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A concept of aperture efficiency is introduced for the purpose of
comparing and optimizing the performance of impulse radiating antennas (IRAs).
The aperture efficiencies of popular lens and reflector IRA are computed as the
ratios of peak radiated power densities on boresight compued with that produced
by an ideal IRA with an aperture of equzd area and equal total input power. Loss
of aperture efilciency occurs through two distinct mechanisms: from power that
falls outside the aperture and is lost; and from nonuniform power and polarization
distributions within the aperture. Both loss mechanisms are addressed, and means
for increasing efilciencies are identified. Aperture efficiencies approaching 100%
are feasible in TEM-hom arrays and similar structures.

I. Aperture Efficiency

hnpulse radiating antennas are a class of focused aperture antenna that uses a lens or
parabolic reflector to convert an outgoing inhomogeneous spherical TEM-wave, propagating on a
conically symmetric feedline structure, into a plane wave. For such focused aperture systems, the
radiated field on boresight at distance r in the far-field limit is given byl

E,d(r,t)+:jj E(X9y,t - r / c~y ,
A

(1.1)

where c = 1/ @ is the speed of light in the external medium and the surface integral over the

field distribution J!?(x,y, t) covers the planar aperture of area A lying just outside the antenna in

the exiemal medium. A well known property of focused aperture antennas is that they achieve
the highest gain when the aperture is uniformly illuminated with uniform polarization.2 Thus, the

apefire of our ideal reference antenna is illuminated with a uniform field J?O, and Eq. 1.1 for

this antenna becomes

Ed.(r,t) = --&~Eo(t - r/c).

.?
} To make a proper comparison between test and reference...

certain parameters in common. They must share the same external

(1.2)

antennas, both must have
medium or media with the

9(1
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same wave impedance Z.=~ and speed of light c, the distance r to the point of measurement must
be the same, they must have the same aperture area A, and they must have the same input drive
waveform f(t) and input drive power P(t). The total antenna input power for the test antenna

described by Eq. 1.1 is related to the input voltage ~.~(t) and feedline impedance Z,,., by

(1.3)

The total
aperture.

‘line

input power for the ideal reference antenna is taken to be the power incident upon the
The reference-antenna input power is then

(1 .4)

For both antennas to be driven by the same waveforms, all pertinent quantities must be

proportional to the same function of time f(t), that is

~~ (t)= V, f (t), ii,(t) = Eof (t), and Jj ~(x, y,t)dxdy = Jj J5(x, y~dy f(t), for t << ti/c. (1.5)

Equation 1.5 holds only for early times, before edge effects can propagate inward and modify the
aperture fields. What lies outside the aperture is critical to what occurs later in time. To obtain
consistent results, we are restricted to comparing only the prompt responses of different antennas.

We define the prompt aperture efficiency q~ to be the ratio of radiated power density on

boresight due to the test antenna to that of an equivalent ideal reference antenna with the
parameter constraints described above. Equating Eqs. 1.3 and 1.4 and combining Eqs. 1.1
through 1.5, the prompt aperture efficiency then becomes

E~d(r, t)
~,4= z ‘+jjEy(x,y)dxdy]2,

E,ad. (r, t) = A Zmed Vin A
(1.6)

where, without loss of generality, the y-axis is chosen parallel to the principal component of

polarization, and EY (x, y) is the principal component of the prompt aperture field distribution for

an applied antenna input voltage ~.n. Another convenient way of expressing Eq. 1.6 is

~A - A ‘“”C (EY)2 =[~~)/~][f$-],with (Ej)=~~Ej(x,Y)dx~Y, (1.7)
~; ‘nwd

Y

()where E: is the average value of the k’th power of the y-component of the E-field over the

aperture. The first term in brackets in Eq. 1.7 is exactly equal to the fraction of the total input
power passing through the aperture in the y-component of the field. The second term in brackets
in Eq. 1.7, which is always less than or equal to one by Schwarz’s inequality, is due solely to the
inhomogeneity in the distribution of the y-component of the E-field within the aperture. This
second term is unity only for a uniform E-field distribution.

For apertures and feed electrodes with a well defined width W, as shown in Fig. 1.1, the
prompt aperture efficiency simply reduces to

(1.8)

2



ApertureEfficiency:qA= aZ,iJbZm,d
o 0 0 0 0 w
o b b b) b 0.

$

i%

$.
m
VI
1-..

0

$
g“

o s
i?
‘7

1 1 1 1 1 I i 1 1

I i I I I I I I I

I I I I I I I I I

1
\

I 1 I I I

I I I I I 1+--ii
I

I

I \

I I I I

I I I I

I I I I

II I

I

I

I---
I

I

I

I

I---
I

I

I

1---

I

I

r --

I

T
L --

I

L --

I

~ r--

m L--

1,
I
r

--

I

●O
N

1----
I

\

1 1 I----- ----- -----
I I I

I 1 I I

I 1 I I

I 1 I I

I

I

I0
L

1----
I

1

\

I 1 1------ ------ ---
I I I 1

I I

Y’
I I

I I I
-- -1--- ---l----l-

1 1 I I

I I I
-- -1---t --r--l-

1 I I I

--- 1- -- A-- L--J-

1 1 1 I

I 4----- ---- -- -1-

1 I I I
----- ----

I 1 r
-7-

1 -1 L -1------ ---- --

II

.N

.?

