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Sensor and Simulation Notes
Note XLIII
31 May 1967

Some Considerations for Electrically-Sm~l Multi-Turn
Cylindrical Loops

Capt Carl E. Baum
Air Force Weapons Laboratory

Abstract’

This note discusses some considerations affecting the design of”
electrically-small multi-turn cylindrical loops. These considerations
include symmetry in the loop turns, inaccuracy in the measurement of
inhomogeneous magnetic fields, and the inductance and figure of merit
of such a loop.
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1, Introduction ,_.—>=-.
.,f. .:,

A convenient geometry for an :“leetrically-small~ loop is a circular
..,,.. ...

cylinder in which the currents flow in ~’neazimathal ($) direction. As an
idealization of such a structure cox.+?ti::ra uniform eyl~fidricaicurrent
sheet as illustrated in figure 1, Tfi~.~current sheet has Iengch, ky and
radius, a, and is centered on a cyl<.16*ic~l(r%+pz) co~rdinate system. The
azimuthal surface current density is J~ which is inc?ependentof position on
the current sheet, This current sheet is used to approximate the current
distribution in an electrically-smallmulti-turn eylin~rical loop, By
electrically-small we mean that all frequencies of interest are small enough
that the corresponding wavelengths or skin depths, as appropriate in the
media in the immediate vicinity of the loop are much larger than the loop
dimensions. We also assume that the permeability is a uniform scalar constant
in the immediate vicinity of the loop.

The turns of the cylindrical loop are assumed co be uniformly distributed
along the axis of the loop and interconnec~ed in a manner such that the current
in the loop turns approximates the uniform cylindrical currenc sheet, There
are various configurations of the turns k’hichmeet.such criteria. Some of
these configurations are presented in this note, These configurations have
varying degrees of symmetry in them, Use of turn.geometries with higher
orders of symmetry may be advantageous in rejecting .signalsassociated with
unwanted electromagnetic field components,

There may be circumstances in which the z componentof the magnetic field
is significantly inhomogeneous..inthe vicfnity of the loop. The response to
such an inhomogeneous field is then considered so as to find an optimum
length-to-diameter ratio which minimizes the error associated with the
measurement of an inhomogeneous field.

The equivalent area of an electrically-small multi-turn cylindrical
loop is just Nna2 where N is the number of series-connected turns, For
sufficiently low freq~eneies this equivalent area is qisiteaccurate;
inaccuracies are related to the dimensional inaccuracies of the loop,
The loop inductance, however, is somewhat more complicated, Zn this note
we approximate the inductance of a multi-turn cylindrical loop by using
the inductance.of a uniform cylindrical current sheetD an accurate formula
being known for this, With the equivalent area and i-nductancewe then
calculate the equivalent volume and the spherical figure of merit, Maxj.miz-
ing the spherical figure of merit determines another optimum
ratio.

11, Geometry of-Loop Turns

Consider’first some of the possible configurations for

length-to-diameter

-.
the 100D turns.

Figure 2A shows.an example of a 4-turn cylindrical loop, The loop t;rns
are cut at”a particular + and laid.ou’tto give the expanded view in figure
2B0 This type of loop winding is roughly a single helix except’that the ‘
individual turns each lie in a plane; the signal terminals are connected to
the ends of the helix. Such a turn configuration is a rather straightforward
one, but it may have disadvantages. Ideally, the turn configuration is
sensitive only’to the time derivative of the component of the magnetic field .;.

parallel to the loop axis; However, if there is an electric field component , =
,...
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FIGURE 1 GEOMETRY OF UNIFORM CURRENT SHEET
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A. Angular view
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Conductors along
these two lines
join together to
form the loop,

~ Terminals

B, Expanded view

FIGURE 2. MULTI-TURN LOOP GEOMETRY: SINGLE HELIX
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parallel to the loop axis, one wolildexpect a signal associated with this field
component to be produced at the loop terminals~ Such a signal is produced
because the ends of the loop winding are physically separated in the axial
direction, The signal induced by the axial electric field can be shorted
through the loop turns but there is an impedance associated with the loop
inductance so that some signal is left to appear at the loop terminals,

An alternative turn configuration is that in figure 3A. Here the ends
of the helix are shorted together and the turns are separated in the center
of the winding to give the two signal terminals. In this configuration the
farthest separated loop turns are connected together with an impedance which
is smaller in magnitude than the impedance associated with the loop induct-
ance. The.signal associated with an axial electric fieldshould thereby
be reduced,

Another turn configuration, with somewhat more complexity, is that
shown in figure 3B. This case, as the previous two, is illustrated for
4 turns, but can be generalized to various numbers of turns. In this
configuration a degree of symmetry has been added. Two helices are
wound in opposite directions. Each end of one helix is joined to an
end of the other helix, The two positions at which the two helices are
thus joined at each end of the cylindrical structure are also connected
together by another conductor, The turns in each helix are physically
separated at their centers and the two heli.cesjoined to each other at
this position to give the two signal terminals, We thus have what might
be termed two counterwound helices with the signal removed from the centers
of both helices.

