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Foreword

The pulse shapes fall into two convenient cases depending on whether
or not the finite length of the transmission line is included in the
calculations, The figures for each case are grouped together at the
end of the two sections of concern.

We would like to thank Mr, Robert Myers for most of the numerical
calculations and graphs, together with some assistance from ALC Franklin
Brewster, Mr. Ronald Thompson, and Mr. John N. Wood.
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Introduction

In a previous note we discussed a simulation technique which might be
called the buried transmission line.l The buried transmission line consists
of a set of parallel conductors placed in the earth such that, when electri-
cally driven from the top end, a TEM wave propagates along the structure
into the ground. This TEM wave is attenuated in much the same fashian ‘as
the nuclear electromagnetic pulse as it propagates inko the earth. One
limitation of the buried transmission line is itg finite length. Prac-
tically the bottom end of the transmission line would net be terminated
in its frequency-dependent characteristic impedance; typically the bottom
end would be left in an open-circuited configuration. The wave then
reflects from the bottom of the transmission line, somewhat - distorting
the ideal distribution of the electromagnetic fields with depth along the
transmission line. This last type of field distortion can be reduced by
increasing the depth, ¢, to which the transmission line extends.

Typically a buried transmission line might consist of two parallel

' grids of conducting rods in good electrical contact with the earth.

Each grid might approximate a conducting plate of width, 2a, with the

two grids separated by a distance, 2b. Then if a/b is about one or larger
the field distribution between the two grids is roughly uniform at a given
depth, thereby approximating a homogeneous plane wave., For the response
of the buried transmission line we only consider frequencies low enough’
that wavelengths above the ground surface are much larger than the cross
section dimensions, 2a and 2b. The length, &, is also assumed much

larger than 2&.and 2b so~that thendistortion of the.ideal field distribu-
tions near the ends of the line can be neglected. With an appropriate
transition structure connecting the electrical energy sources to the top
of the transmission line, the field distortion at the top can be minimized.
However, it may be impractical to do anything similar at the bottom of the
transmission line.

In the previous note we considered the dependence of the transmission-
line impedance on frequency and the dependence of field distribution on
frequency and depth. Then the dependence of the field distribution omn
time and depth was calculated for a step function driving current. Thus
the previous note considered the response functions of the buried trans-
mission line. In this note we consider the pulse shapes produced by a
capacitive energy source with a series damping resistance when driving
a buried transmission line. The assumptions used in the previous note
are carried over to this note. The conductivity, g, is assumed independent
of depth and frequency, w. The permittivity, €, is neglected because the
frequencies of interest are assumed low enough that o>>we.

1. Lt Carl E. Baum, Sensor and Simulation Note XXII, A Transmission Line EMP
Simulation Technique for Buried Structures, June 1966.
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IT.

Figure 1 illustrates the buried transmission line and its equivalent
eircuit, including the generator of capacitance, Cg, charged to a voltage,
Vg. A switch is closed, defining the time, t=Q. The capacitor is dis-~
charged through an added seried resistance of value, Ry, into the buried
transmission line of impedance, ZLo' In the equivalent circuit the switch
is replaced by a voltage generator of value

Vv = Vg u(t) (1)

where u(t) is the unit step function, rising to one at t=0. Note that

no resistance or inductance in the generator and/or transition structure
1s included in the analysis, except that resistance which one might
include with R;. A capacitive generator is a common electrical energy
source; the resistor is added to give some flexibility in shaping the
pulse. There are various other energy sources and pulse shaping elements
one might consider but these are not included in this note.

The buried transmission line is only considered with the bottom in
the open-circuited configuration. The calculation of the pulse shapes
falls into two convenient cases. First, the length of the transmission
line is so long that for times and depths of interest the finite length
has little significant effect on the pulse. The length is thus assumed
to be infinite, simplifying the results somewhat. Second, the times of
interest are comparable to or greater than the diffusion time characteristic
of the length of the transmission line, and/or the depths of interest are
close enough to the bottom of the transmission line for the pulse to be
significantly influenced by the reflection from the bottom. The finite
length of the transmission line is then included in the calculations. In
each of these cases the Laplace transform of the pulse shape 1s developed
in normalized form. Converting these to Fourier transforms a computer
program is used to numerically obtain the time domain wave forms.4 After
considering the time domain wave forms we go on to some low-frequency
considerations regarding the time integrals of the pulse shapes: for such
limited cases the variation of the soil conductivity with depth can be
easily included in the calculations.

