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Abstract

A transmission line consisting of a conducting sheet parallel to the
ground surface. is discussed as a possible simulator for placing fast-rising
pulsed. electromagnetic fields over a ground surface. The: response character-
istics of such a structure are.considered for both a short circuit termination
and a resistive termination which matches the transmission-line impedance

at high frequencies. This type of simulator may be appropriate in the case
of high ground conductivities. .
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Foreword

In this note the figures giving the graphical results for the pulse
shapes are grouped together for convenience at the ends of their respective
sections or subsections of the note. We would like ta thank AIC Franklin
Brewster, Jr., Mr. Robert Myers, ALC Antonio Regal, Mr. Robert Thompson,
and Mr. John N. Wood for the numerical calculations and the resulting
graphs.
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I. Introduction

There are various problems associated with the simulation of the nuclear
electromagnetic pulse from a surface burst over a ground based facilitv. One
of these problems concerns the simulaticn of the fast-rising portions of the
pulse, particularly if the rise times of interest are smaller than the tramsit
times (in nonconducting air) across the surface extent of the facility. One
approach to this problem is the Brewster augle wave matcher discussed in a
previous note.l In this note we discuss another approach to the problem.

A general class of simulators, which we might consider for the fast-
rising portions of the pulse, comnsists of some sort of transmission-line
structure over the ground surface. The ground is actually a part of the
transmission line. The electromagnetic characteristics of the ground
influence the pulse shapes over the ground surface. There may be various
types of such transmission lines with single or multiple conductors above
the ground and single or multiple electrical sources at various positions
along the transmission line. The transmission line might also be uniform
or nonuniform along its length. Terminating impedances can also be added
at the ends of the transmission line to try to Improve the characteristics
of the pulse shapes. One might calculate the electrcmagnetic characteristics
of such transmission lines by considering longitudinal and transverse
impedances and/or by considering the expansion of the electromagnetic fields
on the structure.

In this note we coansider ome of the simpler types of transmission lines
for placing fast-rising pulses over the ground. As illustrated in figure 1,
the transmission line consists of 2 flat conducting plate (or perhaps wire
grid with wires in the direction of current flow) of constanc width, w,
length, d, and height, h, above an assumed smooth ground surface. The
permittivity, ¢, permeability, 1, end conductivity, ¢, of both the ground
and the air (or other medium) above the ground are assumed to be scalar
constants, independent of position. These parameters are also assumed to
be real numbers and independent of frequency for the calculation of the
time domain waveforms. A subscript, 1, on these parameters is used for
the medium above the ground, and a subscript, 2, is used for the ground.
We call the transmission line being considered a single~-conductor, planar,
uniform surface transmission line.

The characteristics of this transmission line are considered by
solving the wave equation in the simple geometry. A cartesian (x,¥,z)
coordinate system is established as illustrated in figure 1. Variation
with y is neglected by assuming v >> h. Thus, & two-dimensional problem
is left; x is the horizontal distance along the transmission line and z
is the vertical distance above the ground surface. For convenience define

1. Capt Carl E. Zaum, Sensor and Simulation Note XXXVIT, The Brewster
Angle Wave Matcher, March 1967.
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z' = z-h (1)

This may be more convenient to use than z in some cases. For this note

we assume that a wave is launched onto the transmission line along the
plane, x = 0, from some sort of electrical energy source(s) with appropriate
wave launcher(s). A perfectly conducting sheet is assumed placed along the
plane, z' = 0. (In a future note sources may also be distributed along

the 'plane, z' = 0.) Some sort of termination for the wave is located

along the plane, x = d. Note that conductors are used at each end of the
transmission line to make electrical contact with the ground.

For the calculations in this note the parameters of the upper medium

are assumed the same as those of free space. Certain approximations are
made to simplify the results of the calculations, but these place some
restrictions on the high—~frequency response characteristics and on the
allowable height, h, of the conducting sheet above the ground. One can
vary h to vary the rate of attenuation of the high frequencies in the
wave as the wave propagates over the ground surface. For a high conduc-
tivity ground h can be made rather small and so this type of surface
transmission line may apply best for high o,. After solving for the
electromagnetic fields in the frequency domain, the pulse shapes are
determined for 2n assumed step function voltage or current at the input
to the transmission line. This is accomplished for the most part by
numerical inverse Fourier transforms, the resulting numerical errors
being kept to less than about a percent in the computer calculations.?
We first consider the case of a transmission line of effectively infinite
length, followed by the case of a transmissicn line terminated in a short
circuit or in a resistance which matches the transmission-line impedance
for high frequencies.

