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Abstract

A Multifunction IR4 is an extension of a standard Impulse Radiating Antenna that has
the additional flexibility of an adjustable beamwidth. This adjustability is implemented by
defocusing the feed, in order to select between a narrow or broad beam. We provide here the
theory of operation of the antenna, for both in-focus and out-of-focus situations. Furthermore,
we built and tested a design with a 46 cm diameter. We found reasonable agreement of the
experiment with theory, although some work remains to be done in retiring the feed point.
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I. Introduction

A reflector Impulse Radiating Antenna (IIL4) consists of a parabolic reflector with a
TEM feed. This class of antema has a considerable body of literature associated with both its
analysis and measurements [1-3]. One issue that has been raised concerning this type of antenna,
however, is that the beamwidth is too narrow for many applications. In order to broaden the
beam, we introduce the Multifimction L&4, or MIRA.

The principle behind the MIRA is quite simple. The feed point of an IRA is normally at
the geometric focus of a parabolic reflector. In a MIIU4, we defocus the feed arms slightly, by
placing the feed point somewhat closer to the dish than its normal position at the focus of the
reflector.

If one can add a mechanical control to the feed point location, then one can have a single
antenna with a narrow or broad beam, as required. This results in a single antenna with very
broad bandwidth and beamwidth control. Such an antenna maybe usefi.d in applications where a
single antenna must serve multiple functions due to limited aperture space. In this note we
develop the theory of such a device, and we describe the fabrication and testing of a prototype
design.

The theory developed here is based on the quasistatic electric field in an aperture. In
previous papers [2, 4-8], we have developed a number of techniques for calculating the radiated

●
field when an aperture field is turned on uniformly, all at the same time. With a defocused
aperture, however, the aperture is turned on gradually, begiming at the center. The theory is
modified here that takes this gradual tumon into account. We provide here theoretical
calculations of the radiated impulse in the H- and E-planes, for both focused and defocused
aperture positions.

In addition, an experimental prototype was developed with an 46 cm (18 in) diameter
reflector using four feed arms with an adjustable position. The position is controlled by a servo
mechanism that is controlled by a personal computer.

By including computer control in the design, we allow a great deal of flexibility in system
design. For example, one might use the MIRA as part of a radar system that can operate in either
search mode, which requires a broad beamwidth, or tracking mode, which requires a narrow
beamwidth. A block diagram of such an arrangement is shown in Figure 1.1. The controller
would select which of two radar systems would be fed into the antenna. The controller would
also set the antenna feed position, in order to control the beamwidth.

The field is measured using TEM sensors. These were developed based on an idea by C.
J. Buchenauer[9] to enhance signal-to-noise ratio with very fast, low-voltage pulsers. These
sensors are replicating sensors, not the derivative sensors that are perhaps more commonly used.
We calibrate these sensors using two identical sensors.

●
Let us begin now with the theory that describes the MIRA. We begin with a review of

the theory of a focused aperture.
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II. Review of Theory with Focused Aperture

To begin the calculation of the radiated field, we first review the theory for the focused
aperture radiation. The theory for the defocused aperture will be a straightforward perturbation
on the theory for the focused aperture. This section is mainly review, and draws heavily on [2,
8].

To evaluate the radiated fields, it is necessary to evaluate the fields in an aperture plane in
Ii-ont of the reflector. For a focused aperture, the fields are well known to be represented by the
two-dimensional Laplace problems for the two-wire and four-wire apertures (Figure 2.1). The
radiated field for our configuration is well approximated by the four-wire aperture. The fields in
the four-wire aperture are described by a superposition of two two-wire apertures, as we will see
later.
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Figure 2.1. The apertures for a two-wire and four-wire configuration.

The first step is to find the fields in the aperture. To do so, we must first find the
potential fimction that describes these fields. The potential function for the two-wire problem is
well known,

[1<la-j
w2(43 = 2 j arccot(~/ a) = h

<Ia+j
(2.1)

where the charge centers are located at (=0, y/a = 1). Here, < = x + j y is the location in the

Cartesian coordinate space. This potential fimction was plotted in [5, Figure 2], so there is no
need to repeat it here. The complex potential for the four-wire case is just a sum of two two-wire
potentials that have been shifted and resized, i.e.,

This fimction is complex, i.e., has both real and imaginary parts. Let us therefore set

u(() = Re(w4 (O) , V(O = Inl(w4(J))

(2.2)

(2.3)
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We can plot contours of constant u and v, and these are shown in Figure 2.2 for the upper right
quadrant. The conductors correspond to a contour of constant u.
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Figure 2.2. Contour map for W4(<). Increments for both u and v are til O.
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e To calculate the radiated field, we need the
potentials. First, we find the aperture field is

–V. du(x,y)
EY(x,y) = ~

dy

aperture fields and the normalized aperture

\
.