Effectively Infinite Length Transmission Line

Consider first the case that £ is sufficiently large that we may
congider it infinite as far as its effect on the pulse shape for times
of Interest 1s concerned. The current, I, into the transmission line
is related to V- as3

N A 1 -1
I{s) = V(s) [Z.Lw + Ry -PEC—G'] (2)

2. Frank Sulkowski, Mathematics Note II, FORPLEX: A Program to Calculate
Inverse Fourier Transforms, November 1966.
3. All units are rationalized MKSA.
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where the tilde, ﬁq over a quantity indicated the Laplace transform of
the quantity, and where Z; 'is used for the impedance of the effectively .

. infiniteglength transmission line. Substituting for Z1,,, from reference 1.
and for V(s) from equation (1) gives o

— S
T(s) = VgCq J:s3/ Zché\/—é- + sRaCq + 1J (3)

where £, is a dimensionless geometrical factor for the transmission line
which is multiplied by the wave impedance of the ground to give the
impedance of the transmission line.

For convenience, we define characteristic: times ‘as -

u7l/3
te = [cé £2 -c,—J (4)
tg = RaCG (5)
and
L2
ty = 12 (6)

where -z is the depth into the ground. (Note that z is a negative number
of meters.) Then define a normalized Laplace transform variable as

S¢ E stg (7

Inverting such normalized Laplace transforms into the time domain, the
results are expressed in terms of a normalized time which we define as
t
Te  — (8)

te

A characteristic current is also defined as
te

With these various definitions the form of the results simplifies somewhat.

Y
Dividing I(s) by t. we then have a normalized Laplace transform of the
current into the transmission line from equation (3) as
~N
I =1
7£S> = Ic[sb3/2 + s, _E_a_ + 1 (10)
c

’\J —
1.(se) =
c

It is necessary to divide by t, because for the inverse Fourier transform
the integral is performed over w which is set equal to ~-js. which equals
~-jst,. A similar procedure is followed for other normalized Laplace
transforms elsewhere in this note. Having the current at the top of the
transmission line, then multiply this by 8\/sucz to obtain the current on
the transmission line as a function of depth.

7



Multiplying this current by a factor determined by the cross section
dimensions of the transmission line and the position of interest on the
cross section gives the magnetic field at the position of interest.
Then define a normalized current or magnetic field as

7-1
"y ~fsuo "'V tz t
I

C

Inverting this into the time domain gives h, (F,) which one can multiply

by I, to give thé current on the transmission iine conductors at a
particular z (negative). Multiplying in turn by a factor appropriate

to the particular geometry and dimensiops of the cross section (independent
of depth) of the transmission line gives the magnetic field.

The voltage, V;, at the top of the transmission line is given by

: n
¥.(s) = 2z, T(s) (12)
Substituting for I(s) from equation (3) gives
‘ -1
u 3/2 U
fg/é_;chG[s Cof (L + sRaCg + 1] (13

Converting to normalized form we have the Laplace transform of the voltage
at the topr of the transmission line as

n
VL(S)

-1
Y t
"‘;C(SC)E vy (s) = VG\/SC {82/2 + Sc}%" + l] (14)
te

Divide by V. and multiply by &V/SH9% ¢4 define a normalized voltage or
electric field or current density as

- WET) -1 (15)
v » . ~2Ys . t
gc(sc)E Vc(sc) e\/éucrz =“\}-"Ls‘ce Gty gg/Z + Sa _a + 1i
Vg b e

Inverting this into the time domain gives e (T ) which one can multiply
by Ve to give the voltage across the transmission line at a particular
z. This can in turn be related to the electric field or current density
in the ground through the particular geometry and dimensions of the
cross section of the transmission line.