2. Frank Sulkowski, Mathematics Note II, FORPLEX: A Program to Calculate
Inverse Fourier Transforms, November 1966.
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II. Boundary Valqg;Problem

_ 2L

To calculate the response of this type of transmission line we expand

the'electromagnetic fields on the structure.

= ——-Su
Z N o+se

and a propagation comnstant as

Y= Vsu(c-i-se)

where s is the Laplace transform variable.

Define a wave impedance as

(2)

3

These. two parameters, and

~ other related impedénces and propagation constants, are appropriately

subscripted to apply to the two media.

relationships
su = YZ
and
- L
g+se 7

There are also the convenient

(4)

(5)

Since we assume a solution independent of y, then in Cartesian (x,v¥,2)
coordinates the solution of the wave equation is of the form,

eiXxXinZ

% and z directions, respectively.

as

2, .22
Y F Yo =y

» where Y, and vy, are propagation constants pertaining to the
The propagation constants are related

(6)

Assume a wave propagating in the +x direction along the transmission
line. The electromagnetic fields then are of the form in

z'- -y_ z'-y_x
" n Yzl Yxx n Yzl Tx
E = A.e + B.e
zl 1 1
L. - L
. . Yzlz Y X . Yzlz Yxx
E = A e + B.e
Xy 2 2
and Y, z' =y x -y, z' -y x
ﬁ X zg n z, X
= e + B.e
71 3 3

and in medium 2 (2<0)

medium 1 (0<z <h)

(7)

(8)



and
Vo 6

", o
where the A's and 3's are

(10)

(11)

(12)

coefficients to be determined. A tilde, v,

is used over a quantity to indicate the Laplace transform of the quantity.

The letter subscripts of

ti:e electromagnetic field symbols indicate which

Cartesian component is swvrbulized. Note that the form of the solution
in equations (7) through (12} is similar to that for a surface bound

wave, except that two terr

for medium 1 because of t:

». with opposite signs on Y, » are included

& houndary at z = h. Also n%te that Yy applies

to the waves in both media znd that no subscripts are used in this case.

To relate the coefficicnts expand

A, ~
-> -

Vxno= (o+se) E

as aﬁ .
- 5;1 = (g+sc) Ex

and Bﬁ‘ .
5;1 = (G+sc) E,

Then the coefficients for
related for medium 1 as

y_ A Ly
- £ = 4L
zl 3 Zl 2
- Ly
Y =7
Z3 3 2 2
o Y1 4
‘YXA3 —‘f: Al
and
y
Y oLy
_be3 Z Bl

and for medium 2 as

(13)
=LY
Z Tx (14)
TN
= Ez {15}

the field components in both media can be

(16)

(17

(18)

(19}
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L= i ‘Y )
A 2

-Y_ A, = T7A (20)

22§ %2 5
and o )

- Yo o
v T2

-YxA6 - Z2 A4 (21)

A" N
Now apply the boundary conditions that Ex and H_ are continuous at
z = 0 giving Y

=Y, h Y, h
A 1 N 1 "
Aye + B,ye A (22)
and -Yz h Yz h
N 1 A 1 "
A3e + B3e A6 (23)
v A "
Substituting for Az, BZ’ and A5 in equation (22) gives
Y -y_ h Y_hl ¥
z z z z
N I Yo 1 j=—=2,%
Y Zl A3e B3e Y ZZAG (24)
1 2
or
-y _h Yy h Y Y
S T | 2y Y1 254, 2o (Y1) M2 o
A3e ~Bje =T Tz Ag = aanil vl Bvo Ag (25)
Y2 T2 4 z. \T2] *1
1 1
Combining equations (23) and (25) gives
‘ Y, B 2 7
v el Yz v\, |
A, = L +—= [==] = A (26)
3 2 Y Y o 6
z 2 1
1 o
and - h
n Yz:L Y, V8 7
Y e 2 1 2 |
B, = 1 -—= |{-—= —= 1A 27)
3 2 Y Y, M 6
zl 2 1 _

With equations (26) and (27) and equations (16) through (21) the figld
coefficients can be expressed in terms of one of the coefficients, Ag,
and the various other parameters.