vv
r+

A
A

I

--- 1-

1

I--- r

I

--- L

1

--- b

I
---

r

--- L

1---l_--;--
1

/

-k- 4-
1 I

1 I I I

I I I I

0 I

I

I

I I I I I

I ‘\,’1~1
I I I I I I

I I I I I I I

I I I I I I I I

I I I I I

{

I I I------ ------ ------ ----- ------ -----
I I I I I I I I I

I I I I I

I ‘\ I I I

I I I I I I I

I I I I 1 I I I I

I I I I I I I

I ! I I------ ------ ------ ------ ------ ----
I I I I I I I

I I I I I I

“X
I

I I I I I I I

b I---- ----- + b -1----- --- t----l- -+---L--

I I I I I I I

I I I I I I I I

r I.--- ----- ---- ---- ---T r 1 r l-- T---r--

I I I I I I I

L---- -- I---.L---L--d-- -L---l--- ---1---

I I I I I I

1- 1 + 1- 4---- ----- ---- ---- 4- ---I---4 --1---

I I I I I I I
----- ----- ----

r I 1 r n---r---l---l --r--

L I---- ----- L ---I---J---L---I- _- J-L-L--
I I I I I I I I \ I



Side
View

Front Feed ADerture
View Impedance Efficiency

(a) 400 Q 25 YO

(b) 200 Q

(C) 188.4 ~ 46%

(d) 178.2 Q 47.3%

~
(f) 50.0 f2 79.6%

Figure 1.3. Prompt aperture efficiencies and feedline impedances for reflector and lens IR4s.
h-tennas are (a)
circular-conical-

single-coplanar- and (b) crossed-coplan-ar-feedline reflector IRAs, and (c) 90 °-
and (d), (e), and (f) flat-plate conical-feedline lens IIUs.
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In this simple expression, all complexity is concealed in the determination of the transmission
line impedance Zli~,. Figure 1.2 shows a plot of the aperture efficiency versus feedline

impedance Zli~, and aspect ratio a/b for flat-plate TEM horns with rectangular focused apertures

bounded by their electrode dimensions. We see that the lower-impedance planar TEM horns
have the highest aperture efficiencies and will therefore produce the highest prompt radiated
fields for a given input power and aperture area. This result is understandable because the low-
impedance planar TEM horns have the most uniform fields within their apertures and the lowest
field energies falling outside their apertures. Prompt aperture efficiency approaches 100 % as
a/b + co and Zfine + O. However, as we will see in the next section, a close-fitting rectangular

aperture is not the optimal focused aperture for a planar TEM horn.
Figure 1.3 shows computed aperture efficiencies and feed impedances for several

reflector and lens IRAs. For circular-aperture antennas, q~ ranges from 25 % for reflector IRAs,

with a single or crossed pair of 400 !2 feed arms, neglecting feed blockage, to 46 YO for a lens
IRA with an optimal 188-Q circular-conical feed line. For rectangular-aperture lens antennas,

qA increases with increasing aspect ratio, reaching 80% for a planar 50-f2-feed system with

a/b = 6. Therefore, when it is important to achieve the highest prompt aperture efficiency, a

low-impedance lens IRA is preferable to a high-impedance reflector IRA.

11. Optimal Apertures

The question one might ask is “What is the most efficient focused aperture for a given
feed structure?” We first imagine that such an optimal aperture exists with area A and boundary

path S. We then add a small incremental area 6A at some point (x’, y’) along S to form a new

boundary path S’ enclosing an area A’, as shown in Fig 2.1.

Y
+

I

l+++-.-+-.+..+
Figure 2.1. Frontal view of a focused-aperture TEM horn with optimal aperture of area A,
showing a small perturbation in area 5A at the boundary point (x’, y’).
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The new aperture efficiency q~, for the aperture with boundary S’ and area A’ then becomes

[ u 1
2

1 Z,jn, 1—— E, (x, y)dirdy
= 7 Zmed y“ *,

.+=[(Ey)+Ey(.5Y):~/[1+:]
yn Zmed

(2.1)

-: nine (Ey)’[1+2~’/;v;) :+ E~:j:)%][l-%+~(%)l
y.n Z,ned

If the original aperture were optimal, the aperture efficiency must be stationary for any
incremental alteration in area 6A at the boundary S. Therefore, as dA + O we have

(2.2)

The above expression can hold only if the principal field components E, at all points (x’, y’) on

the boundary S obey the relationship

Ey(x’, y’)=; (Ey). (2.3)

Thus, for maximum aperture efficiency, the magnitude of the principal field component on the
aperture boundary must be everywhere exactly half of the average of this jield component within
the aperture. If the optimal aperture consists of several disconnected zones, then Eq. 2.3 applies
to each zone with the average field and area applying to all the zones collectively.

The simplicity of Eq. 2.3 for the optimal aperture does not reflect the computational
difficulties that may be encountered in trying to determine it. In general, most solutions will be
found only by delicate numerical methods. One important class of problems is treated in this
work: the flat-plate TEM-hom focused aperture. Although low-impedance lens II&s achieve the
highest aperture efilciencies, the lens weight can be prohibitive. By arranging smaller lens IRAs
in dense arrays, the weight of lens material may be greatly reduced or even eliminated. For fixed
total aperture area and antenna-element shape, the total lens mass varies inversely with the
number of antenna elements. Figure 2.2 shows one possible arrangement for a dense TEM-hom-
Iens array. The choice of horn impedances may be limited by the source impedances and other
considerations, thus limiting the aperture efficiency. However, the best arrangement for horn

6



Elliptical Cylindrical Surface —-

Hyperbolic Toroidal Surface J

TODView

Elliptical Cylindrical Surface —k

TEM Horn I

—- TEM Horn I

TEM Horn I

TEM Horn I

TEM Horn

TEM Horn

7
Hyperbolic Toroidal Surface J

Side View

Figure 2.2. Conceptual design of a dense array of focused-aperture TEM horns with relatively low
impedances and high aperture efficiencies: Z,inC= 86 Q, and q. > 68’?40.All of the lens surfaces are
analytic curves. For fixed total aperture area and antenna-element shape, the total lens mass varies
inversely with the number of antenna elements.

