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Abstract

An important component of a high-voltage half reflector impulse radiating antenna (HIM) is the
feed-point lens. Designs are available to feed reflectors which have focal length to diameter
ratios (F/D) equal to 0.25, but the theory for higher Ml ratios has not been available. We
develop here the theory for FD ratios larger than 0.25. We retain a rotationally symmetric lens;
but the lens is now penetrated by an off-axis inner conductor. This conductor is offset such that
the charge center follows a ray path, from the input feed, through the lens, which emerges at the
specific angle required to obtain the target FZDratio.
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1. Introduction

Design equations were developed in [1] for the dielectric feed-point lens used to match an

electrically large coaxial waveguide to the feed arms of a high-voltage half reflector impulse ra-

diating antenna (HIRA). This lens converts a plane wave in the coaxial waveguide to a spherical

wave launched onto the conical feed arms of the antenna. In [2], the design equations were re-

fined by incorporation of an impedance matching condition between the input and output of the

lens. Since the problem could be solved semi-analytically only for a rotationally symmetric

geometry, a single conical feed and a 0.25 F“ (parabolic reflector focal length to diameter) ratio

were assumed. Here we extend that design approach to obtain an approximate solution for

HIRAs with feeds that break the rotational symmetry. This permits consideration of HIRAs with

ELD ratios larger than 0.25. As an example, we examine a high-voltage HIRA with an FZD ratio

of 0.40. Potential advantages of a larger Z?D ratio are reduced pre-pulse to impulse ratio in the

radiated field, and improved low-frequency performance.

In extending the design approach for HIRAs with rotationally symmetric feeds to those

with lVD greater than 0.25, the lens design remains rotationally symmetric; but the lens is pene-

trated by an off-axis inner feed conductor. Thus, in the region behind the lens, the charge center

is parallel to, but no longer coaxial with the

Lens

Transmission Line

I 1/1o1
1; I

1:11
q

Offset from
+ ‘+ Center Line

Figure 1. Concept for a HIRA with offset
inner conductor and rotation-
ally symmetric feed-point lens.

outer conductor. Within and beyond the lens,

the inner conductor is bent and flared to match

the ray paths in those regions. Thus, at the

output of the lens, the geometry is that of a

bent cone over a ground plane. The concept is

illustrated here in Figure 1.

The lVD ratio of the reflector deter-

mines the angle that the charge center of the

output cone must make with the ground

plane-the bend angle of the charge center of

the cone [3 (14)]. This angle, in conjunction

with the desired output impedance, determines

the angle between the axis of the output cone

and the ground plane-the bend angle of the

cone axis [3 (15)]. In turn, the half angle of the
a

2

. . .



.

●

o

output cone is determined by the bend angle and by the desired feed impedance [3 (16)]. The

equations governing the cone angles referenced here are introduced in the derivation that

follows.

Conforrnal mapping between the input transmission line and the aperture plane provides a

relationship between the F’ZDratio and the relative radial offset of the charge center from the axis

of the input transmission line [2 (A.2.7)]. Thus, both the bend angle and the relative offset are

established by the reflector FZD ratio. Impedance matching to the bent cone output determines

the relative conductor radii in the transmission line, and the peak electric field on the inner

conductor places lower limits on conductor dimensions [4 (4.1) and (4.5)].

By retaining the rotational symmetry of the lens, we implicitly assume that the rays

emerge from the quartic lens surface in a spherical wavefront. The inner conductor is offset such

that the charge center follows the ray path from the input transmission line through the lens,

which emerges at the specific angle required to obtain the target FZD ratio. The rays associated

with the inner conductor axis and surface also follow paths determined by the lens design. Al-

though the charge center ray exits the lens at the correct angle, we find that the other rays exit the

lens at angles slightly different from the intended ones.

In the material that follows, we derive the relationships between the FLD ratio of the re-

flector and the input transmission line geometry; and we show how the rotationally symmetric

lens is integrated into the offset feed design. We also present a HIRA design calculation for an

FZD ratio of 0.40, in which the transmission line and reflector feed are designed to an impedance

of 100 S2 in air.
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2. Design of an Offset HIRA Feed

2.1 Relationship of Output Reflector and Input Transmission Line Feed Geometry

The design derivation for the offset transmission line and reflector feed for HIM with

F“ >0.25 most conveniently begins at the reflector output. The reflector is described by half Qf

a parabolic dish, sectioned through its axis. The cut edge and axis lie in the ground plane. We

assume the dish opens toward the positive x-direction. Its axis is the x-axis. The focus is at the

coordinate system origin, and the vertex is at x = –F.