For convenience define

a " A
A2 + B2 =A (28) ‘
and
S "] 4]
Ay + B3 =B (29)
Then at z = h the field components are
Y =Y X
Ez = - ;E'zlge X (30)
1 1
“Y X
E =X ¥ (31)
x
1
and
~“Y X
H =Be ¥ (32)
71

For the calculations ip this note we assume a perfectly conducting sheet
at z = h. This makes A = 0 implying, from equation (28) and (29) and
equations (16) through (19),

Y
" n 23 B
A2 = -Bz = - T— zl -i- (33)
l
N a %
A3 = 33 =3 (34)
and
v g 7Yx E
Al=Bl=-;-;215 (35)
The fields in medium 1 then can be written as
Y -Y_ X
Ez = - -Y—" z, ¥ cosh (v, ze * (36)
1 1 1
Y
z -Y X
Ex = - -—l~zl 8 sinh (Yz z') e X 37
1 1 1
and
-y x (38)
i = E cosh (y z') e x
71 Z

10



Including equations (20) through (23), the fields in medium 2 can then be
written as ‘
, yzzz-yxx
F =--227% cosh (v, e (39)

2y Yy 2 1
Y Y, z=Y_ X
n 2y z,” X
E = —:{— Z.B sinh (Yz h) e (40)

Xy ¥y 1 1

and Y, z -Y.x
N ~ z, X
H_ = B cosh (Yz h) e (41)

72 1
All the field components now contain the same coefficient, B.
The relationship among the various propagagion constants is not

arbitrary. From equations (22) and (23) Ag and Ag can now be related
as

Yo

As 2y

T Zl tanh (Yz h) (42)
6 Yl 1

These two coefficients are also related in equation (20) giving then

Y Y
) 2
—= 2,4+ —=2_ tanh (y h) =0 (43)
Y2 2 Yl 1 z1
or
2
My Yzl Y,
R S tanh (v h) =" (44)
2 Yz2 71 1

From equation (6) we have

2 _2_ 2
Yzl 17 Ty (45)
and
2 2 2
Yzz Yo T Yy (46)

so that substituting for Y, and Y, in equation (44), Y, can be solved
1 2

in terms of Yl’ YZ’ His Hos and h.

11



I1T. Propagation Constant of Transmission Line

Having a solution for the propagation constant in equations (44) through
(46) , we now simplify the results by making certain approximations. In
doing this restrict the parameters of medium 1 to those of free space so that
€1 T €3 Hy = Mg and g; = 0. Also restrict the permeability of the lower
meédium as i, = u,. Then define some convenient parameters. The relative
dielectric constant of the ground is :

£
2

e.= o= (47)
o

the relaxation time of the ground is

€

2
w25 (48)
a modification of this relaxation time is
£
1 o 2
£ = 3, (49)

and the transit time from the ground to z = h is

h
h =~ h \ uoeo = c (50)

For convenience we include a table of the relaxation times for various
conductivities and relative dielectric constants.

g €

2 r
(mhos/m) 10 20 40 80
1074 885 1770 3540 7080 88.5
1073 88.5 177 354 708 8.85
1072 8.85 17.7  35.4  70.8 .885
107t .885 1.77 3.54 7.08 .0885
4 177 2.21 x 1073
(sea water)
t t!
r r
(ns) (ns)

Table I, Relaxation Times

12



"\
Now assume that |y h|<<l so that E
zy zy

uniform with z. Then we have

N
and H
Y1

tanh (v h) =y *h
51 21

so that equation (44) reduces to

2
2
Hl YZlh Y2
1+ af';-- 7] 0

— -2 z2 1
and since we assume ul = uz this becomes
2
Yzlh Ya 2
1+ == 1=0
Yz Yl
2

are approximately

(51)

(52)

(53)

This assumption of small IYZ h| restricts the field distribution in

1
region 1 to a single dominant mode whicii is similar
on a lossless transmission line.

