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ABSTRACT

This note provides a straightforward analytic means for approximating the ideal aperture for a
flat-plate transmission-line feed for an IRA. Previously, the ideal aperture was obtained using
numerical methods that are inflexible, and hence not suitable for use in designing systems. The
method introduced here provides a means for rapidly estimating the ideal aperture so that any
modifications for a realistic system can easily be made without requiring costly recomputing of
the aperture. The resulting aperture efficiency of an antenna with an aperture designed using the
approximate methods described here is within 0.5% of the efficiency of an IRA with the ideal

aperture.



I. Introduction

In a recent note [1], the concept of prompt aperture efficiency for impulse radiating
antennas (IRAs) was introduced. For focused aperture systems, the radiated field on boresight a
distance r in the far-field limit is given by [2]

E,oq(r t)—————HE(x y,t —rfc)dxdy, (1)

2nre dt

where c=1/ JUe s the speed of light in the medium, and the surface integral of the field is

taken over a planar aperture defined by area A. By taking the ratio between the prompt field
radiated from a particular IRA in accordance with (1) to the prompt field radiated by a test
antenna, which has the same aperture uniformly illuminated, the aperture efficiency is [1]

A Z in
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In (2), Z;i, and Z,,,.4 are the impedance of the transmission- lme feed structure of the IRA and the
wave impedance of the medium, respectively.

In [1], the optimum aperture, i.e. the aperture that maximizes (2) for any particular feed
structure, was determined to be bounded by a contour of constant E,. The particular contour that
yields the optimum aperture is that on which
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Previously, numerical methods were used to determine the contour that satisfied (3) for various
flat plate feed geometries. While effective, these methods are cumbersome and require
reevaluation of the entire problem to determine the ideal aperture for a modified antenna
structure. In this investigation, analytic techniques are given that can yield a close
approximation to the ideal aperture for an IRA fed by a parallel, flat plate transmission line.

1I. Analysis of the Limits

Knowing the field everywhere within a given contour is not enough to be able to
determine if (3) is satisfied. The integral in (2) that gives <E y> must also be evaluated, and in

many feed structures of interest, this can be rather difficult. As discussed below, the field
distribution on conical flat-plate feeds is given by the Jacobian Zeta function of the complex
potential in two dimensions [3], and the resulting field distribution is difficult to deal with in the
integral of (2).

In the previous study [1], the limiting cases for parallel plate transmission lines depicted
in figs. 1 and 2, i.e. Z—0 (a>>b, where a is the plate width and b is the plate separation) and



Z - (b>>a), were examined to determine asymptotic characteristics of the ideal aperture.

Here, those analyses are spelled out more completely, and observations are made that yield
insight into the more complex (and more practical) problem involving flat plates of finite width.

Limit as Z->0: Maxwell Curves
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Figure 1: The limiting case of a parallel-plate transmission line as the impedance gets very small.
The conformal mapping is known as "Maxwell Curves" and is given in (4). The ideal aperture
includes all of the area between the plates (extending to -«) as well as the area outside the plates
bounded by the solid line labeled u=0. The y-component of the field on this contour is exactly
half of the value of the field between the plates as x—-co.



A.  Limit of Very Close Plates (Z — 0)

As the width of the plates becomes much greater than their separation, the structure (at
least close to the edge) begins to look like a pair of semi-infinite plates that end abruptly at some
location taken as x=0. The conformal map that gives the potential distribution on a pair of
semi-infinite plates separated by a distance b is given in [3, E5] as the Maxwell curves:

Z=%(w+1+ew), 4)

where z=x+iy is the complex coordinate and w=u +iv is the complex potential. With the
form given by (4), the imaginary part of the complex potential, which varies as—z <v<7, is

taken as the electric potential (i.e. E=-Vv), and the real part of the complex potential, which
varies as —oo<pu<eoo, gives the stream function (field lines) [4]. It is clear that the ideal
aperture will include most of (if not all of) the area between the plates, and possibly a portion of

the area outside the plates. Given the semi-infinite nature of the structure, <Ey> can be

determined by inspection for any aperture that includes the area between the electrodes as

so the contour of interest is the one on which E, =—n/(2b). The complex field is determined

from (4) (with v taken as the electric potential) as

. dw
EC =Ey +1Ex _—'—FZ-,
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Setting the right side of (6) equal to 7/(2b) yields u=0 as the contour of constant E, of