Another way to look at the winding geometry in figure 3B is to think
of it as two parallel windings, Each winding starts in the center of the

structure> progresses to one end! and returns to the center” Considered
this way$ the center position on each winding is at one end of the structure;
these center positions on the two windings can be joined together as
illustrated in figure 3B.

By using two counterwound helices we have more symmetry in the loop
structure. This symmetry would not be perfect due to things.such as
dimensional imperfections. An axial electric field still sets up currents
on the loop structure, but ideally.,due to the symmetry, these do not
appear as signals at the signal terminals, One way to.reduce these
currents would.be.to connect the two ends of the winding structure together
as discussed above, thereby providing an additional.path for such currents
which is not directly connected to the signal terminals. There are various
similar additional conductors which might be added to reduce unwanted signals,
but these are not discussed here.

There are other techniques for improving the responseof such multi-
turn cylindrical loops, In some cases one might remove the signal differen-
tially and connect the position(s) midway on the loop turns to a third
conductor such as a signal cable shield. One might alsousevarious
types of shields around the loop structure, In any eventit may be
desirable to put various types of symmetry into the loop turns, Counter-
winding is one type of symmetry; perhaps other types of symmetry may be
advantageous as well.
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A. Single helix with terminals in center of winding
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Conductors along
these two lines
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B. Two counterwound helices with terminals in center

FIGURE 3, ALTERNATIVE MULTI-TURN LOOP GEOMETRIES :
EXPANDED V EWS ... .; .,1... .....’-.
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III, Response to an Inhomopeneous Magnetic Field

Referring back to figure 1, the cylindrical loop ideally responds only
to the z component of the.magnetic.field. This loop is assumed-to have N
turns and a uniform number of turns per unit length, N/2. Suppose, however,
that the z component of the magnetic field is a significant function of
position in the immediate vicinity of the loop, The loop-responds to the
time derivative of the magnetic flux linking all the loop turns;it does
not necessarilyrespond to”the time derivative of the magnetic field at a
point; However, there is an optimum length-to-diameter ratio which allows
one to con,siderthe loop as approximately responding to the time derivative
of the magnetic field at the center of the loop.

Assume then that the loop does not itself distort the magnetic field
appreciably and that there are no sources of the magnetic’field in the
immediate vicinity of the loop, The frequencies are assumed low enough
that the magnetic field in the immediate vicinity of the loop is a solution
of LaplaceTs equation, The magnetic field can then be obtained from a
potential function. In cylindrical–coordinatesthis potential function
can be represented as a sum of terms of the form

Hsin(n+) ~z
+ = a J (vr)
n,v e

n,v n (1)

where n is zero or a positive integer and v can be a general complex
number. Some linear combination of sin(n$) and cos(n$) is assumed.
For v = O, equation (1) is replaced by a somewhat simpler form which is
dot of interest here. The z component of the magnetic field is then
a sum of the form

Note
loop

loop

or

‘1
“Q+

a+n ~
$

H

sin(n$)

b vJn(vr) Vz
n,v = az = an,v e

cos(n+)

(2)

that the only terms which contribute to the magnetic field on the
axis (r = O) are those for n = 0,

The flux linking the uniformly distributed turns of the cylindrical
is then a sum of terms of the form

(3)
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Integrate first over ~. Note that the only nonzero result is.for n = O,
for which case we define the trigonometric expression as one for convenience,
Then for n = O we have

&

N
a2

@
1sk ao,v 2TV , Jc@)evz r ‘z ‘r

=-
O,v

0 .-
2

Integrating over z gives

a

@
N
~ a. v 4m sinh (~)=-

J
Jo(vr) r dr

05V $
0.

and integrating over r gives

(5)

(6)

N
Jl(va)

@ ~ a. v 4n sinh (v$) a—=-
O,v v (7)9

Note that these terms contributing to the flux are the same terms that are
associated with the magnetic field on the loop axis.

o

Ideally the flux could be simply related to the magnetic field at the
center of the loop, For (r,z) = (0,0) the nonzero terms in the magnetic
field expansion are of the form

b
O,v

= a v
Oav (8)

r=O
z=o

Dividing this
form

A=
O,v

last expression into @o v gives an equivalent area of the
>

4
Q = N4~a
av

sinh (vi) Jl(va) (9)
O,v h?

If A were independent of v, then the total flux linked by the loop
woula’~e simply related to the magnetic field at the.center of the loop.
If the ,magneticfield in the vicinity of the loop is not too inhomogeneous,
i.e., if lv!L/21<q and ~al<<l for significant terms in the field expansion,
then the transcendental functions in equation (9) can be expanded for small
arguments giving
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This expansion includes te~s Up through.v2,. There are no odd powers

of v present, Defining ~ as the length-to-diameter ratio, note that
if we choose the special case of

(11)

then the V2 term is also zero.. This choice of ~ can then.be considered
an optimum choice for reducing the dependence of the loop’sensitivity on
the degree of homogeneity of the magnetic field.

m. Inductance and Figure of Meri~

Next consider the loop inductance. Idealize the current distribution
in the multi-turn cylindrical loop as a uniform cylindrical current sh e

f $,3as illustrated in figure 1. The inductance of such a loop is given by >

L= I?2!$~- ~(m)-E(m)+(~~ (E(m)-~)] (12)

where .