Y()

—

yz = 4F(F +x)

\
/----

2=0 /’
/’////

/“

(

=

—

= 2F

—“x

Figure 2. Geometry of a bent monotone feed for
a HIRA-with F/D >0.25.

Figure 2 shows the cross sec-

tion of the dish in the x–y plane. A

single conical feed arm (bent

monotone) extends from the origin

and intersects the edge of the

the elevation, yo, such that its

center forms angle ~ with the

plane. The aperture diameter

dish is given by D = 2yo. If

~d = FD, h follows from

geometry that [3 (14)]

[)PO=arctan 1
2fd-~(8fd)

dish at

charge

ground

of the

we let m

simple

(2.1)

The angle, B, between the cone axis

and the ground plane is obtained from

[3 (15)], as modified for a single cone

over a ground plane-the original ex-

pression was for a pair of cones sepa-

rated by a symmetry plane. Thus,

(2.2)p= 2arctan

[)

tan(po/2)

tanh(2z~)

Finally, the feed cone half angle, a, is m

4
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● given by a similarly modified version of [3 (16)]

a = arcsin[1sin(~)

cosh(2z& )
(2.3)

where the characteristic impedance is ~ =fgZ@ and ~ = 376.727 S2. Thus, fd=ZVD,alone ,.

determines ~. The other two cone angles, a and ~, are determined by both fdand fg.

The next step in the derivation is to relate the reflector focal length to aperture diameter

ratio, fd=FZD,to the radial offset of the charge” center in the input feed line. We use a result of

the conformal mapping presented in [2 (A.2.7)], which relates y (height) in the aperture plane to

Y (radial position) in the input feed,

(2.4)

where da is the radius of a parabolic dish with focus in the plane of the dish edge, the case for

●
which f-J= 0.25; and ‘3?1is the radius of the outer conductor of the input feed line. This relation-

ship is valid in the z = O plane for y on a line between (xo, O, O) and (xo, yo, O), and for Y = –x on

the closed interval –Yl s xs O. Here, y. is the intersection, corresponding to the FD ratio of

interest, of the charge center with the parabola. Within the cylindrical transmission line, we let

‘PCcl be the corresponding offset of the charge center from the axis of the outer conductor. Then,

upon rearranging, (2.4) becomes

Y(-c~ = I–yO/da

Y~ l+yo/da

Since yo = D / 2 and da = 2F, we have yo / da = l/(4fd).Thus (2.5) becomes

Yccl = l-@fd)
w~ 1+1/(4fd)

(2.5)

(2.6)

Like the charge center exit angle, A, we see that this ratio depends only on the assumed F~

ratio.

e Now that we have the ratio of the offset of the charge center to the transmission line

radius, Yccl / ‘I’l, we derive the remainder of the transmission line parameters.

5
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2.2 Derivation of the Characteristic Parameters of the Offset Transmission Line
.

●
For a cylindrical transmission line feed with offset inner conductor, we have from [5 (6)],

the conformal transformation

$= jcoth(w/2) (2.?)

where w = u + jv and < = x + jy. This leads to the following complex map (Figure 3 on page 7),

where circles of constant u (equipotentials) and lines of constant v (electric field lines) are mutu-

ally orthogonal. Since dimensions in the complex map are normalized, the axes are in dimen-

sionless units of fld and yld, where d is the distance from the charge center to a virtual ground

plane. The surfaces of the inner and outer conductors are indicated in the figure at the u-contours,

u = Z@, and U = u], respective] y. Below, we show that these contours are determined by our

choices of~d and Z.C.