Rearranging equation (53) gives

4
z 2 Yy 2
1 ‘Yh) -2
Yl 2 Y,
Substituting for y and Yy gives
Z Z
1 2
v \? 2 v |2
X X
1-|—== Y h) =1 ===
Yl ( 2 (2
oF Y A2 Ty 12
X 1 l f'x 1
ol 2 o e i B
2 "1
L (i ® \"2) | (1,h)
Solving this as a quadratic equation gives
2 2 ~
x| 1 i 1 1 1
P2 R 7 | o3
1 2(v,h) 2 2(¥,h) : SPLY
or
, 2 2 9 1/2
=) . 1 (N 1 1 el
v, | T 2\v, ] Tye Y] 2
1 2(v,h) 2 2 2 4(y,h)

13

to the TEM mode

(54)
(55)
0 (56)
, /2
Y
1- 71— (57)
2
-1
4 2
AR RS
P D)

{1



The plus sign has been used for the square root in the quadratic solution
so that Yx will apply to an attenuating wave.

To expand the square root consider the approximation that

v, \4 v, \2 5
e e «<1 (59)
2] 2

4(Y2h)2

for all frequencies of interest. We call this particular restriction on
the solution as restriction 1. Note that

. 12
2. i;; 1 (60)
Yl r r

For €r>>1 (which we assume), then for all frequencies

I& 2

6
- >> 1 (61)

1

and restriction 1 can be simplified to

Y, \4
— 7] | <1 (62)
4(Y,h) 1P
Substituting for Yl and Yy gives
2
t
r
. i
USRI B L S << 1 (63)
le 3(st +'_I.)3
T T

Substituting jw for s, the expression on tie left of equation (63) has
a maximum at wt, = laff-. Substitutine this value restriction 1 becomes

1 e\ ?
e _E << l (64)
10.4¢ ? |*n

so that if this restriction is met it appiics for all frequencies.
Large €Ers T2 and h help to meet this restviction. Note, however,
that if all frequencies of interest ars muci. less than t 'l, then
restriction 1 can be relaxed from its forr iz equation (54).

14



1/2 -
¥ 2 ¥ 2 v, \2 v, \4 ¥, \2
el B P Bl E R o 1+ —— (2] -] | [e6s)
Y1 2(1,h) Yo Y2 2 8(y,h) 2 2

Simplify this further by ignoring the second term in the braces compared to 1.
Then take the ratio of the second to the third term on the right side of the

equation giving

-1
1/2
Y BEA O U O O 151 U 6 A Y 1 5 66)
Z(Yzh)z AP Y,h Yy 2Y,h | Yy Yy

However, the magnitude of the right side of equation (66) 1s just the square root
of the left side of equation (59) and is therefore small compared to 1. Thus,
applying restriction 1, equation (65) simplifies to

2 1/2
Tl o L l-Y_l'/ 67)
Yl Y2h Y2

It is this form for Yx that we use for the calculations.

Return now to the assumption that lyz h|<<1 which we call restriction

2. TFirst solve for Y, h as 1
1
Y 2
2 { &1 2 Vg | 2 2
v, 0l =1 (yym)™ = 1 =157 ) | (ryh) (68)
1 1 1
Substituting from equation (67) gives
1/2
Y Y 2
AL El R P 69
1 T2 2

Using the result of equation (61), restriction 2 becomes

1/2
- <1 (70

or

53/4t.l/2t 1/4
h r

1/4
[er(l-!-str)]

<<1 (71)

15



Replacing l+st, by st, increases the left side giving

st 1/2

—n << 1 (72)

€
r

In terms of w restriction 2.is then

Us
w <<-t-’-’- €73)
h

Thus, restriction 2 is a restriction om how large w can be for valid
results. Note that if frequencies of interest are much less than tr'l,
then restriction 2 can be relaxed from its form in equation (73).

Having solved for Y in equation (67), the other propagation
constants can be obtained. These are

Y, \2 2 2 1/2
T 1 Yy
= B e B e L (74)
T Yy Ya Ya
and
2 2
Y 2 2 27/ -
Zy Yx Tq 1 Yy
== = 1-|E] s1-El e 1=l (75)
Y2 Ya Y2 Y2 Ya

The field components in equations (36) through (41) can then be written
for small IYZ h| as

1
Y Y. X
'Ez= -—’izl%‘e x , (76)
1 51
Y 22'
Z =Y. X
Ex 2 - Zlg e X an
1 11 )
-¥ X
B =Be ¥ (78)
T1
Y Yg 2=Yex

=1

]

|

!
™~
o
M

£ 7 B (79)