(6)

interest. This contour is depicted in fig. 1, and is parameterized as a function of v as
b b .
=—(1+cosv), y=—(v+sinv} -T<Vv<T. @)
4 T

There are two important properties of this contour that should be noted now:

1) The field at the point where the contour intercepts the plane of symmetry is exactly
half of the value at the center of the aperture (i.e. x — —oo)

2) The contour for the optimum aperture lies on a field line (a line of constant k). Which
field line? The one that leaves from the singularity.



Limit as Z—>inf: Bipolar Circles
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Figure 2: The limit of a high-impedance transmission line. As the plates get narrower and
narrower, they begin to look like thin wires separated by . The conformal transformation is given
in (8) and is known as "Bipolar Circles.” In this case, the ideal aperture lies on the circle of

symmetry, shown solid here, where the y-component of the field is exactly half of the value at the
origin.

B. Limit of Very Narrow Plates (Z — o)

As the width of the plates gets to be much smaller than their separation, they begin to

look like a pair of thin wires separated by distance b. The conformal map that gives the potential
distribution for this case is given in [3, E4] as

. ib(e” +1) | ©
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With the transformation in (8), the real part of the complex potential, which varies as
— oo < u<eco, gives the electric potential, and the imaginary part of the complex potential, which



varies as — T < v <7, gives the stream function. Using (8) and taking advantage of the self-
reciprocal properties of the aperture [5], a curve that satisfies (3) can be found by inspection.

The aperture for the two wire case depicted in fig. 2 is an example of a self-reciprocal
aperture, i.e. an aperture that is unchanged by reciprocation of all points through a circle of
symmetry. For the case of interest, this circle is centered at the origin and has radius b. It is
shown in [5] that the average field inside such an aperture is identically equal to the value of the
field at the center of the aperture. The relative electric field is (as a function of the complex
potential, note that now u is taken as the electric potential)

E,=E,+iE, =%

y d—z=i—(coshw-—1). 9

At the origin (x=0, y=0;u=0,v=ﬂ:), (9) gives E, =—i(2/b). On the circle of symmetry

(v =r/2,v=3n/ 2), (9) gives E, = —i(l/b). It is therefore clear that (3) is satisfied when the

aperture is taken as the circle of symmetry. Again, there are two important properties of this
contour that should be noted now:

1) The field at the point where the contour intercepts the plane of symmetry is exactly
half of the value at the center of the aperture.

2) The contour for the optimum aperture lies on a field line (a line of constant u). Which
field line? The one that leaves horizontally from the singularity..

Apparently, the ideal aperture for the two limiting cases is bounded by a field line that leaves the
singularity in the horizontal direction and has a constant value of E, equal to half the value of the
field at the center of the aperture. It is possible that these observations might provide insight to
the selection of the ideal aperture for an arbitrary parallel-plate transmission-line feed.

HI. Arbitrary Parallel-Plate Feed

Given the results of the previous section, one might be inclined to present the hypothesis,
“The ideal aperture, as defined by (3), for an arbitrary parallel plate transmission-line feed
structure is bounded by the field line that leaves (horizontally) from the singularity at the edge of
the plate.” In this section, this hypothesis is examined, and shown to be incorrect. However, it is
also shown that the field line that leaves horizontally from the singularity is in fact a good
approximation to the boundary of the ideal aperture.

The conformal transformation that gives the field distribution on a parallel-plate
transmission line has been investigated in many places [6,7]. While this transformation does not
give the exact potential distribution for TEM horns with large flare angles [8], it does work well
for small-angle TEM horns like those typically used for the feed structure in lens IRAs [9,10].
The transformation used here is given in [3, J6] as

Z=x_1y=

ZK;m)b Z(w+ iK(1— m)lm) + ib (10)



where K(m) is the complete elliptic integral of the first kind evaluated at the parameter
m (11, ch. 17] and Z(wlm) is the Jacobi zeta function [11, ch. 17]. The parameter m is set by the
specific impedance of the horn [6,7]. Note that this transformation is somewhat different in form
from that used in [7] and [9]. As shown in [3], the imaginary part of the complex potential,
which varies as — K(1—m) < v< K(1—m), gives the electric potential and the real part of the
complex potential, which varies as — K(m) < u < K(m) , gives the stream function. The contours
that define the plates are at v=+K(1—m).

