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Abstract

This paper considers several types of thr~mensional COilSfor transmitting and receiving 10w-

frequency magnetic fields to and from targets of interest “inside” the coil structures. Point symmetries

are imposed on the coil designs to make the magnetic field uniform to various orders in the region of

interest by elimination of unwanted terms in the vector spherical harmonic expansions. Various ~ of

coils are considered, including bodies of revolution (circular loops) surrounding the target, amays of

point magnetic dipoles, and line magnetic dipoles.
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1. Introduction

m Thereare various types of coils that one might use for producing low-frequency nugnetic fields

and nwasunng the scatterd magnetic fields, such for detection and identification of metallic targets [7-9,

171. The case of coils formed by long (ideally infinite) parallel wires giving two-dimensional coils has

been considered in a previous paper [5]. The present paper considers various thrcx+dimensional coil

structures that can also be used for this application. Since multiple coils can be used for the various field

components and for transmit and rweive, various combinations of the two- and three-dimensional coils

are possible.

A fundamental concept in designing such coils for producing approximately uniform magnetic

fields (and for uniformity of detection involving both transmitter and receiver coils) is symmetry. For the

threectimensional coils it is convenient to expand the static magnetic fields in terms of vector spherical

harmonics, the lowest order terms giving the uniform field of interest. Many of the higher order terms

are suppressed by the imposition of appropriate point symmetries (rotation and reflection) on the coil

designs. This leaves a minimum of terms (only one for third-order field uniformity) to be suppressed by

appropriate choice of remaining geometric parameters.

There are additional considerations in the selection of coil geometry. One would like the receiver

coils to be insensitive to approximately uniform externally incident magnetic fields (e.g., 60 Hz or 50 Hz).

This can be achieved by making them as quadruples (in transmission, by reciprocity). One would also

like each transmitter coil to have negligible mutual inductance (coupling) to other transmitter and

receiver coils. This is alw attained in some cases by symmetry (particularly if the two coils are associated

with orthogonal field components: x, y, z). For the case of transmitter and receiver coils associated with

the same field component, the receiver coil can be placed “inside” the transmitter coil to take advantage

of the approximately uniform field of the transmitter. In addition, however, one may wish to adjust other

parameters of the geometry (retaining the symmetry constraints) to minimize this coupling.

Scanning the contents, various types of coil designs are considered. These include various

combinations of circular loops (bodies of revolution with a common axis), arrays of discrete (point)

magnetic dipoles, and distributed magnetic dipoles (line dipoles) along paths parallel to the symmetry

axis.
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2. Symmetry Considerations
.

*
In [5], treating two-dimensional coils, translation symmetry (with respect to z) with b directed

currents was assumed, giving rise to transverse (to z) magnetic fields which could be treated as analytic

hmction of the complex coordinate { = x + jy, thereby considerably simplifying the problem. Now, in

considering coils for z-directed magnetic fields, with a finite extent of the coils (in the z and well as Y

(Cylindrid radius directions) the variation of the fields in all three coordinate directions (x, y, z) becomes

important. For this analysis we have cylindrical (W, ~, z ) and spherical (r, 6J,#) coordinates as

x = Y cos(~) , y = Y sin(#)

Y = r sin(~) , z = rcos(e) (2.1)

+ + + +
7=~lr=viy+21z =X1 X+ Y7Y+21Z

In uniform isotropic media (e.g., air with permeability ~) and away from sources (the coil

conductors) the magnetic field has both zero divergence and zero curl as

c3Hx(~) ~Hy(~) ilHz(?)v. Fl(7)= ~ +
*+~

lt3

()

1 aH#(7) + *Z(7)
=—— YHy(~) + ~

Y* @ &

()la 2 +
‘p% ‘H’(r) +

*3sin(e)H’(’)) +*%

‘x;(7)=[’Hf-w$’)lix+69+X(?)_ t3Hz(~)
& tilt

+
ly+

11

(2.2)
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Noting that all three vector components of the curl are zero, this gives four equations relating the

various derivatives of the field components in three convenient coordinate systems. In terms of a scalar

magnetic potential we have

H(?) = - V@@)

Away from sources this has a zero Laplacian as

(2.3)

(2.4)

As long as we do not consider paths which enclose currents (loop conductors) this potential is single

valued. Our concern here is with the domain near the origin ? = ~ for field uniformity.

For present purposes, let the coils and currents (and hence potential and field) have z = Oas a

transverse symmetry plane. For this purpose we have the reflection symmetry group [16]

Rz = {(1) , (Rz)} , (2.5)(RZ)2 = (1) = identity

with representation



●

.

(2.6) o

4+ M100

RZ = T - 2TZTZ = 010

(0 o -1)

-2 ++
Rz = Y= lXIX +iyiy +iziz = identity dyadic

The reflection dyadic gives a mirror coordinate ?!? as

7 = (X,y, z) , 7!? = (X,y,–z) = % . 7 (2.7)

With respect to such a symmetry plane the currents, potential and field can be dwmmposed into two parts

which separately satisfy the Maxwell equations, denoted as symmetric and antisymmetric. For present

purposes we choose our source current density, and hence potential and field as synvnefric,in which case

we have

Fz ● 7(?) = 7(7$?)

@@ = - tI&) )

22 ● ;(7) = -F&))

Coils for this case then have current components parallel to z = Oreflected with the same sign, but current

components perpendicular to z = Oreflected with apposite sign. but current components pqxmdicular

to z = Orefhxted with opposite sign. In particular on z = Owe have

7(x,Y,o) . iz = o (parallel to z = Oplane)

o~(x,y,o) = o

a(x,y,o) = HZ(X,y,O) ?Z (perpendicular to z = Oplane)

With fl(O, O,O)taken as non zero (being in the center of the region of desird uniform magnetic

field), then we can compare the magnetic field at general ~ to

(2a)

(2.9)

FL)= Ho -7Z = El(d)

to estimate the field uniformity.

of z for the z component as

(2.10)

Now with no currents in the region of interest, we have an even function

●
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HZ(Z, y, - z) = Hz(x, y, z)

--i

Alz(x, ,z)
=0 forl odd&t ~=o

(2.11)

showing some field uniform.ity near ? = 6 (second derivative with respect to z being, in general, non

zero at z = O),just due to the symmetry plane. Note that the other components are odd functions of z as

Hx(x, y, - z) = -Hx(x, y, z) , Hy(.x, y, - z) = - Hy(x, y, z)

--i

CA’lx(x, ,2)
= O for 1 even&f

Z=o

+

d%y(x, y,z)
= O for 4 even&f

Z=o

(2.12)

the first derivatives with respect to z king, in general, non zero. Similarly for the scalar potential we

have an odd function of z with

o~(x, y,–z) = – o~(x, y, z) , q%, y, 0) = o

+

C3%h(xry, z)
= O for t even

Z=o

4 &
= –Ho

Z=o

(2.13)

This all comes from just one symmetry plane!

Of course, one can go to other (higher order) point symmetries (rotations and refktions) [161,

including the symmetry plane discussed above (in some cases as a subgroup). Axial symmetry planes

(containing the z axis) with respwt to which the fields are made to be antisymmetric can achieve greater

uniformity when combined with the foregoing. Taking the x = Oplane as such a plane we have

Rx = {(1), (Rx)} , (RX)2 = (1)

[1

–loo
t?x=’i-2iziz= o 10 ,lt~=Y’

001

(2.14)
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Changing our definition of (?:)) in (2.7) to (?:)) for this reflection we have antisymmetriccurrents,

potentials, and fields (noting sign reversals from (2.8)) as m

In this case on x = Owe have

7’(OZYA= J.OYIZ) 7X o=Fndi~l” ‘0 x =oplane)
Flo,y,z) ● i’x = o (parallel to x = Oplane)

Now the x component of the magnetic field is an odd function of x as

Hx(-x, y, z) = – I- IX(X,y, z) , Z-Ix(o, y,z) = o

--i

AJx(x,y,z)
= O for f even# ,=0

The other components are even functions of x as

Hy(–x, y,z) = Hy(x, y,z) , Hz(–x, y,z) = ~JLyJd

=&4 =Oforf odd
Ix=o

(2.15)

(2.16)

(2.17)

a

(2.18)