16



S

2
z 2
¥ o= =2 28 e (80)
|
and Y. z~y x
_ Z X
B =%e 2 (81)
g

Substituting for Y, s Y, and Yo all the field components are solved
1 2

in terms of ideally known parameters and one arbitrary coefficient, %.

e et e B §4 0]

17



Iv. Impedance of Transmission Line

Now consider the impedance of this surface transmission line for
the case that it is assumed infinitely long. At x = 0 the current into
the conducting plate (at z=h) is

T =wi =w B (82)

x=0
z=h

For the voltage driving the transmission line we have for positive z

0 0
\ A" Yx v
Vl ==\ E, dz' = —= Z,B cosh (Yz z') dz!
1 " 1
-h x=( -h
Y, . |
= Z,B sinh (y_ h) (83)
Y,Y 1 z
1 zy 1

For |Yz h|<<l this becomes
1

Y

. X o, 0
?1 = z,hE (84)

For negative z calculate a similar parameter as

o y 0 Y, 2
'\}"2=_j 'ﬁ’z dzr—-—’c-zzrﬁ'cosh (Yzh)ge 2 4z
x=0
Yx A :
= Z,B cosh (y_ h) (85)
Y oY 2 z
2'z 1
2
which for |y hj<<l is
z
1
v
" X v
y ’ (86)
2 YZYz?_ ZB

18
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The ratio of the two parameters in équations (85) and (83) is

Vz Ylel Z2
= - 7= coth (v, h) (87)
Y,Y, 2 z
Vl 2 22 1 1

Substituting from equation (44) this becomes

2

n Y Y 2

AE T N R T R it 88)
u Y Y, 2 Y

Qfl 2 Zy 171 z,

Substituting from equatioms (74) and (75) then

N L
N 2
¥ y 2 v 271/2 y 2 y 291/
2 1 1 1 1 1 1
=z | == == - 1 == <1+ == |1=l— (89)
v, \T2f TR |\ Y2 YR \T2
and using the approximation of equation (61) this is
" -1
2.1 1;251__1__ N (309
¥, Yoh Y, YR \Y2

\

Using restriction 1 as expressed in equation (62) we then have

!

")
)
—|<<1 (91)
1
We then neglect V - The presence of the vertical conductors in the

ground, shorting dut Ez at x=0, should have no significant effect on
the impedance of the trazlnsmission line.

The impedance of the surface transmission line, with the length
assumed infinite is then

v

Y
1 h X
A X e X = e 7 (92)
L, ’if W Yl 1
Note also that n
Ez
.. h_ 71
£ SR (93)
71

19



Substituting from equation (67) we have

y 2a1f2
- . _1-X h
ZLQ =41 + Yzh 1 Y, - zl (94)

which we use for the calculations in this note.

20



v. Response of Infinite-Length Transmission Line

As the first case for the response of this surface transmission line
“let the transmission line be infinitely long. Define some additiomal
parameters. The transit time to the position of interest is

¢ =X (95)
X c

Another useful time is

t \2 2

= — = ! X
& = e % Er ih (96)

from which we define a normalized Lap%acg transform variable as

s = st 97)
[o] o

and a normalized time as

t-t
t = X (98)

£ty
p, = > (99)
t
and
th 2 /.x \z 2
PpE T TRl (100)
X \"/

Now apply a step-function voltage st x=0 and t=0. For this
case then define an appropriate normalized voltage or vertical electric
field as

- + v
YXX Y lX

~ e
e, (s)) " (101)
o 3

Note the term, v,x, in the exponential. 7This is included to shift the
time scale so that the pulse starts at 7 =(}, the arrival time at x.
Next define an appropriate normalized current—or magnetic field as

. ’ “Yxx+le

v . h Z1n S N S

ho(so) s = e, (so) = ” 3 (102)
L o} A o)

(=<4

21



Note that since we are assuming that el = so, ul = uo, and 01 = (0, then

Z. is independent of s and is just the wave impedance of free space. For
t%e calculations of this section rewrite equation (67) substituting for