7 fg4 = g (2.4)

where V. is the voltage difference between the top and bottom conductors. In addition, Au is the
difference in u between the two conductors, and Av is the difference in v as one encircles one pair
of positive (or negative) electrodes. Finally, the normalized aperture impedance isfg4= zfeed/zo,
where 20 is the impedance of ilee space. Note that fg4 is the normalized impedance for four arms
and f@2 is the normalized impedance for two arms on opposite sides of a unit circle. Note also
that f& thin wire arms, fg4 =fg212.

I
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\

Figure 2.3. Locations of Cl(x) and C2(,Y).

Next, we find the normalized potentials, which are integrals of electric field over linear
paths in the aperture plane. The normalized potential for the H-plane calculation is

(2.5)

where the contour Cl(x) is a vertical line cut through the aperture plane, as shown in Figure 2.3.
To simplifi this, one substitutes (2.4) into (2.5), generating

1
-dy = & +-)
A@(m(x) = _

JAU C,(X) dy
(2.6)

We can now calculate u(x,y) as the real part of the potential fimction given in (2.2). Note that the
value of U(XJ) is a maximum when it cuts through the conductors. At this point, the value of
U(XJ) is u. = mfg2= 2 zfg4, where fg4 is the normalized imped~ce for fo~ ~S (typically

a
200 QD377 Q). Note also that for values of x that cut through the conductors, the normalized

6
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This normalized potential fimction is plotted in Figure 2.4, for a few different
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m Figure 2.4. The normalized potential function of a 4-wire aperture, @t~)(x), plotted for a few
different four-wire feed impedances.

The normalized potential for the E-plane is expressed as

where C2@) is a horizontal linear cut through the aperture plane, as shown
evaluate this, we require the Cauchy-Riemann relation for analytic functions,

A A—= ——
dy 2X

We can now recast the integral as

@(’)(y) = ;
[@=zY) - WY)]

(2.7)

in Figure 2.5. To

(2.8)

(2.9)

*

This is a particularly simple form, because the edges of the circular aperture are also lines of
constant v. Thus, the normalized potential is evaluated analytically as

7
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1f (2fg4)~(e)~) =
()+’p~ < l/fi

o else
(2.10)

.

We have plotted the normalized potentials for a few impedances in Figure 2.5. Note that our
theory predicts an abrupt discontinuity in O(e)(y) near the wires. In fact, there is actually a more
smooth transition between the two values, but if the wire is thin, this is an excellent
approximation.
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Figure 2.5. The normalized potential fimction of a 4-wire aperture, CD(e)(y),plotted for a few
different four-wire feed impedances.

With the normalized potentials calculated, we can now calculate the radiated field as a
fimction of angle off boresight in the H and E-planes. The aperture field is created by a step
voltage of magnitude VOacross the aperture, so Ii-em [8] we find

(2.11)

This completes the calculation of the step response radiation for a full 4-wire aperture, while it is

e still focused.
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a To find the response to a standard Gaussian pulse, we convolve the above step response
with the derivative of the Gaussian. The Gaussian is described by .

dV(t) = Vo -~tlt~y

dt ‘e ‘
tFwH~ = 0.940 td (2.12)

td

J
t dv(t’) dt?,

v(t) = _~ t10_90 = 1.023 td (2.13)

where tFWH&fis the Full Width Half Max of dV/dt, and tlo.90 is the 10-90% risetime of V(t).
Note that we have expressed this conveniently in terms of the derivative risetime, which is
inversely proportional to the radiated field for these types of antennas. The definition of the
derivative risetime of a waveform is

td =
max ( V(t))

(2.14)
max(dV(t) / dt)

The radiated field is now calculated simply horn

1 dV(t)
E(r, O,~, t) = ~ — 0 Estep (r, 6,$, t)

o dt

m where E’tep (r, 8, @,t) is the step response in the E-or H-plane, as calculated above.