--i

Aq(x, y,z)
=Ofor40dd#

X=o

the first derivatives with respect to x, in particular being zero, giving the second derivatives as the first

non-zero term. From the zero curl in (2.2) we also have

twx(o,y, z) = o

*

C3-Ix(o,y,z) = o

(2.19)

&



One can similarly make y = Oa symmetry plane and obtain the same results as in (2.17) through

(2.19) for antisymmetric fields with the simple interchange of the roles of x and y. With all three

symmetry planes (symmetric with respect to z = O,antisymmetric with respect to x = Oand y = O)the

large number of constraints on the field near the origin, ? = $, give

vi%’) = 1? (2.20)

i.e., all first derivatives of all field components are zero. With three orthogonal symmetry planes we can

consider this a case of dihedral Da symmetry, at least in a geometric sense (ignoring the orientation of the

current dinxtions in the conductors). The x = Oand y = Osymmetry planes correspond to C~ rotation

SYmmew with res~ to the z axis. Reflection Rz occurs in a different sense (symmetric) invoking a

sign reversal when rotating by z about the x and y axes. As we shall see in the next se%on, such a high

degree of symmetry is not requird for the result in (2.20), but rather only C2t = C2 @ Rz, i.e., x = O

and y = Oneed not be symmetry pkmes but the z axis need only be a 2-fold rotation axis.

Adjunction of rotation symmetry C~ about the z axis gives additional constraints. A 2-fold or

higher order rotation axis (N22) gives special uniformity properties to the field, as we can see in terms of

the spherical harmonic expansion of the fields (next section). A special case of interest is continuous

rotation symmetry C~ ~ which in adjunction with axial and transverse symmetry planes C-t is

equivalent to dihedral symmetry D4 (a and t indicating axial and transverse symmetry planes,

respwtively [16]). In this caw, we uw cylindrical coordinates and have @-dirwted &independent loop

cmmmt density as

g@ing a field with no @ mmponent as

W) = Hlp(Y,z) -fy -t HZ(Y,Z) i’*

(2.21)

(2.22)

the componenk in cylindrical coordinates being # independent. Including the z = Osymmetry plane we

now have

9



Hzw,-z) = HJW,Z)
Hy(w,-z) = -Hql(w,z) , Hy(Y,o) = o

i%P,#,o)= Hz(Y#o)-f’.
@~(w,-z) = -WP,Z) , q&Y,o) = o

From this we have

For zero divergence on the z axis we also have

(2.23)

(2.24)

(225)

The curl equation with this gives

o
---i

= ay(o,z) = a-i (w#z)
& Lw

(2.26)
Y=o

Thus first derivatives with respect to Y and z of both field components Hyanci HZare zxo at the origjn.

One can goon to higher orders of field uniformity as discussed in following sections.

10
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3. Representation of Static Magnetic Fields in Spherical Coordinates with Implications of Symmetry

a
Beginning with the magnetic potential we have the usual expansion in spherical coordinates

[3, 6, 12]

(3.1)
= associated Legendre functions

= Legendre functions

Here we have begun the summation with n = 1, since there should be no singularity at the origin, and a

constant term has no gradient (no magnetic field). The magnetic field is found from

X7) =– V@n(?)

; ~ ~ ~(0,0) (gradient on unit sphere)~,m,: (e,@) = v~Y
,,

(3.2)

Note that for m = O,only the even terms (index e) are non zero; these are@ independent.

Constrain the solution to have z = O as a symmetry plane (Rz symmetry) about which the

currents, potentia[, and field are symmetic as in (2.8). This requires that the terms in (3.1) be odd

functions of COS(8)(=~ ) which in turn requires that n + m be odd so that

a =Oforn+nz evenn,m,~ (3.3)

*
The leading terms (n. 1 with m . O) are

11



.

%(?)= {Xl) =%,m,e c+) if - sin(f))78
}

= ~,~,ei’z = Ho z
U& (7) = - Ul,o,e 7 COS(8)= - ~l,o,e Z

= -Hoz

So now we can write

m

@J@ = -Hoz-x ~ ~ (Im: rh-m: (e,@
n=2 mdl e,o ‘ ‘

,,

m+n
odd

(3.4)

(35)
w

{

-)

}
i(?) = Ho iz + ~ ~ ~ an m ~ m-l n Ynm ~(tl,q$) 1, + ~n,m,: (6,@

,, ,,
n=2 m=O e,o

m+n
odd

where the sum over m is now in increments of 2, begiming with tn = Ofor n odd and with rn = 1 for n

even. Thus Rz has eliminated roughly half the terms in the summation.
8

Next, consider CN symmetry, an N-fold rotation with respect to the z axis. This group is given

by [161

{
CN = (CN)t f=1,2,...,N 1

(CN)4 = rotation by ~ = (CN)~

(cN): = (CN)N = (1)

This has a matrix representation

(cn,m(@/)) =

0/ =

(Cn,m(0)) =

(cos(#/) – sin(~f )

sin(~~) cos(~~) )=exp[o’c J)
2ti
— , f = 1,2,..., N
N

(cn,m(2z))= ~ !) = identity transverse to z axis

(3.6)

(3.7)

12
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e (There is also a scalar representation using J404. ) This is cast in two-dimensional form for operation on a

plane of constant z. (One can add a 1 in the z, z psition if desired for a threedimensional form).

So now Iwt our loops (and the resulting magnetic field) have CN symmetry with respect to the z

axis. TM means that on successive rotation by ~ = 2Z / N the currents (and hence potential and field)

are invariant. Note that since CN is a proper rotation (no reflections rquimd) there are no sign changes

on some of the field components (referred to (Y, o, z) or (r,O, 0) coordinates) in this symmetry operation.

Then the only tn index values in the cos(n@) and sin(nz@ terms in the expansions (3.1) and (3.2) with non-

zeros c coefficients are those given byn,m,O

tn = vN, v = 0,1,2,... = integers 20 (3.8)

The resulting magnetic field in (3.2) then Awes to

{
H(7) = ~ ‘f ~ an m,:rn-l nYnm ~(6,@)i’r + @n,m,g (e,@)

,,
n=l m=O e,o ‘ }

n,N

x
= sum over m (from zero here) in steps of N (i.e., m = 0,N,2N, ...) for all ?n< n (3.9)

m=O

For non-trivial CN symmetry, i.e., forN22 we have only m = Oincluded in then = 1 term, giving

the same form for the field at the origin as in (3.4). In this case (3.9) can be retitten as

{ }
W’) = Ho 7. + ~ ‘f ~an,m,g 71 n Yn,m,: (e,@) i, + ~n,m,; (f),@)

n=2 m=Oe,o
(3.10)

This shows that C2 (or higher) symmetry is also sufficient to give a z-directed magnetic field at the origin.

(No 17z symmetry has been assumed here.) By extension, since the location of the origin can slide up and

down the axis without affecting the CN rotation symmetry, this shows that everywhere on the z axis the

magnetic field has only a z component with C2 (or higher) symmetry.

Higher order CN symmetry sets more and more coefficients to zero. From (3.8) we see that the

m = Oterms are retained for all N. However, we can set all tn21 terms to zero for all n up through some

W-Iby setting

N =no+l (3.11)

13
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giving

W++

{

+
H(r)= HOiz + ~q,o,e n rn-1Yn,0X(8,~) ir + m-l Qn,o,e(O,t#)

N=2 }

()+ O rfio as r+O

WI
= Ho7Z + ~an,o,e m-*

{
n Pn(COS(0))ir +

[ 1}-$Pn(COS(8))70
n=2

.

m

(3.12)

()+O rno as r+O

So terms up through r~-l or rN-2 have no @ dependence. In designing coils for uniform magnetic

field then one can choose what one desires for a first error term as order rno and choose N = no+ 1 for

the rotation symmetry to give the form in (3.12). This leaves single terms for each n from 2 through no to

consider for possible elimimtion to obtain uniformity order r~’1.

Adpining N-fold rotation symmetry with the transverse symmetry plane gives the symmetry

group

(3.13)
a

with 2N elements. This elirnimtes yet more terms in the expansion. Combining (3.5) with (3.10), observe

that tn + n can only be odd. ‘his rduces the terms to be considered in the summation as given in Table

3.1.