We continue our derivation with reference to the complex map introduced in Figure 3. If

we let ‘PObe the radius of the inner transmission line conductor, and if we let ‘PCco be the offset
of the charge center from the axis of the inner
have

(d +!PCCl)*

and

(d+ TCCO)2

We solve (2.8) for the ratio, d / ‘Pl, obtaining

conductor, then,

= d2 + y;

= d2+@

From [6 (3.5)] we have for the normalized ordinate

Y sinh u—=
d cosh U – COSV

Now, at the top of the u = U1circle, v = O; and at the bottom, v = m.Thus

from [6 (3.1)] or [5 (17)], we

m
(2.8)

(2.9)

yl,tOp = Sinhq ~d Yl,bottom = SiIlh U~

d cosh U1– 1 d cosh U1 + 1

(2.10)

(2.11)

(2.12) ●
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~/d = jcoth(w/2)

W=u+jv

~=x+jy

f~=o.4, q=looQ +

normalized to the distance
from the charge center

to the virtual ‘ound plane:

4)=3.13417

U1= 1.46634 ‘maginar’’xisfl :fi:il
Real Axis ~ L.!kwl.

Plane \.—
-0.4 -0.2 0 0.2 0.4 x/d

Figure 3. Complex potential map of a cylindrical feed line with offset inner conductor. The

axes of the outer and inner conductors are separated by the distance, YB. On this
map, all dimensions are normalized to the distance, d, from the charge center to
the virtual ground plane. The equipotentials, U. and x are determined by the FA9

ratio and by the impedance, Zc.



and

Yl, top – Yl, bottom _ Z!f?l _ Sinh U1 sinh U1

d d cosh U1 -1 – cosh ul + 1

This can be simplified to obtain
d

— = sinh U1
Y~

from which we readily obtain UI. Sincefg = Au / Av = (u. – U1)f 2z, we obtain U. from

Uf’J= lq +2zfg

In a manner analogous to that used to obtain (2.14), we have

d
—=sinh~
W()

.

m
(2.13)

(2.14)

(2.15)

(2.16)

Since we know d / ‘Pl from (2.10), we now have the ratio of the transmission line conductor radii
!PO= d/T1

(2.17)
~ d/T. ●

To obtain an expression for !Pcco / Y’l, we divide (2.9) by y?, take the square root, and solve

for Wcco / V1

IIYcco/Y1 = (d/Y1)2 + (To/T1)2 - d/Vi (2.18)

Since the axis of the inner conductor is at (x, y) = (O, d +Tcco) in the complex plane, and the

axis of the outer conductor is at (x, y) = (O, d + TCC1 ), the offset or separation of the inner con-

ductor axis from the outer conductor axis is obtained from

Y~/Yl = Yc(+q – Yccd% (2.19)

where Tccl / !P1 is calculated by (2.6), and Wcco / VI is obtained from (2.18). Since the radial

position of the outer conductor axis is taken to be W = O, we have that YB is also the radial coor-

dinate of the axis of the offset inner conductor.

The offset transmission line feed is completely specified in terms of three physical

parameters, !P1, the outer conductor radius, To, the inner conductor radius, and YB, the radial
9
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a offset of the axis of the inner conductor. At this point, we know how both of the other parameters

scale with Y?l.

2.3 Using the Peak Electric Field to Set Minimum Feed Line Dimensions

To complete the specification of the offset transmission line parameters, we need only

specify the radius of either conductor. In doing so, we want to keep the peak electric field in the

line below some maximum, as in [1 (5.2)] for the rotationally symmetric case. The peak field in

the offset feed line occurs on the surface of the inner conductor, on the side” nearest the outer

conductor. In the complex plane, this occurs at (x, y) = (O, d + Tcco – YPo). At this point, the x–

component of the electric field vanishes by symmetry; and, from [7 (4.4)], we have

Ey(x = o, y) = ~ :(X;O’Y)
y=d+Ycco-Yo

where V. is the electrical potential on the inner conductor and from [7 (4.5)]

[11+ y/d
U(X= O,y) = in

1- y/d

Thus, the derivative in (2.20) is just &(x= O,y)/~ = l/(d + y) + l/(d – y). At the hot spot

(34(X= o, y) 1 1

b
+

y=d+Ycco ‘V() = 2d – (Y. – !PCco) W. – Ycco

(2.20)

(2.21)

(2.22)

By using Au = 2zfg and the result of (2.22) in

!vl,fin =
v~

[

1 1

1
(2.23)

2nfg Emu Y#P~ – Yccoplj Yopq – Yccoplj + Yc(-1/Yl – Y1/Yccl

(2.20), we obtain after some rearranging

where Emm = EY is the maximum field permissible at the hot spot, and Tl,tin is the minimum

permissible outer conductor radius for the stated values of E- and Vo. Any larger radius can be

chosen.