(2.15)

Next we consider how to extend these results to a defocused aperture. We provide results
for both focused and defocused cases in the section that follows.
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a III. Modification of Theory to Include Defocused Aperture

Having reviewed the theory for focused apertures, we now extend these, results to h
defocused ap&ture. To do so, we need to return to more general expressions for the field
radiated from an aperture. Thus, we have horn [1O, eqn 2.7]

1
E(7,S) = — J’jfli, x&(x’, y’,s)xiR]e-7R &l

2zr ~
a

(3.1). .
s

= J’J’[iZx ~t(x’,y’,s)xi~] e-s R’c CM
2zrc ~

a

where primed coordinates refer to the aperture plane, and unprimed coordinates refer to the

observation point. Furthermore, ~f (x’, y’,s) is the tangential aperture field in the aperture plane,

and S= is the aperture surface. The aperture plane is the x’-y’ plane (at z’=0). Note that the

above equation differs from [10 eqn 2.7] by retaining only the far-field (l/r) term, and by
substituting y= s/c. The expressions for r and R are

R = ~(X-X’)2 +(Y-Y’)2 +(Z-Z’)2

(3.2)

m We will shortly specialize the above expressions for the radiated field to the H- and E-planes, but
before we do so, we first wish to describe the form of the aperture field.

The form of the tangential aperture electric field is

(3.3)

where u(x’, y’) is the potential function described previously in (2.2)-(2.3). Furthermore, ~(t) is
a window fimction that takes into account the gradual illumination of the aperture. This is
illustrated in Figure 3.1. Thus, W(t) is a window that is circular in shape, with a radius described
by !i%(t’). We assume that the curved phase front first touches the center of the aperture at t’= O,

so at Y=(t’=0) = O. Furthermore, the instant where the aperture is first completely filled is
denoted by t’mm, so Ya(t’ma) = Ya,mm.

10
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Figure 3.1. Illustration of how a defocused aperture is filled gradually by the incident field (left).
The portion of the aperture plane contributing to the aperture field is shown on the right.
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Figure 3.2. The extent of the effective aperture, when a rigid feed arm assembly is pushed closer
to the reflector.

Note that some care must be taken when determining the position where above potential
fimction is evaluated. The position in the aperture plane, (x’,y’), must be mapped onto a position
in a flat virtual plane (XV,yV), using stereographic projections. If we describe a position on the
aperture in the polar (cylindrical) coordinates, ( Y, ~), it is necessary to map the position on the
aperture onto a virtual plane, described by ( YV,@p),shown in Figure 3.2. TO do so, we use
geometric optics to trace the ray that arrives at (q?, Y’). This ray has an origin at the feed point,

~nc,#inC). Due to symmetry, we haveand it points in the direction ( L9.

so we have only lefl to find YV.

e
To find YV,we first find ~nc by geometric optics and ray tracing. In other words, we

find the angle of departure of the ray that begins at the feed point and arrives at ( Y’, ~ ‘). Thus,

11
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having found @.~nc,we need only find a relationship between Oincand YV. The geometry is shown
in Figure 3.3.

.

(x’,y’) or ( Y, @)

~j~~ Y z’

Reflector
Focus

Figure 3.3. The ray trace from the focus to a point in the aperture plane.

To complete the process of calculating Y<, we compare the stereographic projection of
( Y’, ~‘) to that of the charge center of the feed arms. We know the charge center of the feed
arms projects onto the unit circle in the virtual plane, so YV,O= 1. Now by taking a ratio of
stereographic projections,

Y = 2 F tan(8/ 2) (3.5)
we obtain

Y, = Y?v,o
tNl(8j~~1 2)

‘m(dinc,o/2,

A = #

(3.6)

The only remaining unknown in this equation is the incident angle of the charge center. This is

o

found horn the F/D ratio of the reflector,j(d, so

12
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1
= arctan

2~d - 1 /(8~d) 1 (3.7)

and we now have both YV,and g$v.,From these two, we can calculate (xV,YV),so we have
completed our procedure for mapping (x ‘,y’) into (Xv,yv).