Using the results in Table 3.1, the magnetic field can be written for N >3 as

(3.14)

14
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Table 3.1. Terms in Summation for CNf Symmetry

N n, tn and form of summation
N = even n = even, n > 2, m=odd
N22 n,N

z has no terms (all m = even) = O
m=O
n = odd, n 2 3, nz=even
n,N

x

n,N
has terms for m = O,N, 2N, . . . a z

m=O rn.o
N = odd n= even, n 2 2, rn= odd

N23 n,N

x

n,2N
has terms for m = N, 3N, . . . * z

rn.o rn.N
n = odd, n 2 3, nz=even
n,N

x

n,2N
has terms for m = O, 2N, 4N, .. . a z

rn.o m=O

As discussed previously, higher order CN symmetry sets more and more coefficients to zero. As we can

see now in (3.12) the m = Oterms are retained only in odd-n terms (even powers of r ). As before we an

m
set all tn 21 terms to zero for all n up through some no by setting

N=~+l

What remains in (3.14) is

;(7) = Ho 7Z +
?l&2

z /
+

‘–1 n Pn(cos(0)) 1 ? +
[ 1}

+
an,o,er : Pn(cos(e)) 1 e

n=s 1

+~rnO+l) as r+O

(3.15)

(3.16)

where the remaining terms, including the @dependent terms, have been included in the O(r”o’1 ) or

O(rN ) (or emor in the truncation). This result applies for both even and odd N.

For field uniformity we would like as many powers or r (after the r“, or constant term) to be

zero. Define the number of such terms (highest m-l with zero coefficients from r~ through m-*, as the

order of Jlehfunifomdy. l%e conditions for achieving various orders of field uniformity are presented in

Table 3.2. Note that besides the symmetry conditions, there still remain the terms for generally non-zero

e
an,o,e for n odd and n 23. Thw remaining coefficients can be made zero by appropriate choice of the

15
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spatial dependence of the currents (source for the field) within the symmetry constraints (basically the 8

dependence).
8

Table 3.2 Conditions for Various Orders of Field UNformity

Order of Symmetry
I

Additional
Field Uniformity Conditions Conditions

O(zdinxted field) Rz or None

CNwith N22 I

1 CNt with N 22 None

2 C~t with N 23 a30~ =0

A special case of interest concerns C- symmetry (continuous rotation symmetry). This implies

that only tn = Oterms remain in the expansion. As discussed in the previous section, by restricting the

currents to be +directtxi makes l-1~= Oand the remaining components are only functions of Y and z.

This also implies axial symmetry planes (C- ). Adjoining Rz symmetry gives dihedral symmetry

D.d = D_t. Examples of this symmetry are discussed later.

16



4. Further Consideration of Field Uniformity

O
.

As discussed in the previous section the magnetic field can be expanded in powers of r with

coeffiaents that are functions of 8 and @ The first non-zero coefficient of P-l (after the uniform Ho 1 z
+

term from n = 1) determines the power n - 1 of r which can be considered as the order of the

nonuniformity. Application of symmetry (C2t) has been shown to achieve second order nonuniformity

(near ? = 8). Since this wxond order nonuniformity means that the first spatial derivatives of the field

are zero, we can refer to this case as first order uniformity. Of course, even higher order uniformity is in

principle achievable by higher order symmetries and/or other special features of the loop design. In

general then, the order of the uniformity is n – 2 if #-1 is the first nonuniformity term.

As discussed in [5], kides uniformity of the field, there is the concept of uniformity of detection.

In this case, there are two sets of coils, either of which maybe considered as the transmitter and the other

as the receiver by reaprocity. The receiver is detecting the scattered field from a target near ? = ~.

This leads to the concept of the product of the fields near ? = ~ from the two coils (as transmitters) as

the quantity one wishes to be uniform. In [5] the fields were two-dimensional, allowing a complex-

variable formulation in which field multiplication was straight forward. In the present case of three-

dimensional fields expressed as vwtors, this multiplication is more complicate.

As a special case let us consider that the target magnetic polarizability ~(s) is dominated by its

z, z component fiz,z(s), and the two magnetic fields are both aligned in the z direction. Then we form

U’(3 = =2(7) “ n(s) “ %7) = Iiiz,z(s) F12(7) ● 21(7)

so that our uniformity function can be defined in the form

U?) = A(7)● 21(7)

where

(4.1)

(4.2)

(4.3)

Then assuming that the two fields have n - 1 equal to nl – 1 and n2 -1 for the first nonuniformity terms

we have

m
17
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n-l+rl
—12

+ Ho

/f2 -1 ~
—12

+ HO

(4.4)

+ . . .

}

If nl # n2 then the smallest of these dominates the nonuniformity, in which case the smaller term (say ?II)

in (4.4) gives the nonuniformity term of order nl -1. Then one can define

A(l) = su

nl 4- [ 11 72 . Y ~a(l) Ynl,m,:(014077+ Gnl,fn,; (oJ#)
e,q ‘O q ,m~m=Oe,O

(4.5)

giving Anl(*) #‘1 as a ~und on the “errol” or nonuniformity in the field. Then similar to [5] we can

define an effective distance Dnl _l via

@)=H,~+[&l+...]

1

[ rDnl-1 = A::) ‘1 ‘1

(4.6)

If q = n2, then we need to add the two sets of coefficients before finding the least upper bound over

O,@ as in (45). Of course, if we can make our two coil designs such that

Jl) -+ .:,m;=o (4.7)
q ,m~

then the system is uniform to order greater than nl – 2 with first nonuniformity term of order greater

than nl – 1.

Applying these concepts to the vector magnetic field one can form for Rl(?)

18
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where now we take the least upper bound of the magnetitude of a vector. In this case we have

t----i

+-)
Hl(r)- 21(0)

Ho
< A(l) ml-l +...

tq

(4.8)

(4.9)

with the first term as an approximate bound for r small compared to the distancwof the coil conductors

nearest ? = ?. The definition of effective distance in (4.6) can then also& applied to the magnetic field

as well.

19



5. Body-of-Revolution Coils

The special casec of interest of C= symnwtry leaves only m = Oterms in the expansion. Together
e

with the transverse z = Osymwtry plane this restricts the potential and field in (3.5) to the form ( C~t

or D~ or D.t symmetry)

-.2

xa)~(-?)= -Hoz - - an,o,~rnPJcos(fn)
n=z

-,2
++
H(r) = Ho 7Z + yZ@e Yn-1

{
n Pn(cos(f3))ir +

[ 1]
-$ pn(cos(o)) 78

n=2

(5.1)

where the notation indicates that only even values of n are included in the sum. For this case, the current

density, being divergenceless, has only a ~independent @ component. This leads to the attainment of

higher order uniformities by making successive, even-n coeffiaents zero. This leads to the weIMcnown

Helrnholtz two-coil and Maxwell three-coil arrangements, and coils of yet higher order uniformity [1,2,

10, 11].

This class of coils consists of circular coils on a sphere of radius a with each coil lying on a

constant 6. For this purpose we expand the potentials and fields both intenor and exterior to the sphere a
of radius a as

- [1

n
0$)(7) = - U~~ ~ Pn(COS(0)) O<r<a

n=l

- [i-
n–l

Or)(?) = a~bn ~ pn(ms(o)) a<r
aJn=]

(5.2)

This is the general form for C=a symmetry. The adjunction of the z = Osymmetry plane giving c-at

symmetry simply means that the coefficients for even n are all zero. Note from (3.1) that

+ Pn(COS(0))= P~1)(COS(6)) (5.3)

e
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●
Assume that the surface current density on the sphere for a single coil at O= Ozwithcument lzhas

the form

The boundary condition at r = a kin general

-)

[

~(ex) ~(in)
lr. H (7s ) -H (?s)

[

+(U) ~(in)
i, x H (7s )

1

- H (7s ) = 7’5(7’s )

(5.4)

(55)

Expand the surface current density in (5.4) in the form

.

)5,4an = J/ 3(43 - 0/)) = : ~cnP#kos(e)) (5.6)
n=l

Multiply by P~l)(cos(0)) sin(()) and integrate over 8 from Oto z (using the orthogonality of the Legendre

functions [12]) to find

Cn = *n+ 1 P~l)(COS(OZ)) sin(~l )
2n(n + 1)

Enforcing the boundary conditions at r = a gives

nun = [n+l]bn (continuity of Hr)
l!

an+bn =—cn (discontinuity of He)
a

14 P~qcos(el))(et)?I+l 1/
an = –—

2?2+1 ZCn = –=

For a set of L such coils we merely sum over 4 to give [15]

(5.7)

(5.8)

n–1
H(?) =;-l

X[ ] [{ 1 ‘l)(cos(o)) 70Pn(COS(0))?r + ; Pn
an=l
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~-PJ1)(ms(Ot)).in(Ot)i8,
4=1 }

.