placement and aperture construction within the array are yet to be determined. Figure 2.3 shows
two different lattice arrangements for array construction: one with a rectangular and the other
with a hexagonal unit cell and aperture shape. Note that the aperture areas of 6ab are 50 9Z0

greater than the areas 4ab within the electrode boundaries. In fact, this arrangement, with the
approximate dimensions shown in Fig. 2.3, produces the highest aperture efficiencies for array
elements with a/b =1. The aperture eftlciency increases from 47.3 % for dense packing, with

Aa = O, to about 54.6 % for the less dense packing shown in Fig. 2.3, with Aa s b/2 for the

rectangular aperture and Aa s b for the hexagonal aperture.
Numerical and analytical methods outlined in Appendix A were used to derive the

optimal focused apertures for flat-plate TEM horns. For a wide range of electrode aspect ratios,
the aperture efficiencies and dimensions were determined for the best curved, rectangular, and
hexagonal apertures. Figure 2.4 shows the three optimal apertures for an electrode aspect ratio of
one (a/b= 1). The aperture efficiencies for the optimal curved, rectangular, and hexagonal

apertures were 55.390, 54.570, and 54.790, respectively. These aperture efficiencies are nearly
the same but are noticeably larger than the 47.370 value for the close-fitting rectangular aperture.
Little is lost by choosing either the rectangular or hexagonal apertures for fitting into an array
structure. The areas of the three optimal apertures are nearly the same to within 1 90 for electrode
aspect ratios of one or greater. This similarity results from the ideal aperture boundary lying on a
curve of constant EY.

7
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Fiwre 2.3. Front views of flat-plate TEM-hom arrays employing rectangular and hexagonal unit
cefis. For ah = 1, the aperture e%3ciencies increase &om 4-7.3-0/0~or dens~ly packed arr~ys with
As/b = O,to about 54.6% for the less densely packed arrays shown above, with As/b G 1/2 for the
rectangular apertures and Adb ~ 1 for the hexagonal apertures.
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O~timal A~ertures
:,

I

t-’a+-a-t-a
Front View

Curved Rectangular————.— —

-t-Aa4‘etai’I
Hexagonal.—-— ---- /

i
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I l\l
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1 I
: \\; ‘1:;:::
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I
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I I I I
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0.0 ‘::::’:
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0.0 0.2 0.4 0.6 0.8 1.0

X/b

Figure 2.4. Optimal curved, rectangular, and hexagonal apertures that yield the highest aperture
efficiencies for focused aperture antennas fed by flat-plate TEM horns with ah = 1. The aperture
eftlciencies for optimal curved, rectangular, and hexagonal apertures are 55.3°/0,54.5°/0,and 54.7°/0,
respectively. These values compare with 47.3°/0for the narrow rectangular aperture with Aa = O.



Optimal curved apertures covering the entire range of electrode aspect ratios are shown in
Fig. 2.5. All cufies contact the electrodes horizontally. Curves for limiting cases were derived
analytically and found to lie on field lines. These curves are given by

,=:[.ccos(y-l)+~w] for a/b + ~, and y =4= for a/b+ O. (2.4)

The intermediate cases were found by numerical methods described in Appendix A. Although
the curves for these intermediate cases appear to lie very close to field lines, the correspondence
has been shown to be inexact.3

The aperture efficiency VA(a,b, Aa = O)of flat-plate TEM horns with narrow rectangular

focused apertures bounded by their electrode dimensions is chosen as a reference function for
comparison purposes. This function of a/b, which was shown in Fig. 1.2, may be computed

from Eq. 1.8 and the transmission line impedance Zli~,. The transmission line-impedance is a

rather tedious function involving incomplete elliptic integrals and their inverses, and it is not
easily calculated.4 We approximate this aperture efficiency with the sigmoidal function

%(4W)=;>’ 1 +Aq,
,,,,, 1+ u, (@)-k’

with Uq = 1.1158, kv = 0.8300, and Aq/q <0.005, for 0.01< a/b S 10.

(2.5)

Figure 2.6 presents numerically computed values of aperture efficiency q. (a,b, Au)

versus aspect ratio a/b for the three optimal aperture types (using the optimal vahes of As/b)

as well as q~ (a, b,O) for the narrow rectangularaperture. In this plot, numerically computed

values of q~ (a, b,O) are used instead of the values derived from Eq. 1.8 or 2.5. This is done, for

the purpose of comparison, to equalize any bias caused by the numerical computational process,
such as the finite plate spacing to thickness ratio, which was 60 or greater. The curves are least-

squares fits to the numerically derived data points. The fitted curve for q~ (a,b,O) has the form

given by Eq. 2.5 with slightly different coefficients ( Uq = 1.0938 and kn = 0.8289). The

functional forms of the q~ (a,b, Aa) curves are given by

(2.6)

where the single parameter v~ was determined by a least-squares fit to the data using the

numerically computed values of q~ (a, b,O). The values of Vq range from 0.14 to 0.16 for the

three optimal apertures. The curves fit the data well with a maximum deviation of + 0.0035
except for the three end points at very small a/b where the accuracy of the numerical method is

suspect.
Figure 2.7 presents plots of computed optimal aperture edge widths Aa versus aspect

ratio a/b for the three optimal aperture types. The curves are best fits to the data using

sigmoidal functions of the form

10
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O@imal Curved Apertures
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Figure 2.5. Optimal curved apertures for flat-plate TEM horns with different aspect ratios ah
and transmission-line impedances Z,inC.Parameter sets are (ah, Z,he) = (O, cmS2); (1/7, 400 Q);