With W1 known, Wo is obtained from (2.17); and YB is obtained from (2.19). We turn

a
now to design of a rotationally symmetric feed-point lens to integrate with the offset feed.

9
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3. Design of a Rotationally Symmetric Lens for Use with an Offset Feed

3.1 Adaptation of the F/D= 0.25 Design Algorithm for Use with an Offset Feed

In [2], the lens design calculation for a
Y

Ground Plsn~

HIRA with a 0.25 FZD ratio was begun by

specifying the dielectric constants in the input Ouarllc Surlace

transmission line, in the lens region, and in the

output region beyond the feed-point lens.

Figure 4 depicts the lens design geometry and

identifies the significant design parameters. In
Y, Outer Conductor

addition to the dielectric constants, we specify ...”
the output impedance, that of an upright mono- ‘“’

cone over a ground plane, and matching input ~

impedance of the coaxial feed line. The outer (-tl + tz) (-tl +t2 +~) (-/1 +e2+~+a) (tz)

feed conductor radius is chosen to be consis-

tent with a specified peak electric field con-

straint, and the lens radius at the ground plane

is chosen subject to the constraint that the lens

design equations are then solved numerically.

Figure 4. Lens design parameters.

have a non-zero thickness on-axis. The lens o

In this case, based on the WD ratio and on the input and

already determined the geometry of the offset feed and the exit

output impedance, Zc, we have

angle of the charge center. The

goal of our lens design is to cause a ray, which is injected parallel to the axis of the input feed

and at the radial location of the charge center, !PCC1, to exit the quartic surface of the lens at the

angle required by the FLDratio, ~. This will happen if we choose the center conductor radius for

the lens calculation, !PO,lens,equal to Y?ccl, and if we make &, the half angle of the output ray

monotone, equal to the complement of ~. We have appended the subscript “lens” to Y?O,as used

here, in order to avoid confusion with the radius of the offset inner conductor.

The lens design algorithm calculates ~ from the expression for the characteristic

impedance of a monotone over a ground plane [2 (2.8)] as

?90= 2arccot(K~) (3.1)

10
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m where Kz = exp(2~ fg,monocone ) ‘exp[2zzC,monocone /ZO). Since, here we use @= 90° -~,

we simply calculate the constant, Kz, by inversion of (3.1), rather than basing it on impedance.

From this point, the lens design algorithm proceeds exactly as for the rotationally sym-

metric, F’ZD= 0.25, HIRA. We summarize that method here. Later, we present a sample design

calculation using this approach.

3.2 Lens Design Algorithm as Applied to a HIRA with Offset Feed

As described above, there are only minor adjustments required to adapt the lens design

approach described in [2] to the case of a rotationally symmetric lens used with an offset feed.

Three parameters normally established at the start of the design calculation are now determined

by a prior offset feed design calculation: (1) the exit ray monotone half angle, 00, is determined

by ~, the angle between the emerging charge center and the ground plane; (2) the inner con-

ductor radius, Wo,len~,is taken to be the radial coordinate of the offset charge center, Tccl; and

(3) the outer conductor radius for the offset feed, !PI, is also the outer conductor radius for the

lens design. A fourth parameter, the lens radius at the ground plane, W2, remains arbitrary, sub-

,

ject to the minimum required to ensure that the lens has non-zero thickness on axis, and that

electrical breakdown does not occur between the emerging offset feed and the ground plane.

We begin the design algorithm by numerically solving [2 (2.17)] for the conductor flare

angles, 81 and 60, as shown above in Figure 4,

(–csct?o+& Cotoo-xo+” JG) -1+6(-.,+42)
\ ) \ )

r = (3.2)
–cscoo+cot190-xo+& 1+X: r–l–xl+= 1+X;

where we have made the change of variable, xi = cot @i; and where, from [2 (2.18)], we have

X() = –
Kz((2.1-2Gm)-(2xl-2Gm))

2(–l+&rJ (3.3)

(( J-))2 E,l – K; Erl–x:(l + @+2x& l+X?