(5.9) o
where now we drop the superscript (in) with the understanding that we are dealing with fields near the

origin. Similar expansions can be found for the exterior field and for the potential. At ? = @ the

magnetic field is

;(6)= ,a &94)I,H& , H()=L
t=l

(5.10)

Now for various choices of 1< and OZ we have the traditional coils on a sphere for uniform magnetic

fields. If a is replaced by a~ with diffenmt spherical radii, the above formulae (with al moved into the

summation over ~ give additional possibilities.

5.1 Single arcular loop

The first case is the single arcular loop of radius a with

11=1, tip;

for which we have

The first nonuniformity term comes from n = 3 giving for fields near the origin

{ {[
;(?) = HO 7. -Z ~3 5 cos3(e) 1-~cos(fO ir

+
[ 215in@)i’}[:1’
-; COS2(0)+A

(5.11)

(5.12)

(5.13)

+ . . .1
Thus the field is first-order uniform.
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a This special case of a circular loop also has a solution for the fields in terms of elliptic integrals [4,
.

15] as

Hz(Y#z) =

Hlp(w,z) =

W)=

where m, is called the parameter of the elliptic integrals [12]. On the z axis this reduces to

Fkzi’z) = Hz(o,z)i’z
3

[ [1]

2 -~
Hz(o,z) = + 1 + :

(5.14)

(5.15)

a This solution can be applied to multiple circular loops by summing the fields of the individual loops,

allowing for the various loop currenk, radii, and shifted coordimtes. For numerical computation of the

fields for general ?/a (not necessarily small) these closed-form expressions should be more efficient.

5.2 Two circular loops

Considering two coils with a z = Osyrnnwtry plane gives

q=l’=1 ,fi= z-e’

COS(62) = - cos(~ ) , sin(~) = sin(~)

Then set the n = 3 term in (5.9) to zero as

(5.16)

(5.17)

Cos((+) = [$]; , sin(%) = [~~ , tan(~) = 2, ~ = 63.43°
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In terms of the cylindrical coordinates the two loops are located at

Y1
[1

4+

[1

1; Y1
=W2=~ a,zl=z2=~ a, —=-~=2

Z1

This gives the usual Helmholtz<oil configuration with the spacing equal to the radius.

With the above constraint we then have

The first nonuniformity term corms from n = 5 giving

++

{ {[
=iz-5T 9 a Cd(e) - : COS3(e) +

1

+
H(r) f COS(0) 1 r

-&l~s4(a)-

4

}[1 ]
14 COS2(6J)+ 1]sin(0) 70 ~ + . . .

(5.18)

(5.19)

(5.20)

Thus, the field is third-order uniform.

5.3 Combined coils for three-axis magnetic fields with third-order uniformity

At this juncture, let us consider how we might combine the Helmholtz coil with other coils to

give a set of three coils, each of which can be driven to give separately three orthogonal fields near

? = 8. Appropriate care needs to be given that the presence of each coil does not signifiuntly perturb

the fields of the other two, such as by presenting a shorted loop orthogonal to the magnetic field of one of

the other loops. In addition, it is desirable that each coil not induce an open circuit voltage in another

coil, a result which can be achieval by symmetry.

One way to design such a threeaxis system is with thr= Helmholtz coils with axes aligned with

the Cartesian (x, y, z) axes. If the three loop pairs are each as di~ussed previously, with equal

dimensions, except rotated to align the fields with the three orthogonal axes, then one needs to take care

that, on the eight positions on the sphere of radius a where the loops would intersect, each conductor is

slightly displaced from the others so that electrical contact is not made among these conductors.

Considering just the three coils (conductors without currents) the gcwmetry has octahedral (0) symmetry, m
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adpined by symmetry planes. Adding the conductors to drive the currents in the three coils, these can be

● positioned outisde the loops using appropriate symmetry planes so as to avoid disturbing the fields from

all three coils.

One can also make a three orthogonal singl~loop system using the results of Section 5.1 (with

first-order field uniformity). This can also have octahedral symmetry, such as in the case of the

octahedral thmeaxis loop (03L) sensor [14]. Instead of bringing the connecting conductom for the drive

currents to the center (? = ~), however, these additional conductors will need to be outside as

discussed above.

Another interesting way to make a tbaxis system with third-order uniformity is illustrated in

fig. 5.1. Here, the Helrnholtz coil with conductors on ( V, z)= ( W~~ ZI) produces a z-directtxi magnetic

field as discussed above. Combined with this are two two-wire loops as discussed in [5]. These have

been analyzd as two-dimensional structures to give third-order uniformity by placing the wires parallel

to the z axis on planes specified by planes of constant ~ equal to certain integer multiples of z/6 as

indicated. These wires are all located on a circular cylinder given by Y. ‘Po. The currents on each of the

coils are labelled with superscripts according to the orientation of the magnetic field at the origin

produced by each of these coils. Positive orientation for the currents on the two-dimensional coils is the

+z direction.

The symmetry of this configuration of conductors is a 4-fold symmetry axis (z axis) with axial

● symmetry planes (CA) together with a transverse (z = O) symmetry plane. This gives dihedral D4f

symmetry. Note that the coils for the x and y coils need to be closed at top and bottom (say z = ~).

This can be accomplished while preserving the above symmetry, if desired. An interesting form of this,

as indicated in fig. 5.1A, has these conductors remain on the same planes of constant @ as the wires to

which they connect. Then the magnetic field from the D-t z-coil which has only Y and z components

passes between these conductors with negligible distortion. Note, however, that as these conductors

approach the z axis, they should connect across to the conductor closing their respective loop, and to no

other conductors there (at least at either top or bottom) so that shorted turns are not formed in one coil

that exclude magnetic field from another coil. There are also other configurations for closing the x- and

y-loops at top and bottom while retaining the symmetry and avoiding coupling among the three coils.

Adding conductors outside the coils to drive the currents in the three coils, these can be locatd on

appropriate symmetry planes to avoid disturbing the various fields.

There is still the question of the relative sizes of the coils. One can choose Y. and WI with a

great degree of fredom. In the context of a walk-through metal detector, the vertical spacing (height)

betwcwn the two z-loops is 2Z1 = W1,and the horizontal spacing (width) betwem the vertical conductors

for the x-loops is Y.. One could then, for example, choose WI/Y. as 2 or 3, like a typical door. Of

●
course, there neds to be some space (clearance) allowed so that the target does not come too close to the

loop conductom.
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A. Top view
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Side view

Fig. 5.1 Combined Coils for -Axis Magnetic Fields with ThirdQrder Uniformity
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,

There are yet other design questions. How large should w / ‘1’obe so that end effects for* X-

*
and y<oils are not significant (or allow some appropriate correction to the field)? The coils in fig. 5.1 are

appropriate as transmitters, since in rweption they are sensitive to externally incident low-frequency

magnetic fields. These coils then need to be combind with a different set of 3-axis receiver coils.
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6. Special Ring Coils

Q
One of the design considerations for receiver coils is insensitivity to externally incident,

approximately uniform, low-frequency magnetic fields (such as 60 Hz or 50 Hz) [51. This requires (by

&proCity) that in transmission such coils have no net magnetic dipole nwment. One way to achieve this

is to place loops on a constant cylindrid radius y, carrying equal but opposite currents so that the dipole

monwnls canal.

For this purpose we can rewrite (5.9) as

At ~ = ~ the magnetic field is

.

(6.1)

(6.2)

Q

By various choices of the 14, at, and 6f numerous coil designs can be explored.