Consider first the pulse shapes at the ground surface as plotted in
Figure 2. Note that for R_=0 (making t,/t. = 0) both h, and e ring,
damping out in a few cyclés. The magnetic field has a maximum of h
.726 and a minimum of hém"ﬁ-g'é.l48i As"ta/tC is ‘increased from’ Smax
zero the wave forms are damped and hcmax is decreased. At t,/t. v 1 the

undershoot of h, is rather small compared to the initial peak; such a
pulse might be roughly considered as critically damped. In Figure 3 the
maximum and minimum values of h. as well as the times of the maximum (tmax) »



minimum (tmxn), and first crossover (t.,) are plotted versus ta/tc. There
is an asymptotic form for he .. which applies for large tz/t. which one can
obtain from equation (11) by setting t,=0 and neglecting sg/§ compared to
S, ta/te. This gives

A"
hc<sc) N 1
tz =0 St
- ¢ a ~
to = + 1 (16)

which in the time domain is

t
AV, ) t t — o—
ha(Te) . te —Eﬁ7rc_e_2_e ty
v ta
—_— 2 o ta (17)
1tz o ta
=0
te

From this the maximum value is approximately

a?) .
Cmax EE_ (18)

ta

This asymptotic form is included in Figure 3A.

Figures 4 through 6 have the variation of the pulse shapes with depth
into the ground for three values of ta/tc. Note that as tz/tc is increased
both h, and e, decrease in amplitude and spread out in time. Looking at
Figure 4 for which t,/t. = 0, note that increasing t,/t, also decreases the
ringing of the pulse shapes. In Figure 7 the maximum value of h, and the
time of the maximum is plotted versus t,/t. for four values of ty/te. Note
that hepay decreases with increasing depth (-z) and that t,,. increases with
increasing depth. There are asymptotic forms for hcpay and tmax which apply
for large t,/t. which one can obtain from equation (11) by neglecting both
Sc3/2 and s, ta/t, compared to one. This gives

v - z
ho(se) ¥ e Ve £ (19)

which in the time domain is

t
ty 3/2 - —=

he(te) 2\/ tz e teT, = _ tc Ly e ° (20)
Tt T /e, ¢

To determine the peak of this function set the time derivative to zero,
giving

5 7 t 7 t
t t 5 —Z. L _Z
nvo_-C 3 z 2 - £
0 - - - ) tm. z |2 t (21)
Vre2 .’Z(tmax, e M +lg ) e Tmax
max




which has the solution tmax -

n2 (22)
t 3
or Fmax 2 Ef. ? (23)
te 3 t,
Subgtituting this into equation (20) gives
: ) .._3_ .
hcmax z ff_ _].'. (—3-) 2 o 2 o231 te (24)
TV 12 t,

Equations (24) and (23) are included as asymptotic forms in Figures 7A and
7B, respectively.

Now consider the limiting case of large C;. Setting Cg=* makes
the current from equation (2) become

B -1
Lle) = Vg ES.\/EI“ (25)
o
R s|Ry
Then define
ez = fj u (26)
a =
= s
Sg = sté (28)
Ta L (28)
t
a
and I 5429 (29)
Ra

The normalized Laplace transform of the current into the transmission line
is then

Y . -1

i (s3) = I(s) = I} [s; sg + 1)] (30)
t
a

Multiply this by zsuc ? and divide by I; to obtain a normalized current or
magnetic field as a function of depth, giving

. - -1
Re(spz 1g(speV®Ho® . “2ysa = [s;(-,/sé + 1)] ' (31)
a

=e
Ia

10



‘ 4
Thig normalized Laplace transform can be inverted to give B

T SR Z{t

BN Z ’

14 o teoon — T ,
g (1) == 1T T2 erfc{ Sz )+ erf tz (32)
R - t;T; o

For the special case of z=0 this reduces to

-

ha(Té)’ 1. @ erfe Wy (33)

cr
N
il
Q

t
nnl

In this form one multiplies h by I; to obtain the current on the transmission
line.