‘= l-m’-=[l+($J1-’ (13)

and where B is the permeability of the medium in which the loop is placed,
Using the notation for the length-to-diameter ratio, as in equation (11),
the inductances

2

[

1/2 1/2
L= N2Uma — (1+.$2) (1-~2)E(m)+~2(l+<2) 1K(m)-1 (14)

37r{2
where

[1
-1

m =l-~l. 1+C2 (15)

1. C. Snow, NBS Circular 544, Formulas for ComputingCapacitance and
Inductance, p. 31, Sept 19s4.
2. See AMS 55, Handbook of Mathematical Fuhctions, National Bureau of

:..
)

Standards,
k..

1964, for the notation regarding the elliptic integrals,
3. All units are rationalized MKSA,
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The inductance can.be put into a convenient form as

where

(16)

(17)

and where f(~) isa dimensionless factor which is graphed in figure 4.

The mathematical form of the inductance simplifies somewhat for both
large and small L, Consider first the case of large <, or small m, for
which w’eexpand f(c) in powers of m. Rewrite f(c) as

f(g) = ~
37rc

[ 1

w E(m) +~2K(.m) -1~3/2 (18)
m’

Then expand the elliptic integrals for small m, giving

~[
f(~) ‘* m-3’2 (2m-1) ~ 1](l-$n.,.)+(1-m)~ (li$n,,.) -1

[

‘*J~m-3’2 ‘>00,
)[1 -1b[ j

= l+ (19)

This is included for its appropriate range of ~ in figure 40 For large
E the inductance is then approximately

L [1.N2ud~8a
t - Xk [20)

Rewrite f(:) in terms of ml as

r

l-2m1 m
f(c)=~~ — E(m) + #m K(m) - (l-ml)

1/2

F
l-ml 1 (21)

‘1.‘
1

Expanding the Elliptic integrals for small :$ or small ml, gives4

4. These expressions can be found in H. B, Dwight, Tables of Integrals
and OtlierMathematical Data, 4th ed,$ pp, 180-181, 1965,
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~

= $[+4 (22)

This is also included for its appropriate range of & in figure 4. For small. eE the inductance.is then approximately

L=

The

A
eq

H]’H2pa In ~- -

equivalent area

1~2 (23)

of the multi-turn cylindrical loop is given by

(24)

With the equivalent area and the inductance we can now calculate the
equivalent volume as5

(25)

This equivalent volume is a measure of the efficiency of the sensor in
removin

!?
energy from the electromagnetic fields, Note in equation (25)

that ma 8 is just the geometric volume of the cylindrical loop.

5, Capt Carl’E. Baum, Sensor and Simulation Note XXXVIII, Parameters for
Some Electrically-Small Electromagnetic Sensors, March 1967.
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Consider a sphere of radius, ro, with a volume - ~ro3, Make r. just

large enough so that the cylindrical loop can fit ins;de it, This gives

_ .1/2 -I.-l

‘~ (~+[~~)=a (l+g2’)’”

We then have a figure of merit based

3/2
(l+E2) f(g)

on a sphere as

(26)

\

(27)

spherical figure of merit as a measure of the efficiencyOne can think of this
of the cylindrical loop in filling a given volume of space, Using a sphere
for this volume is.convenient but somewhat arbitrary. In figure 5 there is
plotted n versus C. At ~ = ,459 then ns = 1.024 and it is at a maximum.
Thus, an ~ptimum spherical figu~~eof merit occurs with the length about
equal to the radius, = ,~~ ‘,an optimum value from the point of viewAt(~

of measurements of inhomogeneo’u~magnetic fields~ then ns = ,855, a little
less than the maximum value.

Note that the formula for the inductance of a uniform cylindrical.
current sheet only approximately applies to a practical multi-turn cylindrical
loop* The same inaccuracy carries over into the equivalent volume and figure
of merit.

v. Summary

_This note has discussed some considerations in the design of electrically-
small multi-turn cylindrical loops. The geometry of the loop turns can be
designed with various degrees of symmetry to minimize the sensitivity of the
loop to unwanted electromagnetic field components, The error introduced in
measurements of inhomogeneous magnetic fields can be minimized by an appro-
priate choice of the length-to-diameter ratio, The inductance has been
calculated using the approximation that the currents in the loop are uniformly
distributed in a cylindrical sheet, Using this inductance the spherical
figure of merit has been calculated. The spherical figure of merit has a
maximum for the length about equal to the radius of the loop.

We would like to thank Mr. John N. Wood for the numerical calculations
and the resulting gra’phs.
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