(1/4, 333 Q); (0.5, 253 Q); (1.0, 178 Q); (2.5, 100 Q); (6.0, 50 Q); and (m, O Q).
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Figure 2.6. Plots of numerically computed values of aperture efficiency qA(a,b, Aa) versus

aspect ratio a/b using the optimal values of Au(a/b) from Fig. 2.7 for the three aperture types,

rectangular, hexagonal, and curved, and for the narrow rectangular aperture with Aa = O. The
lower plot shows the same data sets vertically offset along with the solid curves given by Eqs.
2.5 and 2.6 that best fit the data.
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Additional Width for Optimal Apertures
1.6 . . . I . . .
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Figure 2.7. Plots of numerically computed values of Au(a/b) versus aspect ratio a/b that yield

the maximum aperture efficiencies q~ (a, b, Au) for the three aperture types, rectangular,

hexagonal, and curved. The solid curves are the fi.mctions given by Eq. 2.7 that best fit the data.



log[Aa(a,b)] =
log[Aa(O,b)] + log[Aa(~,b)]

1+ UA(a/b)k’ 1+ UA(a/b) -k” “
(2.7)

The parameters u~ and k~ are chosen to minimize the mean-square deviation of the data,

whereas the asymptotic quantities Au(O, b) and Aa(~, b) are derived. The absolute accuracy of

the fit to the data is about * 1.5%. Equation 2.4 for the ideal curved aperture yields
Aa(O,b)/b = 1 and Aa(co,b)/b = 2/z. For large a/b, the areas of the edge regions shown in

Figs. 2.3 through 2.5 are the same to within 1% of that of the ideal curved aperture, which as

a/b + - becomes A(x 2 O)= 3b2/z. Assuming an exact equality in this limit provides an

estimate of Aa(~, b)/b = 3/(2z) for the optimal rectangle and Aa(m, b)/b = 3/z for the optimal

hexagon. Values of Aa(O,b) for the optimal rectangular and hexagonal apertures are obtained

analytically for the limiting case as q~ and a/b+ O. For the rectangular aperture as a/b+ O,

the leading term in the aperture efficiency is

[ (:)l[z10g(1+:)+4mctmq(a,b, z = As/b) + 8ZZ1O (2.8)

which has a maximum at As/b = z = 0.8422, where z is the solution to the equation

4 arctan(z/2) = z log(l + 4/z2 ). (2.9)

For the hexagonal aperture as a/b+ O, the leading term in the aperture efficiency is

[ (a)]-’[(fi)[’O(+)+2’Mct~(Z)]]2,
q(a,b, z = As/b) + 2722log Z (2.10)

which has a maximum at As/b = z = &, where z is the solution to the equation

2’(’2 – 3) arctan(’) = (3Z2 -1) log[(l + ‘2 )/4] . (2.11)

The parameters used to characterize the computed data are summarized in Table 1 b

rL
Aa(O,b) Aa(~,b) ‘~ kq Vq ‘A

b b
Narrow * ()* ()* 1.1158* 0.8300* - -
Rectangle
Narrow ()* ()* 1.0938 0.8289 - -
Rectangle
Optimal 0.8422* -3/(2z)* 1.0938 0.8289 0.1411 0.1799
Rectangle

r

E

Optimal b“ -3/n* 1,0938 0.8289 0.1453 0.1136
Hexagon
Optimal 1* 21X* 1.0938 0.8289 0.1568 0.3532
Curve

Ow.

1.4039

1.3907

1.0395

Table 1. Parameter values used in Eqs. 2.5 through 2.7 to fit the numerically computed
values of q~ and Aa, except where (*) denotes quantities derived from or fit to an

analytic function or a derived value.
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Figure 2.8a. Relative aperture efllciencies of rectangular apertures versus width parameter As/b
for flat-plate TEM horns with different aspect ratios ah and transmission-line impedances Z,,nc.

(A, ZlinC) = (0, ~ Q); (1/4, 333 Q); (1.0, 178 Q); (2-5, 100 Q); (6.0,50 Q); and (m, OQ).

m

I I I I I

/’ :
I I I I

0.7
I 1 I I

Hexagonal ADerture

.-.

1+’a+a+a+’a+l

I I I I I

“.

‘-O.O 0.2 0.4 0.8 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Dimension Aa/lY

Figure 2.8b. Relative aperture efficiencies of hexagonal apertures versus width parameter As/b
for flat-plate TEM horns with different aspect ratios A and transmission-line impedances Z,...

(ah, Z,,n=) = (O, m Q); (1/4, 333 !2); (1.0, 178 Q); (2.5, 100 42); (6.0,50 Q); and (CO,OQ).
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Figure 2.8 shows curves of VA(a,b, Aa) normalized to unity peak value versus As/b for

rectangular and hexagonal apertures. Curves generated by numerical computation cover the

important impedance range from 50 to 300 Q as well as the limiting cases as a/b+ O from

Eqs. 2.8 through 2.11 and as a/b+ ~. The aperture efficiency curves have rather broad peaks.

The improvement in aperture efficiency achieved by optimizing Aa is greatest at the higher
impedances, as might be expected. However, for the important case where a/b= 1,optimizing

Aa increases the relative aperture efficiency by 15.4 % and the absolute aperture efficiency from
47.3 % to 54.6 %. Further increases in q~ are possible using methods described in later sections.

III. Isorefractive Media

So far we have seen that energy that falls outside the aperture is lost and can be reduced
only by using lower impedance feed structures. There is another method to reduce this energy
loss that utilizes isorefractive media. Isorefractive media will share the same speed of light but
have different space impedances. For example

(3.1)

By using medium 1 in the region that illuminates the aperture and medium 2 in the region that is
blocked by the aperture, the proportion of the energy blocked by the aperture is reduced. If the
aperture boundary lies on E-field lines of the single-medium feedline structure shown in Fig. 3.1,
the introduction of medium 2 will leave the E-fields unchanged but the H-fields reduced in

medium 2. Thus, without altering the fields in medium 1, the power flow ~ = ~ x fi in
medium 2 is everywhere reduced. The surface integral in Eq. 1.6 for q~ will be unchanged, but

the transmission line impedance Zli,, (Z, ) will increase to Zli~,(Zl, Z2 ), and the dual-medium

aPerture efficiency %(Z1 @ will be related to the single-medium aperture efficiency VAby

‘line (ZI J ‘2 )
T@, >z,)=

Z,ine(z, ) ‘A “
(3.2)

The proof that such a structure is nondispersive and can support TEM-modes is outlined in
Appendix B.