The first order of business is to determine the value of u at the singularity. Once that
value is determined, that particular field line can be evaluated to determine if it satisfies (3). The
metric coefficient for a conformal transformation in two-dimensions gives the differential area
element in terms of the complex potential, i.e. dA =g dudv. The singularity is located at the
point where the metric coefficient is equal to zero (i.e. a change in either u or v produces no
change in the complex coordinate z). We already know that singularities lie at the edges of the
flat plates. Furthermore, by symmetry, finding the location of one singularity gives the location
of the other three. On the top electrode (v=K(1—m)), the metric coefficient given in [3]

simplifies to

g11 =(2Kfrm)b)2(dn2(ulm)— iéﬁ;)z an

where dn? (ulm) is a Jacobi elliptic function [11, ch. 16]. Equation (11) is equal to zero when

an(mm):iE”L;,
K(m

u=uy=F(pgm) , (12)
singg =sn(ulm)= %[]_71‘5%))_]

where F(@olm) is the incomplete elliptic integral of the first kind [11, ch. 17]. Note that (12) is
in agreement with [6] as to the location of the singularity.

The next step in validating the hypothesis given above is to evaluate E, on the contour of
constant u given in (12). For the transformation given in (10), E, is given by the real part of
dw/dz. Using the definition of the Jacobian Zeta function [7,11] and the relation for the
derivative of the incomplete elliptic integral of the second kind [11, 16.26.3], the complex
(relative) field is found to be

w -1 m)) !
Ey=Re%Z—=Re[(j—i) ]:Re{zK?m)b(dnz(wHK(l—m)lm)—i—gm%] } (13)




Unfortunately, it can be shown that dE,, (uo + iv) /dv #0 for at least one value of v for O<m<1.

This implies that the ideal aperture cannot lie on a field line, since the ideal aperture must leave
the electrode horizontally from the singularity (to ensure finite E,) and since only the field line
given by (12) leaves the electrode horizontally from the singularity.

IV. Use of Field Line as Approximation to Ideal Aperture

Now that we know that the optimum aperture for an arbitrary flat plate feed structure is
not given by the field line that leaves horizontally from the singularity, we should determine how
close this field line comes to approximating the ideal aperture. As is shown in this section, the
aperture defined by the field line in question is a good approximation to the ideal aperture for flat
plate feed structures.

A. Magnitude of the Field on the Plane of Symmetry

As shown above for the limiting cases, the magnitude of the y-component of the field on
the ideal aperture at the plane of symmetry is exactly half of the y-component of the field at the
origin. In this section, we compute the corresponding ratio for an arbitrary flat-plate feed and
show that it asymptotes to ¥2 on both ends (low and high impedance).

Due to symmetry constraints, the field on the plane of symmetry is y-directed only.
Evaluating (13) at the origin (x =0,y=0;u= K(m), v= O) yields

T

Ey(K+i0)=—-2b—E, (14)
and evaluating (13) at ¥ =ug,v =0 yields
E, (g +i0)= =" 1-EK , (15)
2Kb| (E/K)" - 2(E/K)+m

where the parameter of the complete elliptic integrals K and E has been suppressed in (14)
and (15) and m; =1—m . The ratio of (14) and (15) is plotted in fig. 3. Using expansions for X

and E/K [11], the ratio can be shown to asymptote to ¥2 for m=>0 and for m—> 1.

B. Location of the Intercept of the Field Line with the Plane of Symmetry

One of the important parameters calculated in [1] was the additional width of the ideal
aperture as a function of aspect ratio. An empirical function was fit to the data that fit reasonably
well for low impedances (i.e. Z<200€2). Here the intercept of the field line in question with the
plane of symmetry is calculated and compared to the numerical results obtained previously.