The voltage at the top of the transmission line from equation (12) for
Cg=e becomes

v
V.(s) =V -1
L & fg\ﬁi fo Ton+1 (34)
Rgs ° R Vs

The normalized Laplace transform of the voltage at the top of the transmission
line is then

’ |
L _ -1
SR QR Y ey e Y (35)
ta
SUC 2

Multiply this hy e and divide by Vg to obtain a normalized voltage or
electric field or current density as a function of depth as

-1
” - _..'\“ y "‘2’\ ‘t
S (s)) = vaésa) eisuc z .. -z ‘Vsa + l)] (36)
G

Changing tc the time domain

P o~ftz T} = t, (
es(13) P el + erfelyt; + e

which for z=0 reduces to

’
el(t3) | =e'a erfcéq?:) (38)
tz
E; =0

4, See AMS 55, Handbook of Mathematical Functions, National Bureau of Standards,
1964, for the inverse Laplace transforms.

11
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The results of equations (32) and (37) are plotted in Figures 8A and 8B,
respectively. NBte that as tz/té' is increased the rige of the pulse shapes
is slowed down. This limiting case of large C; may sometimes be ugeful in
describing the initial rise of the waveforms for times for which the
capacitor has not appreciably discharged.

12
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III.

Finite-lLength, Open Circuited Transmission Line

Now consider the case that reflections from the bottom of the transmission
line are significant for times and/or depths of interest and are thus included
in the calculations. The current into the transmission line is given by

fu - VG " 1 -1 39
I(s) = — ZLo * Ra * 56, (39)

The impedance of the transmission line is

- ¢ 1 4 e 2NBUO R L g JEIE L L+ o~2Y¥suo L
ZLo = SC‘I‘ 1 = e 24510 & —ZY5Ho L (40)

1 ~-e

where, as in reference 1, we have defined

i

Rs

¢ ,
>4
Lo (41)

This last parameter is the resistance of the open-circuited transmission line
at zero frequency.

Define some characteristic times as

2

Fog Lok (42)
and

to = RoCg (43)

We also use t, as defined in equation (5). Define a normalized Laplace
trangform variable as

= st (44)

S,Q,: I3
Inverting such normalized Laplace transforms, the results are expressed in

terms of a normalized time defined as

< | (45)
2

For the finite length transmission line the times are then based on a

characteristic diffusion time, tg, for the transmission line. (This same

time base was used in reference 1.) Define also a characteristic current

as

"l

Ty

1 = Ve (46)
R0+Ra

20
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Dividing f(s) by ty gives the normalized Laplace transfdérm of the current
into the transmission line as

-1
3
oY o —&Fg
12(82) = I(s) = IO 1 + R,y 28% 1l + e + sy Ra 4 ¢
ty - 1 -4Jsy . % (48)
Ro -e o to

To obtain a normalized current or magnetic field note first that the current
or magnetic field has a -1 reflection at the bottom of the transmission line so

that o

E_ggz) NSHO z =Jsuo(22+z) (49)
hgfsg) 1 - e ﬂsuc 2

Z=
Multiplying this by 1 (s )/I the normalized current or magnetic field is then

defined as
-1

3
" ) z \
Bplsy) = | 14Ra NS NED) sy g, 4«1_ Ra L (50)
Rod1 - e"”sz -4, to

In another form this becomes

3
, | -1
) — - 5
H,(s,) = {Hta AT -2, (2-2) Zs, 1L+ e 4\/’ ta  ta|  (51)

_*—_—

tO 1 _7e_L\!SV/Q/” B 1 -6 =4 ’S,Q_, tO tO

In the time domain multiply hy(Ty) by I, to give the current on the transmission
line. Multiply this in turn by an approprlate factor to obtain the magnetic
field.