The circular-conical lens IRAs shown in Fig. 3.2 is often used in ultra-wideband
applications. The natural aperture for this system is the circle at the edge of the lens and circular
conical electrodes, which is also the boundary of self-reciprocal symmetry, which always lies on
a field line.5 Also, for such self-reciprocal antennas, exactly half of the field energy lies outside
of the circular aperture. Furthermore, the charge densities on the inner and outer surfaces of the
thin electrodes are identical, and the inside and outside surfaces contribute equally to the
transmission-line impedance. The aperture efficiency of this system may be increased using
isorefractive media, with the higher impedance medium lying outside the circular aperture. The
new aperture efficiency may be derived by inspection using Eq. 3.2, once the single-
medium aperture efficiency is known.

When (30is small, the prompt fields in the aperture can be approximated by the fields on

a parallel transmission line with the same cross section. For the infinite transmission line, the
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Figure 3.1. Partial field-line map of the image plane of focused-aperture TEM horns immersed
in isorefi-active media, when the boundary between the two media (a) does or (b) does not lie on a
field line of the single-medium E-field distribution. In the latter case, the boundary fields satisfi
the relations: E, Sin Q = E, Sin (12and H, Cos e, = H,COS (3,,where Z, Tane, = Z, tan e,. TEM
modes will propagate parallel to the dielectric boundary if the isoreflactive condition is met, that
is c, = [U1S,]-’r~=[pz&J-’n= c2. Aperture efficiency is enhanced if Z, = [p,/G,] “2< [p2/&J‘n= Z*.

- Lens

E-Field
Lines +

(b) Front View(a) Side View

Figure 3.2. Circular conical lens IIL4 employing isorefiactive media. The boundary between
medium 1 and 2 is the circular cone containing the electrodes and the edge of the circular aperture
at the edge of the lens. E-field lines are shown in the aperture plane.
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three-dimensional wave equation reduces to the two-dimensional Laplace’s equation in the
transverse plane, and the resulting fields can be obtained by conforms.1 transformation. The
characteristic impedance of this transmission line in a single medium isG

and the aperture efficiency for the aperture defined by the circular-conical electrodes is7

~A(m)=+ [(l+Kz)K(m)]-2=z[(l+qk(m)ql-m)]-’,
med

with tan @O= ljT~, or m = [sec(@O)– tan(@O)]4,

(3.3)

(3.4)

(3.5)

where K(m) is the complete elliptic integral of the first kind. Maximizing q~ with respect to m,

the optimum electrode half-angle becomes ~(m) = 45°, and the optimum aperture efficiency is

46%. It was previously shownG that the aperture fields are most uniform for @O= 45°, so it is

understandable that this configuration should have the highest aperture efficiency. However,
even with this optimum configuration, the aperture efficiency is less than half. Half of the
aperture efficiency is lost because half of the power lies outside the aperture, and the remaining
4910loss is due to the nonuniform field distribution within the aperture.

To improve the aperture efficiency, isorefractive media may be used to concentrate the
power on the transmission line within the circular aperture. The modified impedance of the TEM
horn due to the presence of the isorefractive media is given by taking the impedances of the two
halves of the transmission line described by Eq. 3.3 in parallel:

Z,ine(Z,, Z,, m) =

[

1

1 ]=;R,[1:212z/ine(21*m)+2z/ine (Z2 ‘m)

(3.6)

Generally the inner medium with impedance Z, will not be the same as free space with

impedance 20. Graded-dielectric antireflection coatings may be applied to the lens boundary

that will operate efficiently for times appropriate to the prompt aperture-efficiency concept.
Under these lossless conditions, Eq. 3.2 applies, and using Eq. 3.6 in 3.2, the two-medium
aperture efficiency becomes

%(zl,%,m)=[z~~z]%(m),
2

(3.7)

where q~ (m) is given by Eq. 3.4 for a single medium. We see that by increasing ~, much of the

50 % loss in aperture efficiency due to power lying outside the aperture can be recovered. For

@, = 45°, the limiting value of Eq. 3.7 is 92%. The remaining 8 % loss is due to nonuniform

aperture filling.
Finding low-loss, nondispersive materials with arbitrary impedance and light speed is

nearly impossible. It is particularly difficult to increase # without significant loss at microwave

frequencies. However, synthetic dielectrics allow a limited degree of independent manipulation
of & and p . For example, using synthetic dielectrics containing suspended conducting spheres,

it is possible to decrease # by a fractional factor of about half of that by which & is increased.8
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m

Figure 3.3. Cross-sectional view of a TEM-hom array employing isorefiactive media. The
inner medium is a cubic matrix of conductive hollow spheres. The outer medium is a matrix
of conductive disks or strips aligned parallel to both the E- and H-fields. The broadband anti-
reflection layer is a graded-index matrix of conductive spheres with spatially varying radii.
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Also, & may beincreased without changing p using thin metal disks aligned parallel to both the

E–and H–fields. For example, if medium 1 is constructed of metal spheres in a cubic matrix
having a packing fraction of 0.32 (diameters equal to 85% of the lattice spacing) with
p, = 0S84p0 and El = 2.42E0 , an d medium 2 is a matrix of aligned metal disks with ~ s PO

and &2= 1.42s0 , the media will be isorefractive with Z, = 0.49Z0, Zz = 0.84Z0, and

c, = Cz = 0.84c. Using these vrdues in Eq. 3.7, the aperture efficiency increases from 46 % for a

single-medium to 5896 for these synthetic media. Although the media properties are not
optimized, this increase in aperture efficiency is significant, and the saving in lens weight would
have a profound impact on the practicality of larger lens IRAs. Figure 3.3 shows a cross-
sectional view of an array of focused-aperture TEM-horn elements using these metal-particle
synthetic isorefractive media. A wideband graded-index antireflection layer is used to transition
the impedance of medium one to that of free space. This is accomplished using a matrix of
conductive spheres with spatially varying radii. The antireflecting behavior of this layer can be
maintained for a time appropriate to the prompt-response time of the antenna elements.