6.1 Single ring coil

By a ring coil, let us mean something like that illustrated in fig. 6.1, consisting of two coaxial

circular loops of the same cylindrical radius !?’, carrying qua] but opposite currents. This has zero

magnetic dipole moment, but of course has a magnetic quadruple moment. The two loop coordimtes

are described by

We will set

‘?f=’l’’=wo, 1=11=-1’ (6.4)
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Fig. 6.1. Quadruple Ring Coil
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Then write

Z2=Z1+AZ=Z.O+AZ

a2=a~+Aa=ao+Aa (6.5)

02= fi+AO=@+A9

As this indicates, we are concemai with two closely spaced circular loops of equal area. In taking the

limit of close loops, let us maintain

m’ = IAz (6.6)

constant as & + O. Here, m’ takes the form of a line-magnetic-dipole moment. However, as a vector, it

is pointing in the iv direction as illustrated in fig. 6.1. As a vector, when integrated around the ring, the

net result is zero, so m’ should be thought of as only characterizing an incremental length.

Now, from (6.1) we have the magnetic field from our ring coil as

~(in) -

{{

n–1
H (73= m’~ Pn(cos(6))7r +

}[ 1
~ p#(COs(e))iO ~

n=l

&{-pi1)(~4@))sin(@) +pJ1)(~<%+Ae))sin(@ +A4][W;J}

HO =
{

& sin2(@) - sin2(@ + A6) ~~h
}

As this form suggests, we can consider the limit as & + Oso as to obtain more convenient formulae.

Let us relate Az and

small AO. For Az we have

Zo=

Z(-)+AZ=

=

AZ=

Y(-)Cot(eo)

(6.7)

Aa to AOvia the leading terms in a power (Taylor) series expansion for

Yo cot(Oo+ A6)

Yo[mt(oo) - CSC2(OO)AO+ 0((AO)2)]

- YOcw2(00) A8 + 0((AO)2)

= -q) csc(@)AO + 0((AO)2)

For k we have

(6.8)
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q) = Y(JCsc(eo)

~+ Au= TOcsc(@)+AO)

= wo[csc(~) - Csc(eo) cot(~)A@+ 0((AO)2)]

Aa= -q cot(~)AO + 0((AO)2)

Then there are various functions to expand as

sin(~ + At)) = sin(~) + cos(@)A8 + 0((AO)2)

=1+ ncot(@)AO + 0((AO)2)

[
P$*)(cos(@ + A(?)) = P#(cos(@)) + ~ Pn

1
d (l)(COS(OO))AO+ 0((A(9)2)

Concerning the associattxl Legendre function we have [12, 13]

a d p(l)(cos(@)
$ P#)(cos(0)) = - sin(6) ~ cm(~)

d p:*)(~) =
d~

g~ - q-l P$(g) + n [n+ ql - q-i Pn(g)

d (l)(COS(0)) = – cot(e) Pj%cow)) - ?z[n+ 1] Pn(cos(e))~ Pn

Collecting terms and taking the limit as AO-) Owe have

1
{ [1
-P#)(cos(OO)) + P~l)(cos(~ + AO))sin(OO+ Ad) *

2a@

sin(~) 1

{[ 1
d P#(cos(~)) [AO]sin(80)‘-~~ ~

+ P~l)(cos(@)) cos(~ ) Atl+ P#(cos(OO)) sin(~ ) n cot(@)AO}

sin(~)

{ 1
d P(l)(cm(@ )) + [n + 1]cos(eo)Py (m(~)).-.3 sin(80) —

d% n

{
= g cos(~) P#(cos(@)) + n[?l+ 1] sin(%) P*(COs(@))@2

1
- [n+ 1]cos(eo)P# COs(eo)

(6.9)

(6.10)

(6.11)

(6.12)



(6.13)

HO = ~ sin2(60 ) cos(~ )*Q2

Consider briefly the special case of @ = z / 2 giving HO= O, i.e., zero field at the origin. More

generally, this case is an anfkymmetric field, implying HZ is an odd function of z. As discussed in

previous sections, it is desirable to have a symmefricfield with respect to the z = Oplane. This leads to the

desirability of multiple ring coils at other values of ~.

6.2 Two ring coils

The result of (6.13) can be generalized to an arbitrary number L of ring coils as

Jim) -

{{ 1
1 %Os(e)) 1 e r(7)=~ Pn(cos@))ir+; Pn

+
H n–1

n=l

HO =

(6.14)

where the ring coils can be at various at ,04 with excitations m;. As discussed previously, we would

like to have a symmetric field distribution for field uniformity near the origin. This is accomplished by

choosing L even and pairing rings as

(6.15)
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This is suffiaent to assure that only odd n appear in the sum.

m
A special case of interest for this symmetric field distribution is two ring coils as in fig. 6.2 with

L=2 , &=z-t?I, a2=a~=a
Y2 = WI , 22=-21 , m~=-m~=nz’

(6.16)

Then (6.13) becomes

~(in) , -,2

E{{ )1

n-1
H (?)=~ * %xX(e)) ;a2 pn(c040))ir + – Pn

n
n=l

sin(~) [n[n + 1]sin(t+ ) Pn(cos(&))- n cw(~) P#)(cos(%))]} (6.17)

Ho = ~ sin2(tll) cos(81)

Note in fig. 6.2 how the reversal of the currents in the second ring coil makes the currents (and hence the

magnetic field) symmetric with respect to the z = Oplane,

● Consider the dependence of then= 3 coefficient on ~ as

sin(t+) {n[n + I]sin((i$) Pn(cos(@ )) - n cos(~ ) P#)(cos(~))}

{3 sin(~ ) 4 sin(81) ~~ cos3(~ ) – ~ cos(~ )1 + ~ cos(~ ) sin(~

This coefficient is zero (for ~ *O, n/2) at

1 1

[
5COS%: –1

1]

[1

s;

[r

4;
cos(fi) = ~ , sin(fi) = y , tan(%)= ~, ~ = 49.89°

Note that this result differs from that for the Hehn.holtzcoil in (5.17) and (5.18).

(6.18)

(6.19)

. .
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Fig. 6.2. Two Ring Coils for Symmetric Field Distribution,
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With the above constraint we then have

The first nonunifonnity term comes from n = 5 giving

{ {[
;(7) = Ho iz -: ; cos5(e) - ; cos3(e) +

1
f COSWU 77

1 }[1

4
- ~ PI COS4Q3 -14 COS2(6)+ 178 ~

(620)

(6.21)

+ . . . 1
Comparing this result to (5.20) for the Hehnholtz coil we see that the fourth derivative in the present

example is somewhat larger, but the result is still third-order uniform.

This two-ring coil has the advantage in reception of being insensitive to uniform externally

o
incident magnetic fields. If a Helmholtz coil is used as the transmitter, there will be some coupling to the

two-ring coil because the magnetic field of the Helrnholtz coil is not perfectly uniform. One can adjust the

relative sizes of the two coils, keeping them coaxial with mrnmon origin. By making the two-ring coil

smaller than (contained within) the Helrnholtz coil one can try to minimize the mutual coupling. Using

the results of (5.14). For a single loop, one can calculate the magnetic field throughout space for the

Helmholtz coil. (See plots in [1, 2,10,1 l].) Ideally, the Helmholtz field should be perpendicular to ~Y

at the ring coils (fig. 6.2). One can, of course, make each ring coil so that nz’ is moved in a direction

slightly off from i’w (retaining antisymmetric field) so as to be exactly perpendicular to the Helmholtz

field. The resulting small sensitivity to externally incident fields can be cancelled by other means. Note

that the formulae for the ring coil are only an approximation, since in practice Az is not zero. 50 one can

consider the placement of each of the coils in the ring for best results.
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7. Arrays of Small Numlxrs of Elementary Magnetic Dipoles
4

As discussed in Section 3, one need not have complete rotation symmetry ( Cma as discussed in a

Sections 5 and 6) to still have various degrees of field uniformity. Table 3.2 shows that CNf symmetry

with N = 1,2,3 can give interesting field-uniformity conditions. Besides the Rz part of the symmetry

(giving a symmetric magnetic field with respect to the z = Oplane), there is the N-fold rotation symmetry

(about the z axis) CN. Let us now consider combinations of magnetic dipoles, appropriately positioned

and oriented to achieve such field uniformities.