The x and y coordinates for a particular # and v can be obtained from (10), but they are
given directly in [3]. The quantity that we are interested in computing is
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Figure 3: The ratio between the values of the field at the intercept of the field line with the plane
of symmetry and at the origin. It was shown above and in [1] that for the limiting cases, this ratio
should be Y2. It is clear from the above plot that the limits as a/b—0 and as a/b—ee. Note that the
ratio is furthest from Y2 as values of a/b on the order just less that 1. This is the area where the
field line makes the worst approximation to the ideal aperture, but as shown below, the fit is still
quite good.

(xo - a)/b , where xp is the location of the intercept and a is the width of the plate as given in
other sources as a function of plate separation and m [6,7]. The value of a is

a = Re[z(ug + ik (my))] = 357(:"’—)1’2(140 | m), (16)

and the location of the intercept is

xg = Re[z(xg +i0)]=£7(;@ Z(uolm)+1 - 2"(’ | )sn(uolm)cn(uoIm)dn(uolm) (17)
—dn“{uglm
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Figure 4: The extra width due to the aperture defined by the field line in question compared to the

computed (and fit) data for the ideal aperture. The solid line is the function defined by (18) and
the dashed line corresponds to the sigmoidal fit given in [1].

where the values of the Jacobi elliptic functions can be determined from (12) and using the
identity sn? (Im)+ cn? (u!m)=1. After some algebra, we obtain

xg—a_2K E/K—ml’ (18)
b t \ K/E-1
where the parameter m of the complete elliptic integrals has once again been suppressed.

Equation (18) is plotted in fig. 4 along with the corresponding values computed in [1]. The

deviation of (18) from the computed values for the intercept of the ideal aperture are shown (as a
fraction of the computed value) in fig. 5.
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Figure 5: Deviation of the intercept locations shown in fig. 4. Note that the maximum deviation
is found for a/b values of just less than 1. Again, this corresponds to the area where the
approximation is the poorest, yet, as shown in fig. 6, even the poorest approximation to the
aperture boundary is still very close to the computed curve.

C. Similarity of Field Line to Ideal Aperture

In this final section, the contour given by (12) is directly compared to the contours
calculated in [1] for several specific aspect ratios. We see that the agreement is very close, and
that the aperture given by the field line u =u( closely approximates the ideal aperture. Figure 6

shows the ideal apertures computed in[1] and the aperture given by the field line that
satisfies (12) for several values of the line impedance.

In all cases, as is shown in the plot in fig. 4, the curve obtained by the method described
here lies outside the ideal aperture calculated in [1]. The additional area does result in a lower
efficiency, however, in the four cases presented in fig. 6, the aperture efficiency obtained using
the methods presented in this paper were less than 0.5% lower than the efficiency of the of the
corresponding ideal aperture. It is thus clear that the analytic methods introduced here provide a
good approximation for the ideal aperture.
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V. Conclusion

Together with [1], this paper provides a thorough understanding of the concept of
aperture efficiency and the properties of the ideal aperture for a flat plate feed structure (as might
be found in a lens IRA). As has been shown, the prompt efficiency depends on the choice of the
focused aperture, and an optimum aperture does exist. While it is not trivial to find the optimum
aperture, the methods introduced here provide a straightforward analytic means to approximate

this optimum aperture.

In many (if not most) applications, it is impractical to use the ideal aperture. Due to
factors such as ease of manufacture and array packing density, it is often simpler, cheaper, and
more effective to use a slightly suboptimal aperture (as was discussed for rectangular and
hexagonal packing in [1]). However, the fact that an optimum aperture does exist is important,

and should prove helpful when designing an IRA aperture for a particular application.
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Figure 6: Apertures computed using analytic methods for several line impedances. Points on the
ideal aperture, calculated in [1] are also shown. Note that the approximate aperture is in all cases
bigger than the actual ideal aperture, but a comparison between the efficiencies shows a decrease
of less than 0.5%. The Efficiencies of these apertures are all strictly greater than that of the
corresponding optimum hexagonal and rectangular apertures computed in [1].
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