One major problem remains, however. Synthetic media for time-domain applications
must exhibit minimal dispersion. This can be accomplished by making the metal particles small.
Smaller particles will necessarily have greater loss due to skin resistance. Whether an acceptable
compromise between dispersion and loss can be found is unknown at this time. Unusual particle
construction that employs special shapes and lumped-element electrical components may be
required to achieve the desired results. Optimizing particle size, shape, density, composition, and
lattice structure remains a topic for future work.

IV. Septum Plates

The final factor affecting loss of aperture efficiency is field nonuniformity. We have seen
that low-impedance TEM horns have superior field uniformity. Improved field uniformity may
be achieved with higher impedance horns by using septum plates, as shown in Fig. 4.1. The
septum plates divide the aperture into zones that act as low impedance horns, which are all
electrically in series. However, these interstitial plates are passive, in that they are not actively
driven. They originate near the throat of the horn or within the feedline where the transrnission-
line approximation is valid (i.e. where transmission-line dimensions are smaller than the shortest
radian wavelength of interest) and extend to the aperture plane.

If the antenna structure has strictly conical symmetry, the septum plates will carry no net
charge near the aperture plane, but merely become transversely polarized in the plane in a way
that makes the fields more uniform. Within each zone, the fields are more uniform, just as they
are in similarly-shaped low-impedance horns. However, the field magnitudes in adjacent zones
will differ in the higher impedance horns because the fields are more concentrated near the
actively driven electrodes. This effect may be counteracted by allowing the plates to deviate
from conical symmetry in a way that polarizes the plates longitudinally as well. This geometry
alteration must occur in a region where the transmission-line approximation is still applicable, as
shown in Fig. 4. lb. On the plates near the aperture plane, a net charge will then appear that
compensates for the natural field gradients near the driven electrodes. This same method may be
used to accomplish the opposite result, i.e. to passively roll-off the fields near the aperture edge
for controlling off-boresight radiation, an action that necessarily degrades aperture efficiency.
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Figure 4.1. Conceptual designs of TEM horns using septum plates to improve field uniformity
within the aperture. Examples include systems with (a) conically symmetric septum plates, (b)
altered symmetry near feedline to modifi potential distribution, and (c) bifurcated septum plates.
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V. Other Considerations

There are other performance criteria used in the design of antennas and sensors for time-
domain applications that can interfere with the achievement of high aperture efficiency. As
mentioned earlier, control of off-boresight radiation is one. Other considerations are array-
element interactions, reflected powers, resonances, and late-time responses. The aperture
efficiency concept mentioned thus far pertains only to the prompt response. Controlling what
follows this prompt response is a much greater task that will inevitably affect many aspects of the
antenna designs. This subject is left for future work.

There is one important example of late-time response effects that has been studied. It is
possible to construct E–field sensors that produce signals that precisely replicate the incident
field for a finite clear time.9’10 They consist of TEM horns, possibly with lenses, to the front of
which are added linear transmission-line extensions. The late-time aperture efficiency of these
antemas can never exceed 25 ~o. To maintain a flat replicating response, it is not desirable that
the prompt aperture efficiency be optimized in these devices. Precision replicating sensors of
this type can never have high aperture efficiencies.

Antennas with high aperture efficiencies that are sustained over prolonged time scales
may yet be possible to construct. Instead of maintaining the late-time response of a lens IRA
with a long transmission-line extension, the response may be prolonged by using a large-aperture
array, where the prompt response is maintained until effects propagate inward from the edge of
the entire array rather than the edge of each element. The rudiments of a design that may
approach this objective are shown in Fig. 5.1. We start with low-impedance horn elements with
optimal rectangular edge regions having As/bs 1/2. At a/b= 6 with Zli~e=50 Q, the prompt

aperture efilciency is a respectable 82.6 Yo,without having to resort to using isorefractive media
or septum plates. To maintain the response at late times, the forward aperture fields must be
sustained. Radiation in the backward direction would eventually occur, reducing the aperture
efficiency by half. The backward radiation is prevented by the conducting back plane, and the
detrimental effects resulting from the subsequent short circuiting of the array are minimized with
ferromagnetic cores between the back plane and the array. High-frequency low-y ferrites are used
near the location where the horns join together. This is where the prompt interactions between
the horns occur and where rapid magnetization is required. At later times, a slower high-p
magnetic material near the back plane absorbs the build-up of magnetic flux with a minimal
energy expenditure. The radiated field energy blocked by the individual antenna apertures must
be absorbed to prevent resonances. This is accomplished with carefully placed absorber material
as well as the ferrites. Neither material should be located near the individual feed points. While
prompt and late-time step responses are relatively easily to predict, the intermediate-time
response, during which the E– and H–fields inside the antenna structure are evolving toward an
electromagnetic equilibrium, will be very difficult to predict and will be very sensitive to the
exact details of the antenna-system design. The fine tuning of this type of antenna design will
most likely be accomplished by empirical and numerical methods.
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prolonged time scale. The array response is sustained for times comparable to the time for light to traverse the entire array rather than
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VI. Conclusions

The concept of aperture efficiency introduced in this report provides a quantitative
measure of performance for comparing and optimizing the prompt responses of impulse radiating
antennas. Aperture efficiencies can be substantially increased by choosing feed structures and
aperture shapes that maximize field uniformity within the aperture and minimize energy that is
blocked by the aperture. The most direct way to do this is through the use of low-impedance
planar feed structures. Other methods that might be exploited utilize isorefractive media and
septum plates. Antenna designs may be optimized under constraints such as restrictions on
source impedance, aperture shape, off-boresight radiation, array-element interactions, and late-
time responses.