Having described the aperture fields, we now restrict the
(3. 1), to the H-plane and E-plane. We begin with the H-plane.

A. H-Plane Calculation

expression for the radiated field,

In the H-plane the dominant component of the radiated field is the y-component.
Furthermore, only the y-component of the aperture field contributes to the y-component of the
radiated field due to symmetry. Thus, after restricting the tangential field to they-component, we
have

7Z x =~(x’, y’, S) x i~ = iY ~Y(x’,y’,.s) COS(@
(3.8)

R s r –X’COS(8)

Substituting the above relationships into (3. 1), we have, in both frequency and time domains,

●
zy(~) (8, s) =

s COS(8)
z x’ y’,~) ~-(’l’)(’-x’cos(~ ~jj (

2nrc ~ y ‘
a

(3.9)
COS(t?) d

Eyww = ~ ~ Jjzy(x’,y’, t –(r–x’cos(@) / c) &
Sa

where the superscript (h) indicates that the expression is specific to the H-plane. For simplicity,
we convert to retarded time, t‘ = t– r / c, so

We now need to account for the time-varying nature of S=. As stated previously, the
aperture expands as a fi.mction of time, with a radius Ya(t ‘). Thus, the limits of integration over
the aperture change with time. Let us define

13
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(3.11)

yma(x’,~’)
@o(#J’) = –+ J a’” Ey(x’, y’)

o –yma (x ‘r’)

ymm (x’, 1’) =

{

J+ ;;;j<t—max

Y a,max t’>o

This is closely analogous to equation (2.5), with the exception that there is an additional time
dependence. The integration is carried out along a straight line of constant x‘, with limits that are
determined by ~(t), the window function that describes the effective aperture radius as a fimction
of t‘.If we now combine the above expression with (3.3), we have

@(@(x~,l’) = & ~(x’, .Yrn~(x’, “)) (3.12)

By combing equations (3.10-3.12) we have

E (h)(qt’) = –U&
y, step Cos(@

d
J

~’ ~(h)(x’, f’–(x’ / c)sin(~)
5

(3.13)

m This is now in a form that can be implemented numerically. Note that one can tabulate

O(h) (x’, t’) in order to avoid repetitive calculations. Then, Ey,slep(h) (8, t’) is calculated by a

one-dimensional integral. Thus, we have successfully converted a double integral over the
aperture to a single i;tegral, which
calculating U(X’,y’) it is necessary
(3.6).

B. E-Plane Calculation

should be more n~erically efficient. Note also that when
to calculate it into the virtual plane, as shown in equation

Next, we calculate the radiated field in the E-plane. The derivation is very similar to that
in the H-plane. The dominant component is the & component , and once again, we need only
calculate the y-component of the aperture field due to symmetry. This leads to

izX it (X’, Y’,S)X iR = Ty ~y(X’,y’,S)
(3.14)

R G r –y’COS(@)

Substituting the above relationships into (3. 1), we have, in both frequency and time domains,

14
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Jj (EY x’,y’, s)e
-(s/ c)(,-x’ CoS(&) ~

Sa
.

d
(3.15j

JJ (EY x’,y’,l–(r –y’cos(8))/c)d.4
z.

where the superscript (e) indicates that the expression is specific to the E-plane. As before, we
convert to retarded time, t‘= t – r / c, so

~&e)(8,#) = & $ ~dy’ fdx’ EY(X’,y’, f + (y’ / C)COS(8) ) (3.16)

We now need to account for the time-varying nature of S=. As stated previously, the
aperture expands as a fimction of time, with a radius Ya(t ‘). Thus, the limits of integration over
the aperture change with time. Let us define

Xma(y’,r’)

——~(e)~~,~~) = j J dy’ EY(X’, y’)
o

‘xmur(Y’, f’)

[

o t’<o

Xma(y’,t’) = ~~ OSt’<tma

Y a,max t’>o

(3.17)

This is closely analogous to equation (2.7), with the exception that there is an additional time
dependence. The integration is carried out along a straight line of constant y‘, with limits that are
determined by W’(t),the window fimction that describes the effective aperture radius as a function

of t‘.Note that one must take care in calculating CD(e)(x’, t‘),due to the branch cut in the contour
map. If we now combine the above with (3.3), we have

= -: [V(XL’(Y’>0> Y’) - w! Y’)]

where we have used the relationship & / ~ = – ~ / @. Care must be used in the application of
the above formula for the difference of two v’s if a branch cut is crossed. In that case, a term of
2 z must be subtracted from the difference in square brackets above. If we combine the above
three equations, we have

‘O,step
(e)(d,[~) = -* + J dy’ CD(e)@’, t’ – ~’ /c)sin(~) (3.19)

15
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This is now in a form that can be implemented numerically. Once again, we have converted a
double integral over the aperture into a single integral, which is faster to calculate. Note that the
position where the potential fimction v(x’,y’) is calculated must be mapped onto the virtual
plane as described in equation (3.6).