Consider an elementary magnetic dipole fio at some position ?O as indicated in fig. 7.1. Then

we have

Flo(a
‘sbTRiR-”il”$o

-) +
ro = wolw+~iz

(7.1)

;= 7-70 , R=lil ,Yo=b’ol

-) ~-)
1’= -ro

R

Considering the orientation of E)o, if it is oriented in the @direction then the magnetic field at the origin

has no z component, as can be wm from (7.1) or from symmetry considerations. So let us restrict 7?0 to

have only W and z compnents. The vector then lies in (is parallel to) a plane of constant @ and its

orientation can be described by an angle ~m with resptxt to the z axis as indicated in fig. 7.1. This

constant-~ plane (including its extension through the axis by addition of z to @ ) is a symmetry plane

about which the magnetic field is antisymmetric.

The z component of the magnetic field on the z axis (i.e., Hz(z iz )) is indepmdent of which

constant-~ plane one chooses for placing ~0. Then one can superimpose the fields from various such

magnetic dipoles on various constant-~ planes and obtain the same Hz (z Iz ) as if these magnetic dipoles

were all on the same constant-~ plane. Later, the choices of the constant-~ planes will be used to obtain

the desired CN symmetry. For the moment let us consider the Rz part of the symmetry.
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Fig. 7.1 Elementary Magnetic Dipole on Plane of Constant @
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7.1 Two magnetic dipoles with Rz symmetry

As illustrated in fig. 7.2, let there be a second magnetic dipole at ~Z ● ?0 (or (W, z) = (Yo - q))

of moment - ~Z ● ;O to give a symmetric magnetic field with respect to the z = Oplane. By replicating

this special pair on planes of constant @on successive rotations by 2z/N, the desired CNf, symmetry as

in Table 3.2, can be achieved. So let us consider the properties of such a pair for the magnetic field near

the ongin.

For a given orientation angle 6m for the dipoles, we can regard the resulting field as the

superposition of the fields for two cases given by tlm = O,Z/ 2. Each of these needs to be weighted by

COS(6m) and sin( Om) to give the result for an arbitrary tlm, since we have

20 = WI Sin(f)m)iv + ~0 COs(om)iz
(7.2)

-22 . fio = - mo sin(tlm)iv + mo c05(om)iz

So let us consider ~ch of these cases separately.

72 tlm =
+ +

z/2, mo=mol~

Consider the magnetic field from the first dipole at ?0. Along the z axis the z component is

Ho= (Z 72 ) =
33[iR”izl[iR”iyl

.-~[z_a]

=-~[z-%][[z-q]z +w;f

The first two z derivatives along the z axis are

$HoZ(2iZ) = – *{[[.-zo12+%]-hz-zo12[[z-zo12+%?]-q

d—Hoz(ziz) = –
{

~ -15[Z-ZO][[Z-ZO]2 +Y;]-:&2

- 35[2-20]3 [[z-qf + Y;]-;

1

(7.3)

(7.4)

3a
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Fig. 7.2 Two Elementary Magnetic Dipoles on Plane of Constant @ with Rz Symmetry

39



.- -.

.

.

The total magnetic field includes a amilar term from the second diple at ~Z ● To. At z = O,the

Rz smmetry makes there only be a z component of the field with odd z derivatives zero. Including a *

factor of 2 for the two sources gives at the origin

m) = ~VOqro -572 _ ‘O ~-3
2Z 0

cOs(m) sin(~) 72

The second derivative can be set to zero by choosing

1

[r

zo_~2 Y(-J
Cos(q-j) = ~ – , , Sin(eo) = ; =

tan(h)=:=z ~ # 60 = 49.89°

(7.5)

(7.6)

in exact agreement with (6.19) for the ring coils in the previous section. This should not be surprising

since the two dipoles form a quadruple (as do the ring coils), and rotating the two dipoles around the z

axis (by varying @ describing the dipole locations) and adding (integrating) the sources and fields over 2n
*

gives the ring-coil results. The present case of two dipoles giving a quadruple also makes this

configuration insensitive to an externally incident uniform magnetic field, a good property for receiving

coils.

For this special case, the magnetic field at the origin is

(7.7)

and the first three z derivatives of the z component are zero there. This is a case in which the a3,0,C

coefficient is set to zero as in Table 3.2. While the present results are based on the z derivatives of the z

component on the z axis, this is extendmi to all derivatives at the origin via Table 3.2. For example, third-

order uniformity is achieved by (7.6) together with four pairs of such magnetic dipoles placed on planes

of@ = O,n/2, n, 3 n/2 which are just the x = Oand y = Oplanes to adpin the four-fold rotation symmetry

C4 to the reflection symmetry Rz for each pair.
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7.3em=o, 20=~i’z

For the complementary orientation of SO parallel to ~z, the field from the first dipole has a z

component along the z axis as

Hoz(Z iz) s ~[p.~zly

{* 3[2- 20]2 [[Z-4]* + Y:]+ - [[z-q]*+ Y:]+

I

(7.8)

The first two derivatives along the z axis are

{

5+
:Hoz(z Iz) = *

1

-—
9[Z- Zo[[z - ZO]2+ w: 2

-Iqz-zo]z [[Z-%]2 + w:]+ 1
J2

{

5

—240Z(ziZ) = ~ 9[[Z-%]* + Y;]=&2

-qz-zo]z [[z-q]z + Y;]-~+loqz-zo]4 [[z-zo]z + Y;l-% I
As in the previous case, inclusion of the term from the second dipole makes z = Oa symmetry

plane with only a z component of the field there with odd z derivatives zero. Including a factor of 2 for

the two sources gives at the origin.

~(~) = ~ r~5~ z: - r;] i’z = ~ r~3 ~ ms2(60)– 1] iz

82

{

- 3mo~043r# –30r~z~+35Zf
~ Hz(?

++ 2Z [ 1
r=O

The second derivative can be set to zero by choosing

(7.9)

(7.10)
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1

[ [TJ12
262

Cos(q) = : = $*--
75

= .861, .340

1

(7.11)
[ [rJ1;

sin(%)=~=~+;$z = .508, .940
117

@ = 30.56°, 70.12°

This gives two choices for dipole location for our consideration. In both cases, the dipole pair has a net

dipole moment, making it sensitive to an externally incident uniform magnetic field. This type of dipole

pair, including its extension to additioml constant-~ planes, is then more suitable for transmitting coils.

For this special case, the magnetic field at the origin is

mo .3
Z(O) = ~ r.

2

[11

_+ 66; ~ r-3 [1.225, - .653]
7 -73 ‘2X0

J

(7.12)

As before, adjunction of C4 symmetry makes all first three derivatives at the origin zero as in Table 3.2. m

Note that the two cases of @ in (7.11) give quite different results in (7.12), including opposite signs of the

fields at the origin.

7.4 General 6m

Combining the results of Sections 7.2 and 7.3 using (7.2) for general Ombetween Oandz/2 we

have the magnetic field at the origin as

(7.13)

The second z -derivative of the z component at the origin is
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[
22+,05zf]ms(&)]4-90rOzo+9r0

This second derivative is made zero by rquiring

H3 3-_~5
m

105 cos’%1)) - 90 COS%O)+ 9=—
35 Cos%o) – 15

(7.14)

(7.15)

So, for a given 00 one can readily calculate a Omto meet this condition. Alternately for a given Omwe

can solve the quadratic equation for [z. / T]2 as

[1

4

[1

2
0 = 105 cos(e~ ) : + [35 sin(Om) -90 cos(tlm)] ~

+ [9 COS(tlm) – 15 sin(Om)]

[1

2
Zo

= Cd(eo )
K

(7.16)

{

= ~ 90 cos(om) -35 sin(em) * [[90 cos(Om)-35 sin(em)]2 - 42~9 Cos(tlm)-15 sin(Om)]]i
210

1

This gives a variety of possibilities for combinations of 60 and L9mto obtain third-order field uniformity.

75 Combining transmitter and receiver arrays

For the receiver array the cost of Om= n/ 2 in Section 7.2 is appropriate due to its insensitivity to

externally incident uniform magnetic fields. Denoting this mse by subscript r we have
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[[1]

3;
= arccos —

7
= 49.89°

Zr [13;—=.
7

= .455
r,

[r

Vr 4 ;=.%—=-
rr 7

z, [J3;—=— = .866
Y, 4

(7.17)

For the transmitter array, the case of general Omin Section 7.4 is appropriate. Denoting this case

by subscript f, there are various possible combinations of Omtand et that one might use, together with

the choice of rf.

