus X/a in figures
10 through 13 for N equal to 1, 2, 4, and 8 for a few values of ¢ . TFor
these plots p, = u and ¢.= (. ©Note that for 4/a>>1 the normallze8 external

admittance is small compared to one and thus, small compared to the normalized
internal admittance. As a limiting case we define

u
2 ka
Y () =1limY  (N) =——=>%Y
xt Now EXT v 2 exto (43)

which is independent of ¢ and is included in the graphs for comparison.
Note that as N is lncreased Y (N) approaches Y (W), which we might
consider the ideal case.

ﬁ. Cable Admittance

The admittance per unit length associated with the signal cables
is defined as 8ae This is calculated from

. L , |
%772 » (44)

where. & is the length of the cylinder and Z, is the. cable impedance at

the loop gaps, the gaps being considered.as driven in series. Thus, Zo
is the sum of the cable.impedances associated with each loop gap, or N

times. the impedance.associated with any one loop gap.

14



In normalized form define

- 2
G, = jup,ma® g, (45)

which we call the normalized cable conductance. Rewrite GC as

u g.a
A ke
G, = ] " ka |~ (46)
where
1 A
~ 47
Ty | (47)
and is the wave admittance. Tor the special case of ¢, = ¢ = ¢ ,
. ) 0 .
U, = p=1u, and g, = ¢ = 0 which is used for the plots, we havé a normalized
cable condictance Gf the form
_lga
A .S c
G, = im (a Yo) (48)

where gca/Yo is a convenient dimensionless parameter and Y, is the wave
admittance of free space.

Iv. Trequency Response Characteristics

As an intermediate step in obtaining the frequency response curves
for the multi-gap cylindrical loop define a response function which includes
only the admittances as

-1

Ry(N) = ﬁ@(N)'+ Yext(N) + GC} (49)

This is graphed versus X/a in figures 14 through 17 for an N of 1, 2, 4,
and 8 with g.a/Y, as a parameter for the curves. Tor g.a/¥y = 0 note

that as N is increased the first peak (in order of decreasing %/a) in the
response curve is both made smaller and moved to smaller X/a. Increasing
N would then seem to improve the frequency response characteristics of

the cylindrical loop. We choose ¢o = .1 for these and subsequent response
curves.

Including the short circuit current transfer function, define the
response function for the multi-gap cylindrical loop as

R($1,N) = T(q,M)Ry (W) (50)

For comparison. consider .the limiting case of



R(*) = lim R(¢1,N)
=0 . =0
g . 8.
-1
= TQ [éz(«o + Yext(w)]
=1
: -1 ) (2)
I TS P NV ka J (ka) K (ka)
2 71 2 Jl(ka) H£2>(ka)
~1
(2) _u(2) .
2 ke Jo(ka)Hl (ka) HO (ka)Jl(ka)
ka 37 Jl(ka)
=2 7 e (51)
ka "1 _
where for this response function we have used €, = ¢, u, = p, and G, = O
Note the relatively simple form for this last ré€sponse function; fof ¢ =0

this function is a purely real number.

Before considering the dependence of R(¢1,N) on ¢,, let us consider
just its dependence on %/a, g.a/Y , and N. T0 do this we consider an
artificial response function'o%'th% form, T,R,(N). Referring to figures 2
through 5 note that T_ (or T(«)) approximates’ T(¢$j,N) above some X/a of
the order of one and that as N increases .the approximation improves, holding
down to smaller 4/a. Also.if we were to average T(¢1,N) over ¢, for
0<¢4<27 we would have precisely T,. In figures 18 through 21 t%ere is
plotted TORy(N) versus X/a for an N of 1, 2, 4, and 8 with gealY, as a
parameter for the curves. The compatrison’ function from equation -(51) is
also included in these figures. Note for g.a/Y, = O that as N is increased
the response. curves approach R(®) closer and closer and the frequency response
of the loop increases.