Having calculated the step response in both the H-and E-planes, we now convolve with a
Gaussian, as shown previously in (2.15), to obtain the far field with a finite-risetime step
response.

As an example, we calculated the radiated field in the H- and E-planes fora46cm(18 in)
diameter reflector MHL4 with F/D= 0.5, a nsetime td = 50 ps and a feed impedance of 200 Q.

Let us define now a ratio that describes the focal position. Let F be the focus of the
reflector, and F2 be the distance from the feed point to the reflector. Then we define a ratio

f-=+ (3.20)

When the feed is located at the focus,j= 1. In our MIRA, we can adjust the focal point from$
= 0.7 to~f= 1.0. In the data we present here,~j= 0.7, 0.85, and 1.0. The definition of~~is shown
in Figure 3.4.

e The radiated field forfi= 1.0 (feed at the focus) is shown in Figure 3.5. Both the H-plane
and E-plane cuts are shown, for values off-boresight of O, 7.5, and 15 degrees. We can clearly
see that the field goes down as we proceed off-boresight in either plane. Furthermore, the
radiated field for ff = 0.85 and 0.7 are shown in Figures 3.6 and 3.7, respective] y. From these
plots, we can see that the peak field on boresight is reduced as we progressively defocus the
antenna.

$
\\\\\\\ eflector Focus\\

/
/’

// eed Point
/’

/’ ::::

::

:;

Figure 3.4. Definition of~.
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m Next, we need to define a beamwidth for this antenna, in order to compactly describe the
data. We define the half field beamwidth (HFBW) as the angle between the two locations in a
pattern cut where the field is down by half from the peak. Since we ran data at discreet anglei
off-boresight, the best we can do is estimate beamwidths. Furthermore, note that these
bearnwidths are specific to the particular choice of nsetime, i.e., td = 50 ps. Finally, note that we
estimate fill beamwidths, not half beamwidths from boresight.

The HFBWS are provided in Table 3.1. From the data it is clear that the MIIL4’s beam
broadens fi-om about 8° when in focus, to about 36° when at the maximum defocus of j = 0.7.
This is true in both the H- and E-planes. This is precisely the behavior we were hoping to find in
this antenna.

Having demonstrated the relevant properties in theory, we now turn to experiment to
veri~ the result.

Table 3.1. MIRA Half Field Beam Widths

Half Field Beam Width (HFBW)

~= F21F I H-Plane E-Plane

17
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IV. Experimental Validation

In order to demonstrate the MIRA experimentally, we built a model with a diameter of 46
cm (18 in), with adjustable feed arms.

A diagram of the configuration as built is shown in Figures 4.1 and 4.2. It includes a
solid 18-inch diameter parabolic reflector that slides along a set of four fixed feed arms. A servo
motor controls the position of the reflector with respect to the feed, and a laptop computer
communicates with the servo controller using a serial port.

Figure 4.1. The Multifunction IRA, side view.
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Figure 4.2. The Multifimction IRA, front view.

The reflector was made of solid aluminum, and the feed arms were tin-coated copper.
The F/D ratio was 0.5, and the feed impedance was 190 Q. The antenna was fed with the so-
called “splitter balun,” of the type first described by C. Baum in [1 1]. This type of balun
normally uses two 100 Q cables connected in parallel at the feed end and in series at the antema
apex. However, it was difficult to find O.141-inch diameter semi-rigid cable with 100 Q
impedance, so we had to use 95 Q cables. We believe the error is small enough for our purposes.
Note also that the feed arms were designed to forma 190 S2transmission line, which is consistent
with the two 95 Q lengths of feed cable.