Noting that the receiver coils are oriented to have zero coupling to a uniform magnetic field, then

one might place these “inside” the transmitter coils which are producing an approximately uniform

magnetic field near the origin. So one might choose
o

rr<q (7.18)

How small one should choose rr / rt depends on how little coupling between the two arrays one desires.

Of course, there is also the choice of the (lmt , f)t combination (Section 7.4) available for also minimizing

this mutual coupling. As a practical matter, one would not like rr to be too much less than rt since some

fraction of r, (the smaller) is what one has available for placing targets (scatterers). Furhterrnore rf

should not be too large so as to avoid excessive physical size of the array.

Combining the two magneticdipole arrays, the symmetries of the combinwl arrays also need to

be appreciate. As illustrattxi in fig. 7.3, there are two cases of interest. Choosing N = 4 for each array

for third-order field uniformity, each array has four axial symmetry planes, two containing the dipoles

and two interspaced half-way between (angles of n/4 Mween successive symmetry planes). Note that

the axial symmetry places increase C4 to C4a symmetry (eight elements). ‘l”hk allow the dipole-

containing planes of one array to be coincident of the dipole-containing planes of the other (fig. 7.3A) or

to be spaced between them with bisected angles (fig. 7.3B). Fig. 7.3 gives a top view (in the – ?Z

direction),
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Fig 7.3

A. Coincident planes for arrays

Views
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showing only the dipoles in the upper half space. Those in the lower half space are related to these as in

fig. 7.2 to give Rz symmetry so thateach array has C4at symmetry (16 elements) which can also be a
regarded as dihedral D4f symmetry with the qualification that rotation about the four 2-fold axes has a

sign change on the magnetic dipoles. Note also in fig. 7.3 that the transmitter dipoles (with superscripts

to distinguish the different constant-~ planes) have only horizontal compmients (i.e., parallel to the z = O

plane) while the transmitter dipoles have generally both horizontal and vertical components.

Comparing the two cases, note that the coincident planes in fig. 7.3A allows a clear path through

the arrays (along either the x = Oplane or y = Oplane) for a walk-through metal detector. The case in fig.

7.3B is more crowded in this regard. In both cases, the optimum choice of ornt (implying et) is a finction

of rr / q. Assuming rr / q is not small (compared to 1), the expansion of the transmitter fields at the

receive dipoles in powers of r as in Section 3 is not appropriate. More detailed calculations are neded to

minimize the coupling between the arrays.

7.6 Combining dipole arrays with other kinds of transmitter coils

In Section 5, body-of-revolution coils such as the Helmhohz coil were considered for producing a

uniform zdirwted magnetic field. As has &n noted in Section 7.2, the special receiver array has some

properties similar to the special ring-coil pair discussed in Section 6. In particular, the coupling of the a

receiver array to the Helmhohz coil has the same positioning problem for minimum coupling due to the

solution for % for the dipoles with Om= 90” being the same as for the ring coils in (6.19).

Referring to fig. 5.1, we see how a Helmholtz coil may be combined with (approximate) two-

dimensional coils for Hz and I-ly withoutmuhmlcoupling (achievedby symmetry). Bothtransmitter

and receiver dipole arrays discussed here also have the property of not coupling with such two-

dimensional coils due to symmetry. In [5] there are discussed not only the Hz and HY coils in fig. 5.1,

but also line magnetic dipoles (two dimensioml) for Imth transmitting and receiving Hx and Fly. Again

symmetry makes the line dipoles not couple with the dipole arrays discussed here.

7.7 Other kinds of dipole arrays

Here we have addressd only the most basic types of dipole arrays, starting with two to obtain

the Rz symmetry, and then adpining rotation symmetry CN. One need not be limited to two magnetic

dipoles to achieve Rz symmetry for a symmetric magnetic field with respect to the z = Oplane.
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The mse of three magnetic dipoles is illustrated in fig. 7.4. Here the case of two dipoles in fig. 7.2

m
is extended by the addition of

+
ml = ml 72 (7.19)

at (Y, z) = (WI, O). This, by itself, has the appropriate symmetry, consistent with that for the other two

dipoles. A special case of this has

em=o, ZO=nfoiz (7.20)

as in Section 73. If, in addition to this, we require

ml = - 2m0 (7.21)

then we have the property that the net magnetic dipole moment is zero, making the array insensitive to

uniform externally incident magnetic fields. This is an alternative to the design in Section 7.2 which also

has this property. Note that as we increase the number of dipoles we have additional parameters (such as

a Y1 here) available for optimization.
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Fig. 7.4 Three Elementary Magnetic Dipoles on Plane of Constant @ with Rz Symmetry
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●
8. Magnetic Dipoles Distributed along Paths Parallel to the z Axis

In the previous section, we have considered distinct magnetic dipoles, idealized as located at

points. Now, consider distributions of such dipoles along paths in space desaibed by a magnetic dipole

monwnt per unit length. For present purposes, such paths shall be taken as parallel to the z axis.

8.1 Dipole moments parallel to z axis

As a first case, let the magnetic di@es by oriental parallel to the z axis or a path in a constant-o

plane given by Y = YO as illustrated in fig. 8.1. Instead of the discrete di@s as in Section 7.3 we now

have a distributed magnetic dipole moment per unit length described by

-) +
m’(z) = m’(z) 1 z (8.1)

Consistent with the requirement of Rz symmetry we now have an even function of z as

??l’(-z) = m’(z) (8.2)

● giving a magnetic field symmetric with respect to the z = Oplane.

Taking the result for a single magnetic dipole in (7.8) gives the z component of the magnetic field

on the z axis as

m
-)

HZ(ZIZ)=*J

-

Changing variables gives

2’–2
— = tan(v)

Y(-J

5 3

I

3[2 - Z’]2 [[z – 2’]2 + Y~]-~ – [[z– 2’]2 + Y~]-~ m’(z’) dz’

# dz’ = W()SeC2(V) dv

lr/2

HZ(Z?z) = ~ J[3sin2(v) 1
- 1 COS(V) nf(z’)dv

dflo _~/2

(8.3)

(8.4)
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Another change of variables gives

a u E sin(v) , h = cos(v) h
1

2’-2—=
Y(-J [1

tan(arcsin(u)) = u 1- u2 ‘~

u=5in[arm(&))=2++[*TS
1

Hz(2iz)= + j~u2-I]m’(z’)dz’
*fro-1

(85)

Now consider choices of m’(z’). Start with a constant magnetic dipole moment per unit length

giving

m’(z) = m’
1

[ 11
Hz(ziz) = ~ 3u–u= o

4nw;
1

e More generally, it can be shown that

++
H(r)=d

(8.6)

(8.7)

except, of course, “inside”the infinite solenoid formed by the distributed magnetic dipoles. So an infinite

(uniform) solenoid has zero magnetic field outside it. AS the length tends to infinity the field is like that

of two magnetic monopoles (qual magnitude and opposite sign) being moved ever farther away.

This result can also be understood from reciprocity. Consider a dipole (as in (7.1)) oriented in the

z direction and located at the origin. On the dipole path at Y = YO we have

Hz

[

.0 for 1~ .%

>0 for Izl .%
(8.8)

The dipole at the origin couples to the solenoid (dipole path) with different signs as one considers

*

different positions along the solenoid. One could use this property by reversing the sense of the solenoid

(change the sign of m’) for certain regions of z consistent with (8.8) to make the signals add instead of
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cancel. Referring to %xtion 7.3, one can also see this phenorrnmon in the two choices of optimum location

(via angle ~) for z-oriented dipoles giving opposite signs to the magnetic field near the origin as in (7.12).
*

A disadvantage of reversing dipole orientations according to (8.8) concerns target location. As

the magnetic dipole representing the scatterer moves up and down along the z axis one is limited in the

extent one can move away from the origin and retain this property of optimum polarity of the solenoid

elements.

8.2 Dipole moments perpendicular to z axis

The complementary case has the magnetic dipoles oriented perpendicular to the z axis, but on

the same path in a constant-~ plane given by Y = YO as illustrate in fig. 8.2. Now the distributed

magnetic dipole per unit length takes the form

2(2) s ~’(z) 7Y (8.9)

Furthermore, consistent with the requirement of Rz symmetry we now have an odd function of z as

??2’(-2) = - m’(z) (8.1O) *

giving a magnetic field symmetric with respect to the z = Oplane.