As in reference 1 we define a normalized current density by relating it to
the normalized magnetic field at the top of the transmission line as

CVswoz - s (24+2) 20

23, (s.) .
£7g4 = FE - ZL (52)
1 +e—2 HO g °

£=0
Note that the normalized current density has a +1 reflection at the bottom of the
transmission line. Combining the results of equations (40) and (50) then gives

21



R

' - 3 -1 (53)
" -0z |, ~aE(2-z) = R 4t
212(32)= lfgg zq;z e 2_ +Se 2 25% T+e 4‘EE + 8,78 +_E&
o} l-e i % ~byJs o )
l-e %
In another form this becomes
_ ‘o _t 3 _ ~1 (54)
2} (s,)= 1+ta 25T e ZJ;;Z +e 2¢;;(2 z) 9g2 e 4{;; + S La + £
k t] Ve 1-e~% S, I O % %

Note that this form of the normalized voltage or electric field or current
density differs from that used in section II for the infinite length trans-
mission line. To obtain the voltage on the transmission line multiply
2j (Tl) by a factor, I,Rgs which also is of the form
£
-1
IoRo= Vg|1+Ra (55)
Ry
The voltage on the transmission line can then still be obtained from £j (Tg)
|2

with little difficulty; multiplying the voltage by an appropriate factor
gives the electric field or current density in the ground. Note also that
the initial rise of ] (12) for z =0 is to a value

o4
24,(04)| . = 1l+ta = 14Ra
2 z =0 s Ro t56)

Consider first the pulse shapes at the ground surface where z'=0. Starting
with Figure 9, for which R, is set to zero or equivalently t,/t, = 0, note that
as to/t2 is increased the oscillation of the pulse shapes is reduced. At
to/ty = X"3.the pulse shapes might be roughty considered as critically damped.

Then for to/tg > 3 one does not need to add resistance to dampen the pulse
although one might still add resistance to broaden the pulse. Figures 10 and 11
include the effect of varying t /tg. Each graph is for a particular value

of tgy/ty and each curve on a graph is for a particular value of t,/ty. Note
that in the limit of t,/tg and t /tg both small compared to one, the approximation
of an infinite length transm1551on line becomes more and more appropriate and
the calculations of secfion IIrapply. If either t /tg or t /tg is large
compared to one the pulse shape broadens out; there are no osc1llat10ns and the
decay of the pulse is roughly exponential. To approximate the decay of the
magnetic field for t, and/or t, much larger than ty, expand the exponentials

in equation (51) for ‘s£}<<l g1V1ng

B,(s) ¥ (1-2)s, + D [1 + ta] } (57)

22



In the time domain for Ty>>1 we then have
. ) -1 _ .t
hp(ty) & (1-2) e TQ'E; 1+ %a = (1-2) e tott, (58)
o

The time constant for the decay is just totty which is also (RO+R )Ce, or a

simple resistive - capacitive decay. In Figure 12 the maximum vaiue of the
magnetic field pulse and the time of this maximum are plotted versus ta/tl

for 4 values of to/t2~ Finally Figure 13 is for the limiting case of large

CG or equivalently for to/tz>>l, in which case we use Ra/R as a parameter for

the curves. Note that as Ra/RO is increased the rise time of the magnetic

field pulse is decreased; but if Ro and Vg are fixed then I, the pulse amplitude,
is also decreased.

Now go on; to include £>0, Figures 14 through 17 consider the magnetic field
pulse shape. Each figure is for a separate value of to/tQ; each graph in a
figure is for a separate ta/tz5 each curve on a graph is for a separate Z.

This is repeated for the current density in Figures 18 through 21. The maximum
of the magnetic field pulse and the time of the maximum are plotted versus z’
in Figures 22 and 23 respectively. Each graph is for a particular to/tz'
Finally Figures 24 and 25 give the magnetic field and current density pulse
shapes respectively for the limiting case of to/t2>>l. Each graph is for a
particular Ry/R,; each curve is for a particular z:

23
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Iv.