11
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and Kz = cot(Oo/2), &rl = &2/&l, and &r2 =&2 /t33 . After using (3.3) to eliminate xo from

(3.2), we use Newton’s method to solve for xl = cot 81. Next, X. is obtained from (3.3); and 01 a

and f30 are recovered as arccot(xl ) and arccot(xo), respective y.

This completes the lens design, save specification of the output lens radius, T2. The

parameters of the ellipsoidal surface, a and d, are obtained from [2 (2. 11)] and [1 (3.2)] as -

~ _ 4%1– —(cot O1+Kcsc81)Y1 and c1 = a/~
&rl– 1

The ratio, l?2/l?l, is obtained from [2 (2. 10)] as

Next, the ratio, Y?2/11 , is calculated from [2 (2. 19)] as

Y2 = l–/2//~

~ cot 81

Finally, from Figure 4 above, the thickness of the lens on axis

terms of lens thickness, we can write

Y2 = (to+a+d)~

(3.4)

(3.5)

(3.6)

o

is just, 40=/1 –(a +d). Thus, in

(3.7)

The minimum allowable lens output radius, ‘4’2,ti., occurs for lo= O.

Equation (3.7) can be used to determine the T2 required to produce any desired lens thickness, or

any value larger than Y-’2,tinmay be chosen, for example, to satisfy an electrical breakdown con-

straint. The design is completed by calculating 41 from the ratio produced by (3.6), and 12 from

the ratio generated by (3.5).

12



Sample Design Calculation for a HIRA with an Offset Feed and 0.40 F/.D Ratio

We apply the design approach just derived to the case of a 100 Q HIW4 driven by a

cylindrical transmission line with offset inner conductor. The impedance of the oil-filled trans-

mission line is 67 Q (100 Q in air). Thus, ~g = Zc / ~ = 1CKY376.727. We postulate a peak

driving voltage, Vo, of 2.6 MV, and a maximum permissible electric field in the transmission ,.

line, EM, of 2 MV/cm. Although we assume a single conical feed for the half reflector, in prac-

tice, this can be replaced by a pair of

equivalent 200 Q feed cones, as depicted

later in Figure 9 (below). Table I sum-

marizes the parameters that served as input

to the calculation of the offset feed line de-

sign. Table II lists the resulting feed line

dimensions.

The charge center output angle, ~,

the radius at the charge center in the input

m
feed, ‘FCcl, and the radius of the outer con-

ductor, T1, are then used in a lens design

calculation, as described above and in [2].

The lens design assumes that the transmiss-

ion line is filled with oil having a relative

dielectric constant of 2.2, while the lens is

assumed to have a relative dielectric con-

stant of 7.0. The maximum radius of the lens

was set to 13 cm.

—

Table I. Parameters used to calculate the
offset transmission line design.

Parameter Value Source

fd
o.400000 Assumed

1% I 100.000 Q I Assumed I

V() I 2.6 MV I Assumed I
1 1

Emax 2 MVlcm Assumed i

b 64.0108° I (2.1)

6 21.3671° 900–~

Yc(#3’, 0.230769 (2.6)

dPP1 2.05128 (2.10)

U1 1.46634 (2.14)
1 1 I

Uo 3.13417 I (2.15)

1dlYn 1 11.4630 I (2.16) I

‘P#P, 0.178947 (2.17)

Tccdwl 0.00779062 (2.18)

Yl,fin 4.75229 cm (2.23)

Table II. Offset transmission line dimensions.

I Item I Parameter I Value I Source I

Radius of outer conductor VI 4.75 cm Chosen z ‘P1,ti~
Radius of inner conductor Y() 0.849998 cm (YfJwl) !PI
Offset of axis of inner YB 1.05915 cm (’Pcc#P#Pccdyl) WI
conductor from axis of

I outer conductor I I I I

13
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Table III summarizes both specified and calculated lens design parameters. For the lens

design, the ground plane is normal to the symmetry axis of the lens. The coordinate system ori- 0

gin, (z, ‘?) = (0,0), is at the intersection of the symmetry axis and ground plane. With the excep-

tion of !I’O,lcns,the parameter symbols used in the table are those detailed in [2] and identified

above in the lens design sketch (Figure 4). In Figure 5, a sketch based on the parameters listed

here is overlaid with the offset transmission line design results presented previously in Table II. .