It was necessary to develop sensors that could be used to measure the radiated field.
Standard derivative-type sensors have a very low sensitivity, so any measurements we made with
our four-volt source would have been very noisy. Thus, we decided to develop a replicating
sensor, which would replicate the incident electric field from the boresight direction. The design
was essentially a half TEM horn mounted against a truncated ground plane (Figure 4.3). The
ground plane was solid aluminum, and the conical plate was tin-plated copper. The impedance

m

of the horn was 50 Q, in order to avoid a mismatch to the 50 Q electronics. The length of the
horn was 45 cm. The top plate was supported with polystyrene foam for support.
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The experimental test configuration for the antenna measurements is shown in Figure 4.4.
In includes a Picosecond Pulse Labs 4015C step generator, which drives a TEM sensor. On the
receive end, the Multifunction IRA receives the signal, which is then sampled by the SD2~
sampling head
downloaded to

1

----

and the Tektronix 11801 B Digital Sampling Oscilloscope (DSO). Data is then
a computer for processing by way of a GPIB comection.

,—=

---- .

--------

L=

WLC
CINCI

CAUI

------,

-----

?-4P AND
‘A? 1- . x“
# 21 BGC-FI

Figure 4.3. TEM Sensor. (Dimensions are inches.)
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Figure 4.4. Experimental test setup
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m Before measuring the response of the MllL4, it is necessary to calibrate the TEM sensor.

To do so, we measured the response of two identical TEM sensors, and then backed out the
impulse response, using

\
#

Vrec(t) =
1 d V~rC(t)

htem(t) ohtem(t) o dt
2nrcfg,tem

(4.1)

where htem(t) is the impulse response of the TEM sensor, V&(t) is the source voltage, and v~ec(t)
is the raw received voltage. Furthermore, fg, tern is the normalized impedance of the TEM sensor,
c is the speed of light in free space, and the “ 0 “ symbol indicates convolution. The only
unknown in the above equation is htem(t), and we solve for that using the techniques described in
[12, Section III]. Note that we are using r to be the distance between the front edges of the two
TEM sensors. There is some ambiguity here, since the sensors are large enough that there is
some field variation over the length of the sensors.

The source voltage is shown in Figure 4.5. It is a relatively clean step fi.mction with
risetime of 28 ps. Next we took a measurement with the two identical TEM sensors, measured
3.35 meters apart. The raw data for this measurement is shown in Figure 4.6. It consists of a
relatively clean impulse, with tFWH~ = 50 ps. Next, the data is processed to extract htem(t),and
the result is shown in Figure 4.7 in the frequency domain, and Figure 4.8 in the time domain.
The result in the time domain is an ahnOSt-Clean impulse with tFWHM= 33 ps.

Next, we provide the integral of htem(t), shown in Figure 4.9. The degree to which this
integral is a clean step function is a measure of whether we can use the TEM sensor data raw,
without correction. The integral is a step with some sag for the first 1.5 ns. (Note that some sag
is expected, due to the characteristics of all TEM horns.) The jump in this integral gives us the
effective height of the sensor. That is, assuming the voltage out of the sensor is (approximately)
proportional to the incident field, the jump in this integral gives us the proportionality factor, or
effective height, heti We find that the magnitude of this jump is about 17 mm. Note that the
plate is 31 mm above the ground plane in the aperture, so the measured hefi is a little more than
half of the physical aperture height. For an ideal geometry, we expect hefl to be exactly half the
physical aperture height [13], but the lip on the front edge of the ground plane would tend to
increase the number slightly. Thus, our measurement of heff is consistent with theory.

Finally, we provide the TDR of the TEM sensor. The data is shown in Figure 4.10. A
flat TDR indicates a good match to the 50 Q input. We find the TDR is flat to within a few
percent.
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Figure 4.5. Source waveform
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Figure 4.6. Raw received waveform for TEM sensor calibration.
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TEM Sensor, Impuse Response
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Figure 4.7. TEM sensor impulse response, h~eM(@, in the frequency domain.
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Figure 4.8. TEM sensor impulse response, hfem(t), in the time domain.
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Figure 4.9. Integral of the TEM sensor impulse response.
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Figure 4.10. TDR of the TEM sensor.
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Having characterized the sensor, we next measured the response of the MIR4. The data
was taken at a distance of 3.25 meters, using the TEM sensor to detect the signal. The boresight
response for the MIRA is shown in Figure 4.11, in both the time and frequency ,domains. it
displays the classic time-domain waveform of a low-level prepulse, followed by a sharp impulse,
with Full Width Half Max of 60 ps. Note that this is raw received voltage. The impulse has a
shoulder formation, or a second impulse of a smaller magnitude. This can also be seen in the
frequency response, which shows a dip near 5 GHz. This feature is due to some features that
improved mechanical stability. Because of these features, the antenna has been made very
sturdy, at some expense to electrical performance. It will be necessary to trade off mechanical
and electrical properties in later designs.