Appendix A: Numerical Calculation of Aperture Efllciencies and Optimal Apertures

In order to develop computational methods that were not limited to specific cases and
geometries, numerical approximations of the optimal curved, rectangular, and hexagonal
apertures, and their corresponding aperture efficiencies were performed using the Matlab Partial
Differential Equations (PDE) Toolbox (Version 1) running within Matlab (Version 5.1).11 The
PDE Toolbox is a Finite Element Method (FEM) solver that allows for efficient calculation of
solutions to the elliptic equation in two dimensions, which is the general form of the Laplace
Equation. This appendix is divided into three sections. Section Al describes the general use of
the PDE toolbox to solve for the field distributions in parallel-plate transmission lines of
arbitrary aspect ratio. Section A2 outlines the method used to approximate the optimal curved
aperture that satisfies Eq. 2.3. Section A3 covers the method used to determine the best
rectangular and hexagonal apertures.

Al. Use of the PDE Toolbox for Parallel-Plate Transmission Lines

The methods described in this section are similar to those used previously to determine
the current distribution in parallel-plate transmission lines. 10 The principle computational
difficulty is encountered in accurately modeling the unbounded transmission line geometry using
a finite-sized computational domain. To overcome this problem, an iterative procedure was
developed.

Definition of Problem and Mesh Generation

Because of the symmetry inherent in the problem, only one quarter of the transmission
line geometry need be modeled. By replacing the symmetry boundaries where appropriate with
electric and magnetic walls, the size of the problem is reduced by a factor of four. For
computational reasons, the transmission line model must have finite thickness. The electrode
thickness is of limited importance to the computed quantities, but it must be chosen carefully to
facilitate effective computation. In practice, the electrode is made as thick as possible, while not
altering the impedance of the transmission line significantly from the value for electrodes of zero
thickness. 10 The plate spacing to thickness ratio was 60 or greater for these computations.
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The outer boundary of the computational domain is defined as a circle of radius

24=. The triangular FEM mesh is created and refined using the adaptive mesh generator
algorithms included in the PDE Toolbox. The boundary conditions are defined as follows: on
the vertical boundary, the normal derivative of the potential is set to zero (magnetic wall); on the
horizontal boundary, the value of the potential is set to zero (electric wall at zero potential); and
on the electrode, the value of the potential is set to unity. While for zero-thickness electrodes,
the potential boundary can be determined exactly, the finite thickness electrodes require the
iterative procedure described below to accurately determine the potential on the outer boundary.
The adaptive mesh algorithm generates a mesh within the domain, solves the Laplace equation
numerically, and estimates the gradient of the potential (electric field) within each element. The
potential gradient is compared among neighboring elements, and those triangles that have a
potential gradient that differs most from the potential gradient in the neighboring cells are
subdivided. Typically, the mesh was refined until there were more than 2000 elements (-> 1000
nodes). An example of an initial mesh and a mesh after refinement are depicted in Fig. A 1.1.

Iterative Boundary-Condition Method

The iterative method begins with a guess as to the value of the potential on the circular
outer boundary of the computational domain. A zero-order approximation to the potential on the
circle is V=O. With this boundary condition defined, the Laplace equation is solved numerically,
and the approximate charge distribution on the electrode is determined. Next, the potential is
calculated at the circular boundary in a unbounded 2-dimensional space due only to this charge
distribution and its images. This new potential distribution is subsequently used as the boundary
condition in the next iteration. This procedure is continued until the potential on the outer
boundary is stable, as determined by evaluating the mean square difference between the potential
on subsequent iterations. Representative solutions for the first and final iterations are shown in
Fig. A1.2.

As just described, the two algorithms are employed sequentially, i.e. the refined mesh is
generated then the iterative procedure is used to determine the potential. In actuality, the
iterations of the two algorithms were interspersed, i.e. the potential on the outer boundary in the
n+ 1‘hiteration of the mesh was determined from the nti charge distribution on the electrode. This
method saved up to half the computational time, depending on the specific problem.

A2. Determination of Optimal Curved Apertures

In principle, determining the optimal apertures from Eq. 2.3 is straightforward. However,
in practice it can be quite difficult to determine the contour that satisfies Eq. 2.3 analytically,
especially in the parallel-plate transmission-line geometry, where the complex potential is
defined in terms of elliptic integrals and functions of the spatial variables. For this reason, a
three-step procedure was developed that allows the optimal apertures to be approximated using
numerical methods.

Step 1: Approximate contours of constant EY

The FEM gives approximate values of the potential at specific node locations within the
computational domain. From these values, a piecewise linear approximation of the field can be
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computed. However, this approximation is difficult to work with when it comes to defining
contours of constant field. For this reason, the computational domain of Fig. A 1.1 was modified
to that of Fig. A2. 1, where artificially imposed boundmies are included in the domain. These
boundaries do not affect the nature of the problem, rather they force the Matlab mesh generator to
place nodes on the boundaries, allowing the user a measure of control over node placement. The
specific artificial boundaries shown in Fig. A2. 1 are ten radii originating at the point (1,0) and
spaced 9-degrees apart from the positive x- to the positive y-directions. The vertical field was
determined as a function of angle and radial distance from the point (1,0), allowing the
construction of contours of constant EY.