Table III. Lens design parameters for use with an offset transmission line

feed for a FZD = 0.4 HIRA.

Coax dielectric constant El 2.20000 Assumed

Lens dielectric constant E2 7.00ooo Assumed

Output dielectric constant &3 1.m Assumed

Output ray cone angle t?~ 25.9892°

Charge center radius ‘O, lens 1.09615 cm Y(-C1

Outer conductor radius w~ 4.75000 cm Offset choice
Lens radius at ground plane Y* 13.0000 cm Assumed, (3.7)

Calculated Values
—

Impedance constant Kz 4.33334 cot(z90/2)

Charge center flare angle (30 7.10° (3.2)

Outer conductor flare angle (31 55.24° (3.2)

Ellipsoid semi-major axis length 5.737 cm
Ellipsoid focal length : 3.216 cm (3.4)
Ellipsoid focal point to quartic t~ 12.058 cm Y*/(Y2//J

surface distance
Quartic surface location 42 3.036 cm (/2//Jt~

Lens thickness on-axis 10 3.105 cm I j,–+a

Interface Intersections

Ellipsoid<harge center (Z~,Y())~~n~ (-0.224 cm, Ray tracing
1.096 cm)

~uter feed conductor—lens (z#PJ (-5.725 cm,
4.750 cm) ‘ayT

Quartic+harge center (Z3,Y3) (3.097 cm,
1.510 cm) .!5

14
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1

Ground Plan

1

o~ = 90.0”

--- ----- .Y2=13.000cm

Outer Feed Conduct

. WI = 4.750cm /’,
4 - ,’

/’

2 - Feed Conductof

----- ‘------ --
,’

-.----- .- . ..-

-10 ~ -8 / -6 -4 -2
Outer Feed AxIs

o 2 4
Olfaet Inner

Feed Axis Axial Position (cm)

Figure 5. Offset transmission line with symmetric feed-point lens for a 100 Q half
reflector IRA with a 0.40 F’lD ratio.

An examination of the comparison of predicted and observed (based on ray tracing) feed

cone parameters presented below in Table IV reveals that the design developed here is approxi-

mate, since only the charge center exit ray angle, ~, agrees exactly with the theory. The apparent

or ray cone-based output impedance is calculated by inversion of (2.3) as

z~ ()sin ~
ZC = ~ arccosh —

sin a
(4.1)

15
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where we interpret the observed ray cone angle as 2a, and the apparent axis of the ray cone,

fl~pm~, defines fl The impedance, implied by this exit envelope of the rays that define the o

extremes of the offset inner conductor, is 105.83 f2, about 6% high.

Table IV. Comparison of predicted and observed feed cone parameters.

I Feed Cone Parameter I Predicted Value I Based on Ray Exit Angles from Lens
,

I
1

64.0108° 64.0108° (charge center ray)

P 67.7335° 64.7856° (axial ray)

APPARENT 67.7335° 66.9400° (ray envelope center line)

2a 39.4096° 35.6392° (ray envelope)

Zc 100.00 Q 105.83 Q (a, ~wpmm, (4. 1))

16
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● 5. Discussion of the Results of the Sample Offset HIRA Design Calculation

To explore the deviations between our predicted and “observed” ray tracing results

(Table IV, above), we next consider the differing functional forms of the electrical potential

within the feed-point lens system. Three regions may be identified: (1) the oil-filled coaxial input

region, (2) the biconic lens region, and (3) the monotone-over-ground plane output region. For a

plane wave propagating in the axial (z) direction within the coaxial region, a ray initially at the

radial coordinate, W = %’C(the coaxial insertion radius), where a <WC e b (Figure 6), follows an

equipotential within each region. However, except at the surfaces of the conductors, the geomet-

rically traced ray follows a different equipotential within each region.