Next, we consider the antenna pattern as a function of angle off-boresight, and as a
fi.mction of focus position. Using the definition of focal position provided earlier in equation
(3.20), we made our measurements at focal positions of~= 1.0,0.85, and 0.7. Furthermore, data
were taken at positions of 0°, 7.5°, and 15° off boresight in the H-plane. The raw data for all
nine waveforms is shown in Figure 4.11. Once again, we see the peak field is reduced as we go
off-boresight, and as we become more defocused.

With the above data, we can estimate the beamwidths of this antenna for various focus
settings in the H-plane. We use here the definition of Half Field Beam Width (HFBW) as
described in Section III. These beam widths are tabulated in Table 4.1, and they are compared to
the theoretical values calculated earlier in Section III. We find general agreement with the trends

*

in the experimental and theoretical data, however, there are some differences between them. The
most significant difference is the estimate of the HFB W when ff = 1.0 (in focus), for which our
theory and measurement differ by a factor of almost two. This difference can probably be
attributed to the difficulty of estimating the beamwidth with a small number of time waveforms.
In addition, the sensor may be too close to the antenna under test to be a true fw-field
measurement. This would also tend to broaden the pattern.

Table 4.1. MIRA Half Field Beam Widths
1 I i

I I H-Plane Half Field Beam Width (HFBW) I

4= F21F

1.00

0.85

0.70 36° I 30° I
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Next, we wish to compare the measured peak voltages to the theoretical peak radiated
fields provided in Section III. To do so, we normalize our measured voltages to a factor of

(V. x heti/ r), where V. = 4 V is the source voltage, r = 3.25 m is the antenna-sensor distance,
and he, = 0.017 m is the approximate effective height of the sensor as measured earlier in this
section. This provides a normalization factor of21 mV. If we divide our measured voltages by
this normalization factor, we are in the same unitless dimensions of r x E / V as the normalized
field data in Section III. As an example, when the antenna is in focus, ~f = 1.0), we get a
theoretical value of rE/VO = 6.2 from Figure 3.4. We compare this to Figure 4.12, where the
peak impulse (above the prepulse baseline) is 42 mV. If we divide this by the normalization
factor of 21 mV, we get a peak normalized radiated field of 2.0, which is 32% of the predicted
value. This can be explained by the double-bump in the apex waveform, and the possibility that
the measurements were taken somewhat in the near field.

Finally, we provide the TDR of the MIRA in Figure 4.12, using the 0.25-Volt source
built into the SD-24 sampling head. We want to see a smooth match to 50 Ohms, but there are
some reflections at the feed point. We expect to smooth this out in later designs.
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MIRA Step Response, Focused
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Figure 4.11. Boresi@t step response of the Multitiction R,tithe timedomain(top)md
ilequency domain (bottom).
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H-Plane Scan, Focused
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Figure 4.12. Antenna response for MIRAwith~= l. O(top), and ~=0.85 (bottom). Antenna
responses are for O, 7.5, and 15 degrees off boresq$t in the H-plane. The results for~~= 0.70 me
on the next page.
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H-Plane Scan, Defocused 0.7 F
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Figure 4.12 (cent’d). Antenna response for MIRA with$= 0.70. Antenna resPonses are for o>
7.5, and 15 degrees off boresight in the H-plane.
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m V. Conclusions

We have provided here the theory that describes the MIRA, and we have built and teste~
a model with 46 cm diameter. Satisfactory agreement was obtained between theory and
measurements, although refinements will be necessary. These refinements include a better
impedance match at the MIRA apex. It will also be necessary to take more data at other greater
distances, in order to veri~ that it is taken in the far field.
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