Even though the potentials are given at the nodes, the fields are determined at the centers
of the triangular elements, and there is no way to control the placement of these centers.
Therefore, the fields must be estimated at the nodes using other means. To accomplish this, a
local two-dimensional quadratic form for the potential was assumed, i.e.

v=ax2 –ay2+bxy+cx+dy+e. (A2.1)

Note that the coefficients of the X2and y2 terms are equal in magnitude and opposite in sign, as

required for Eq. A2. 1 to satis@ the Laplace equation (V2V=O) At each node along the

artificial boundaries, the coefficients in Eq. A2. 1 were determined from the potential at the node
and its nearest neighbors using a least-squares solution cast in the form of a singukir-value matrix
decomposition (SVD) for an overdetermined system. The SVD was performed using the
function provided in Matlab. Once the y-component of the field was determined at each node,
for each angle the radial positions corresponding to 0.3, 0.4, 0.5, 0.6, and 0.7 times the value of
EYat the origin (0,0) were estimated by linear interpolation.

()Step 2: Determination of EY within Constant-EY Contours and the Optimal Aperture

With approximations for the constant-EY contours, the second step in the process was
undertaken. The computational domain of Fig. A 1.1 was again modified by constructing
artificial boundaries on the constant-EY contours, as shown in Fig. A2.2. For each EY-contour, the
aperture efficiency was calculated using Eq. 1.6. The EY-location of the aperture-efficiency
maximum was estimated using a least-squares flt to a local quadratic approximation for the
curve. With this value of EY, one final mesh was defined that allowed the optimal aperture
efficieny to be calculated using Eq. 1.6. An example of such a final mesh is shown in Fig. A2.3.

A3. Determination of the Optimal Rectangular and Hexagonal Apertures

The procedure used to determine the optimal rectangular and hexagonal apertures is
similar to the procedure described in section A2. The computational domain of Fig. Al. 1 was
again modified with several artificial boundaries that were either rectangul~ or hexagonal in
shape. The modified domains and meshes are shown in Fig. A3. 1a for rectangular apertures and
Fig. A3. lb for hexagonal apertures. For each aperture, the aperture efficiency was calculated
using Eq. 1.6. The As-locations of aperture-efficiency maxima were estimated using least-
squares fits to local quadratic approximations for the curves. With these Aa values, final meshes
were defined that allowed optimal aperture efficiencies to be calculated using Eq. 1.6.
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Appendix B: TEM-Mode Propagation in Isorefractive Media

The question to be answered is “Under what conditions will mixed isotropic dielectric
media support TEM modes?” This problem has been treated in a very general way by Baum.12
The following treatment for plane and spherical waves on linear and conical transmission lines
represents special cases of the more general conditions under which TEM-waves can propagate
in inhomogeneous isotropic media. For the present purposes we assume that the transrnission-
line structure has translational symmetry in the z-direction. The positions of electrodes and
dielectric boundaries depend only upon the x and y coordinates. We assume a plane wave
traveling in the positive z direction in both media to have the form

~,(X,JJ,Z,t)=~,(X,Jjf,(t –Z/C,), and ~2(X,y,Z,t)=i,(x,y)f,(t‘Z/c2),

R,(x,y,z,f)= fi,(X,Y)f,(~– z/c,),and fi2(X,Y,Z,~)=fi2(X,Y).f,(~–z/c2), (Bl)

with EZ1(x, y) = O, HZ,(X, y)=O, HZ2(X,y)=O and, EZZ(X,y)=O.

In the interior of each medium, away from the boundaries, these equations satisfy Maxwell’s
equations for a TEM mode, such that fk (t) can be any differentiable function,

E,k =Zk HYk, E,k =-Zk H,k, ~x~, (x, y)= O,and ~2~, (x, y)=0,

with ck = 11~~, and Z~ = J=, for k = 1or 2. (B2)

Because the curl of the two-dimensional E–field ~~ (x, y) is zero, this field maybe derived from

an electric potential function @(x,y) that satisfies the two-dimensional Laplace’s equationl 3

[)
~’ ~’

— @(_x, y) = O, with E(x, y) = -~~(x, y),V’@(x, y)= ~+ @z (B3)

provided the electromagnetic boundary conditions can be met at the interface between the two
media. We must have the parallel components of the E– and H–fields and the perpendicular
components of the B– and D–fields continuous at all times and points x’, y‘ on this boundary:

i,(x’,y’)f, (t–z/c, )xii=E2(x’, y’)f2(t-z/c2) xi,

fi, (x’, y’)f, (t-z/c Jxii=E2(x’, y’)f2(t-z/c2)xfi,

pJi,(x’, y’)f,(t- z/c,) .fi=J@(x’, y’)f2(t-z/c2).ii,

&*45Jx’, y’)fl(t –z/c, ). fi=E2i2(x’, y’)f2(t –z/c2). fi,

with ~~ =p~~~, and~~=&~~~, fork= lor2,

(B4)

where ii is the normal unit vector at point x’, y’ on the dielectric boundary. These conditions

can be met if the time-dependent wave forms are identical, and the light speeds are equal in each
medium, i.e. the isorefractive condition holds:

f,(t) =fz(t), and C,= l/fi = l/J~ = C2. (B5)

Under these conditions, a TEM mode will propagate, and the E–field distribution is found by
solving the two-dimensional Laplace’s equation for the transmission line in the inhohogeneous
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dielectric medium. The H–field is related to the E–field through Eq. B2. The field magnitudes
and the angles subtended by the E–field vectors on either side of the dielectric boundary that
were shown in Fig. 3.1 are given by

El Sin@l = EzSinOz, HI COSOl= Hz COSOz,

A similar analysis holds for spherical waves in polar coordinates, where the dielectric
properties depend only upon the angle coordinates. The two-dimensional electrostatics problem
then becomes one of solving the Laplace equation in spherical coordinates on a spherical surface
containing mixed dielectric media. This problem is more readily solved by transforming
solutions of Eq. B3 in cartesian coordinates into solutions in spherical coordinates by
stereographic projection.14
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