We now develop expressions for the poten-

tial function in each region and calculate the extent

of the shifts in potential identified above. First, in

the input coaxial region, we need the potential as a a
function of the cylindrical radius, Y. The potential

e on the center conductor is V = Vo; on the outer con-

ductor, it is V= O. Thus, between the conductors,
\=vo@-a)

the potential as a function of radius is given by

v(Y) = V()
in (!P/b)

in (a/b)

Figure 6. Coaxial geometry.
(5.1)

Next, for the biconic lens region, we implement a stereographic projection in the direction of the

axis. The result is another coaxial geometry. In the following set of equations for the projection,

note that the parameter, Ro, is arbi-

~;
lb

w

213a

=
V=vo ;

v =0______._. _.i. _ . _ ._ ._ ._ .-.

trary.

T =2% tan(@/2)

Ta = 2% t~ (@a/2) (5.2)

Yb = 2% t@b/2)

Figure 7. Stereographic projection of a pair of
coaxial cones joined at the vertex leads
to a coaxial cylindrical geometry.
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Now, from (5.1) and (5.2), the potential

v(Y)

of the

= v~

projected structure

[)~n tan(o/2)

tan(8b/2)

[)

~n tan(ea/2)

tan((?b/2)

is

(5.3)

This expression is applicable to the region interior to the lens, where the flare .of the outer con-

ductor forms the outer cone and the flare of the center conductor forms the inner cone. Outside

the lens, the geometry is that of an upright monotone over a ground plane. Here, 6b + 90°; and

(5.3) reduces to

v(Y) = v~
ln(tan(8/2))

ln(tan(8a/2))
(5.4)

The normalized voltage functions, V(Y)/ Vo,for input coaxial, lens biconic, and output

monotone regions, as functions of the coaxial insertion radius, !Pc, were computed for the lens

1

0.8

0.2

0

2 4 6 8 10
Insertion Radius (cm)

Figure 8. Relative potentials for a rotationally symm-
etric feed-point lens design. The potentials
are shown within the input feed (coaxial re-
gion), within the lens (bicone region), and at
the lens output (monotone region), as func-
tions of the coaxial insertion radius.

designed in the preceding exam-

ple. The results are presented in

Figure 8. These results indicate
●

that all rays, except those at

the conductor surfaces, expe-

rience a different potential within

each region. The magnitude of

the potential shift at each inter-

face is a function of insertion ra-

dius. The three curves in the

figure give the relative potential

as functions of the radial coordi-

nate at insertion: for the coaxial

insertion region, for the lens re-

gion, and for the lens output re-

gion. If our design theory were

exact, these three curves would

overlap perfectly; and every inserted ray would remain on the same equipotential as it is ray-

traced through the structure.
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● 6. Offset HIRA Reflector Feed Considerations

Although our design calculations have assumed a single conical feed for the half reflec-

tor, in practice, this feed would be replaced by a pair of equivalent 200 Q feed cones, as depicted

in Figure 9. Only the front view

is shown here, as the side view is

indistinguishable from that of

the bent monotone shown in

Figure 2 above. This design

has a disadvantage, however,

in that the lens protrudes

beyond the ground plane, and

the feed arms should ideally be

joined near the ground plane

level, at the focus of the quartic

surface of the lens. This would

require that the feed arms be

e joined inside the lens, a design

that would be difficult to

Front View

Figure 9. Offset HIRA fed by a pair of 200 Q cones.
This feed cone arrangement has an imped-
ance of approximately 100 Q.

manufacture. If this situation were to become a problem, we could split the inner conductor

before entering the lens, as shown below in Figure 10. Additionally, to minimize the impedance

discontinuity, the transition from a single offset inner conductor to a pair of conductors could be

made as gradual as might prove appropriate.

Front View Side View

Offset and Split
Center Conductor

Figure 10. Offset and split inner conductor feed for a
HIRA with IVD ratio larger than 0.25.
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7. Concluding Remarks

We have provided a design approach for the feed-point lens and offset cylindrical feed

line needed to build a high-voltage half IRA with an HD ratio larger than 0.25. For the example

with an FZ!l ratio of 0.40, the ray paths through the lens at the offset feed location are not quite

correct. However, the impedance based on these rays is only slightly different from the design

target. This difference may be related to the shifts in potential experienced by rays traversing the

feed-point lens system. It seems unlikely that a significant impact on measurable HIRA

performance can be expected to result from the approximate nature of this design approach.
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