Based on T R () we define an upper frequency response as the maximum
value of %/a for which

TR ] = = (52)
oy ﬂva' . ‘
Referring to figures 18 through 21 note that for sufficiently small g a/Y,,
then [TOR (¥)| has a significant peak (in the vicinity of X/a = 1) Before
it falls Bff for decreasing X/a. Tor sufficiently large gca/Yo this peak
is removed, giving a smoother response curve. There is a smallest value of
g.a/¥, for which fTO (N){ does not rise above one before falling off. We
call such a condition”a maximally flat frequency response. In figure 22 the
%/a for upper frequency respense (as defined in equation (52)) is plotted
versus gca/YO. Two values of ¢O and four values of N are used for these
curves, and each-curve is arbitrarily ended at approximately that wvalue of
gca/Yo corresponding to a maximally flat frequency response for the
particular ¢, and-N...Note that as N is increased and/or ¢, is increased
one can use smaller values of gca/YO to obtain a larger frequency response
for a given loop radius.
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Finally, we have R(¢,,N) plotted in figures 23 through 26, illustrating
the dependence of the loop response on ¢1. For these graphs ¢O = .1 and
gea/¥y is chosen for each N to give an approximately maximally flat frequency
response, based on the previous calculations with T, R (N). As with the short
circuit current transfer function we choose ¢7 in the’range 0<%l < 1.

Note: that .for an N of 1 or 2 the loop response is significantly gependent on

¢y for frequencies for which the response is still significant (i.e., for
]R(¢1,N)] near one). TFor an N of 4, however, the region of significant
dependence on ¢1 is confined to smaller X/a where fR(@l,é)l is significantly
lower than one. Finally, for an N of 8, the dependence on él is essentially
absent from the response for frequencies for which the response is significant.
Thus increasing N can significantly reduce the dependence of the loop response

on ¢l.

V. Summary

We have considered the response characteristics of the multi-gap
cylindrical loop under some simplifying assumptions. The incident wave is
considered propagating perpendiculdr to the loop axils and the length of the
loop is assumed much larger than the radius so as to leave a two-dimensional
problem. For the same reason the resistive loading is assumed to be uniformly
distributed along the loop gaps. The loop response is also assumed to be
insignificantly affected by close proximity to other field scatterers such
as signal cables connected to the lcop. One should be cautious because
these various assumptions are often only very approximately correct.

The response of the multi-gap cylindrical loop is analyzed based on
a Norton equivalent circuit. The short circuit current transfer function
is first obtained, followed by the admittances. The multi-gap cylindrical
loop is constrained to be periodic in ¢ with a period of 27 where N is the

number of loop gaps; the loop gaps. are evenly spaced arougd the loop

and all loop gaps have the same width, resistive loading, etc. This
periodicity in the loop structure simplifies the mathematical forms of
the short circuit current transfer function and the normalized internal
and external admittances. As N is increased two significant effects on
the loop response arec observed for frequencies of interest (for %X/a of
the order of one): the dependence of the loop response on the direction
of the wave incidence is decreased, and the upper frequency response
(presuming sufficiently small gca/Yo) is increased.

The mathematical expressions developed in this note are very similar
to those in reference 1. Tor N>1 certain terms are merely not included
in the sums. As a result the accuracies in the computations are essentially
the same as for the corresponding computations in the previous note on the
single-gap cylindrical loop. Thus, one may refer to the appendix of
reference 1 for a more detailed discussion of these accuracies, which
are held to a few percent as in this previous case.
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| FIGURE 1. MULT!-GAP CYLINDRICAL LOOP, ILLUSTRATED FOR N=4:
CROSS SECTION VIEW
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A. MAGNITUDE OF R($,8) vs. R wiTH ¢ AS A PARAMETER
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B. PHASE OF Ri¢h, 8) vs. 790 WITH ¢ AS A PARAMETER .
FIGURE 26. RESPONSE CHARACTERISTICS: N=8, ¢ = g$ = .07
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