Some Low-Frequency Considerations

. While, in many cases, we do not have a convenient mathematical expression
for the pulse shapes, there are some parameters of the pulses which can be
simply expressed. In particular the complete time integral of the pulses can
be found by using the final-value theorem of the Laplace transform. Beginning
with the magnetic field pulse shape we have

ho(ty) dty = lim sy ﬁz(sz) s lim gz(sl) (59)
0 sEO ST sy

Note that ﬁ (s,)/s, is the normalized Laplace transform of the time integral
L34 2 \
of hQ(TQ). Then using equation (51) for hg(sg) gives

;o0
p(19)dty = (1-2) Lo |1+ fa = (1-2)| b0 + ta (60)
A ty t, ty ty

Using equation (54) for the normalized current density pulse shape gives

23 (1,)d7, = lim 2? (sg) = Lo + ta (61)
2 SQ{‘*'O % tz tg[
0

Thus the time integral of the current densitv pulse is conserved with depth
while the time integral of the magnetic field pulse falls off with depth as
1-z',

Up until this point we have only considered the case of uniform ground
conductivity. However, the complete time integral of the pulse shapes only
involves the case of sy=0 or zero frequency. The variation of the time
integral of the pulses with depth can then be considered without much com-
plication for non-uniform ground conductivity. In particular, allow o to
be a function of z' but not a function of x or y. Consider first the current
density. The voltage on the transmission line is uniform with depth at zero
frequency, and thus the electric field is also uniform with depth at zero
frequency. However, the current density is proportional to the conductivity.
Thus we generalize the camplete time integral of the normalized current
density as

. — t t
ljz(rz)drz = g (%) Eg -+ ?g (62)
0 oavg 9 2
where 1
Oavg = ( G(£)dz (63)
Jo
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We also have to redefine

= £
R, = fg (64)
10,0
and
€y 2 UOayg 22 (65)
M

for these parameters to have meaning for the case of ¢ varying with depth.
Note that equation (62) reduces to equation (61) if ¢ is independent of z~,
For 0 a function of z, however, the complete time integral of the normalized
current density is proportional to o(zY.

Now consider the time integral of the normalized magnetic field for ¢ a
function of z! The current on the transmission line at a given depth and
the magnetic 'field at that depth are proportional to the integral of the
current density from the bottom of the transmission line up to that depth.
The current density is in turn proportional to the conductivity. Thus we
generalize the complete time*integral of the normalized magnetic field as

o L
he(rgldry =|fo + fa} 1 g(z"dz" (68
o tz tz Gavg z
This reduces to equation (60) if ¢ is independent of z'. If ¢ is a function

of z', however, the complete time integral of the magnetic field has a
somewhat more complicated dependence on depth«

i



V.

Summary

We have calculated the pulse shapes of the electromagnetic field components
on the buried transmission line for a capacitive generator with a series resis-
tance. There are various idealizing assumptions used:. The ground conductivity
is assumed uniform with depth and independent of frequency. Frequencies of
interest are assumed low enough that the ground permittivity and the transit
time over the ground surface may be neglected in:the calculations. Extra impe-

dances associated with the generator and the transition structure to the
transmission line are also neglected.

There is a characteristic diffusion time, €., for-the buried transmission
line and the calculations consider two cases. First, times of interest in
the pulse are small compared to tj and the length of the transmission line is
assumed infinite for the calculations. Second, times of interest are of the
order of or larger than t, and the length of the transmission line is included.
Depending on the values of the various parameters of the generator and the
transmission line, the pulse shapes of the electromagnetic field components
may oscillate. TIn such a case 1f one desires he may increase the damping
resistance until the oscillation is removed. The damping resistance may also
be increased in order to broaden the magnetic field pulse and decrease its
risé time, but at the expense of amplitude., There are other types of impedances
which one might add at the top of the transmission line to further shape the
electromagnetic field pulses but such impedances are not considered in this
note.

A computer code was used to numerically calculate the inverse Fourier
transforms (reference 2) The indicated relative errors in the pulse shapes
are at worst about .03, and generally are much smaller than that. In convert-
ing the Laplace transforms to Fourier transforms difficulty was encountered
at w=0 for cases in which the time domain pulses had infinite time integrals.
This diffdiculty was removed by slightly altering the Fourier transforms so that
the area of the time domain pulses remained finite. The distortion was mace
to occur at times much greater than those used for the plots and the errors
so introduced at times of interest were kept as small as those associated
with the numerical inverse transform.
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