The result for a single such dipole in (7.3) gives the z component of the magnetic field on the z

axis as

y: J[Z’-ZI[[Z’-Z12 + %l-g m’(z’)dz’Hz(2iz)= —
-

Changing variables gives

Z’-z
— = tan(v) ,

Yo
dz’ = Y sec2(v)dv

1
lr/2

Hz(ziz) s — J sin(v) COS2(V)nz’(z’)dv
%2? .~/’

(8.11)

(8.12)
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Fig. 8.2 Distributed Magnetic Dipoles Oriented to z Axis
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At this point, choose the simplest form of m’(z) consistent with (8.10), specifically as first power

in z (linear variation), specifically
a

m~
m’(z) = — z

zl

21 = convenient scaling distance
nqj = reference dipole moment per unit length

Converting to the v variable

m~ ,
m’(z’) = —z = ~ Yo tan(v) + z]

21 #

(8.13)

(8.14)

Inserting this into (8.12) note first that the constant term m~ YOz/ Z1 gives zero since the integrand is an

odd function of v. The remaining term gives

z/2
Hz(ziz) = ~ J sin2(v) COS(V)dv

4nwozl _n,2

Changing variables gives

u = Sin(V) , du = COS(V) dv

1

1U31Hz(ziz) = * J
m~

47PPOZ1_l
u2du = — —

47CYOZ1 3
1

(8.15)

(8.16)

mij=—
6f10zl

which is conveniently independent of z.

Consider for a moment how one might realize such a dipole distribution as in (8.13). One simple

realization is the crossed wires (connected in series to have equal but “opposite” currents) as illustrate in

fig. 8.3A. Here the X shape makes the wire spacing d(z) a constant times z so that

(8.17)
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Fig. 8.3 Coil Designs for Linear Variation of Magnetic Dipole Moment per Unit Length View in WDirection

55



7

Note that the view is from the z axis looking in the Wdirection. ‘l’heangle between the wires should not

be large so that d(z) e e YO, and we can think of the coil as being approximately located on a plane of
e

constant @ (Later the coil will be truncated at z = ~ Z. so that ~(z) is bounded.) Where the wires cross

at the z = Oplane they need to be slightly displaced so that they do not touch.

Another realization of this type of dipole distribution is illustrated in fig. 8.3B. In this case

multiple loops are used, each of the same wim spacing, but beginning at different distances from the z =

O plane. As an approximation, the number of coils (each with equal currents I) at a given z is

proportioml to z. The beginnings of successive coils need to be spaced a distance small compared to ‘3’0

to approximate a continuous variation. Note the sign reversal as one gcws to negative z.

& a practical matter, the structure needs to be of finite extent in the z direction, and this will have

an effect on the magnetic field produced. So now let (8.13) be modified to give zero for l+> ~, i.e.,

(8.18)

At z = * zo, there are appropriate connections to close the loops in fig. 8.3 to maintain current

continuity and coruwt to sources. m

The int~al in (8.12) is then changed to

v+

I-Jz(z~z) = ~ ~sin(v) COS2(V)ndz’) dv
dflo v_

[)

20–2

[)

20+2
v_ = arctan — , v+ = – arctan —

Yo Yo

(8.19)

The two terms in m’ in (8.14) lead to two integrals. Similar to (8.15), but with different limits we have
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[[1]

2 -j
u_ = sin(v_ ) = -= 1+ =

Vo Yo

1

[[1]

2 -y
q E sin(v+) = ~ 1+ ~

v+ u+

J
sin2(v) cos(v) dv =

J ‘2du + W-us]
v_ u_

We also need a second integral with a different change of variable as

v = COS(V) , dv = - sin(v)dv

2’-2—=
[1

tan(arccos(v)) = V-l 1- V2 ~
Yo

‘=m{arc’n(G))=[’+[Grr
[[1]

2 –1
z~+z

v- = cos(v_) = 1+ —
‘PO

2-1

[[1]

z~–z
v+ = Cos(v+) = 1+ —

Yo

v+ v+

Isin(v) cos2(v)dv = -
~

13
[

v2dv = — V_ – V:
3 1

v_ v.

Combining these results we have

(8.20)

(8.21)

z-—
Y(J [[1]

z _;

20–2
l+—

Yo –
1 -+
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At z = O,this simplifies to

‘z(d)= 62z1[*T[+[%rr=*’”s3’@’

where @ is the same as used previously (Section 7). Note the consistency with the previous results in

(8.16) as 60 +0.

Evaluating the z derivatives along the z axis we have

[1
2

20+2
+—

Y()

5.—
2

!

.[-[l+[yrp+[l+[YrP]

which is zero at the origin (as are all odd derivatives). The second derivative is

(8.24)

m

7-—
2

(8.25)
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*
At the origin this is

m 7

(8.26)

Since this second derivative is not zero (except in the limit of ~ +00 with non-zero field at the

origin), let us modify the design as indicated schematically in fig. 8.4. Where we have truncated the linear

distribution of magnetic dipoles as in (8.18), let us add lumped (discrete) magnetic dipoles at the

truncation positions (z = *20) of the form

{

+
+ rnolyatz=zo
m=

–mo iv at z = - Z(J

(8.27)

This is precisely the configuration treated in Section 7.2, and the results there can be added to the present

results.

The two contributions to the second derivative are added and set to zero to give

Defining a parameter

.

7.—
2

[1

3
_, ~

W()

z –;

[1])1+ ~
Y(J

to normalize the two magnetic-dipole contributions, then (8.28) gives

(8.28)

(8.29)

(8.30)
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Fig. 8.4 Distributed Plus Two Lumped Magnetic Dipoles Oriented Perpendicular to z Axis
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G
as the criterion for a zem second derivative. For tno to have the same sign as M, and the Iumptedand

● distributed dipole moments to effwtively add we need

%)>3
Y(-) T

(8.31)

Note that equality in this equation implies that ~ = Oand the situation is the same as that in Section 7.2

with only lumped dipoles. As q / ‘4’0becomes large we have

[[012
1+0 ~ Zo—+m

Yo as Y()

so that qj + Oand the ideal uniform-field case on the z axis in (8.16) is approached.

Now the magnetic field at the origin can be found from the two contributions as

Applying the constraint in (8.30) gives

(8-32)

(8.33)

(8.34)

a This can also be expressed in terms of m~ as
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For large .0/ ‘Po, this gives

Hz(d) = M
6 Z YOZ1

showin the asymptotic behavior toward (8.16). For the special choice of

Zi3— = 1.144
Yo

(8.36)

(8.35)

(8.37)

m

The result in (8.35) is the same as in (8.16), thereby giving the same result as the infinite array at the

origin. From (8.29) and (8.30) the requisite value of mo can be obtained to correspond to the selected m~

and zo / YO in (8.35).

So, now we have the conditions for the first three derivatives of Hz to be zero at the origin. This

is extended to all field components at the origin by the adjunction of other symmetry as discussed in

Section 3. Specifically C4 symmetry is adequate for this purpose. So one need only replicate the diple

distributions discussd here as four such arrays spaced by successive rotations of the constant-$ plane

(e.g., as in fig. 8.4) by 7c/2 (900).
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9. Concluding Remarks

m
This paper has explored the use of symmetry to aid in the design of three-dimensional coils for

producing uniform magnetic fields (or receiving magnetic-dipole fields uniformly). Third-order field

uniformity (as in the well-known example of a Helmholtz coil) can be achievd by C4t = C4 @ Rz

symmetry together with adjustment of the coil geometry to set one remaining expansion coefficient (the

second derivative term) to zero (Table 3.2). As a practical matter axial symmetry planes are easily

included, making the symme~ of a little higher order. Another aspect of synurwtry is to minimize the

direct coupling of one coil (or set of coils) to another. Such may be for transmit and receive, or for

different field components.

Besides geometric symmetry, there are other techniques that can be usd to mitimize unwanted

signals coupled into the various coils. One can cancel such signals by simpling the source of such signals

and adding an appropriate (perhaps filtered) form of this into the response. For example, one can

measure dl / dt in one coil (the transmitter) and add a constant times this to the voltage from the receive

coil (proportional to the time derivative of the coupling magnetic flux) to mitimize the net signal from

the receive coil. Then there are various data processing issues. Geometic symmetry is only one (but an

a important one) of the design considerations.
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