Yl and YZ from equation (3) giving
2 1/2
Y se
X 1 o]
-1 =]+ o l-
Yl 62+s€2
suo(02+s€2)h
' /2
= 1 + f_r_ L 1+ l--l- st 12
2 1+t r
t, s T r
h
et =1/2 2 1/2
2 0 2 =
th 1+s0 g) o €r °\* r
plso-I/Z . 1/2
atooul RIS o
For the terms in the exponential we have
Y s, (Y
X o {'x
Yxx+ylx stx Y, 1 tA 1 (104)

Using the initial value theorem of the Laplace transform we can
obtain an analytic expression for the initial rise of the time-domain
waveforms as

e (+)Y=1lims e (s ) = e (105)
0 5 +w o !
[o]
and
h (0+) = lim s b 106
o( ) = msoo(so) e (106)
s-)@
(o]

Note that the initial rise is the same for both waveforms.

22



" There is a special limiting case for py = 0, in which

Yo 2
Y1
p,=0
but 12 1/2
1_o i
_'Yxx-i-ylx = - > Tts 5 i+ |1 " Sopz (108)
0" 2 r
pl-O
For p, also zero then
2 -\/so
2
~ . ") - e
h (s,) = eo(so)l : (109)
pl:g pl:0
P, Py

which has the solution

- - 1

ho(ro) o eo(ro) erfc (110)
4 Vro

pl=0 p,=0

P,=0 ‘ p,=0

This special simple soluticn applies for frequencies of interest, w,
such that w>>t_"* so that fsop2[<<l, and w>>t£/t% so that [sol/2|>>p1.

For such a frequency band to exist it is necessary that th>>c; V Epr

In solving for the propagation constant in section III certain
restrictions were placed on various parameters. In terms of the
parameters used in this section restriction 1 is

<< 1 (111)

and restriction 2 restricts normalized frequencies of interest to

21

r
Py

(112)

[0}
1]

lut | <<¢
[o]

23



For the graphs the expressions in equations (101) through (104) are used
as though they were exact, but the reader should take the restrictions
into account when using the graphs. Note that if restriction 1, as in
equation (111), is exceeded one can confine the frequencies of interest
to much less than t;l, relaxing the restriction to some desired degree.

The time-domain response characteristics of the infinite-length
transmission line. are plotted.in.figures 2 through 8. In figure 2 the
pulse shapes are plotted.for the limiting case.of py=0 for several
values of p,. In figures 3 through 6 the pulse shapes are plotted with
both p; and py varied. and for two values of G Define h° as the

max
maximum value of the normalized current or magnetic field and tpax as
the time of this maximum., These two parameters are plotted in figures
7 and 8 versus p; for several values of pj and two values of €., Note
that there is little difference between the pulse shapes for e,=10 and
€,=80.
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Vi. Response of Finite-Length Transmission Line

Now include the end of the transmission line at x=d. Two cases are

considered: a short-circuit termination and a resistive termination.
Again define some convenient parameters. The transit time to the end
of the transmission line is

¢ 4 (113)
(a4

d

from which we define a normalized Laplace transform variable as

8,2 st (114)

T, 2 X . (115)

Define a normalized distance as

x' = § (116)
Another convenient parameter is
t't
b,z =4 (117)
3 tZ
h
Modify equation (103) in the last section to use the new parameters
giving
Y 2 et 1/2 t 1/2
X r d 1 1 r
- = 1 + 1L+ jl-"]s,6 —
71 tzs 1- tr T dt
t
d
1/2 1/2
Py 1 1 tr
= 1 4j—= I+ |I-—]s,6 — {118)
t € dt
d T r d
1+Sd .
d
We also have
1 Yx
—Yxx+le = - osgX ;I -1 (119)
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R N

and

vd = s = (120)

These are the expressions used for the caliculations in this section.

There are Xarious forms for the normalized voltage or vertical
electric field, e, (sd), and normalized current or magnetic field,
d

N
h (sd), used in this section but they all have the same initial rise
cgaracteristics, except at x'=l where the first reflectiom is coincident
with the initial rise. Using the same procedure as in equations (105)

and (106) and restricting 0<x' <1 we obtain

-z i@.l_..l.
-T2 VP3t e
r r

hd(0+)= ezd(0+) = e

(121)

The actual form of the normalized waveforms is considered later,

In terms of the parameters used in this section restriction 1 is

t

L py o5 <1 (122)
10.4¢e d
r
and restriction 2 restricts normalized frequencies of interest to
i £y 1/2
lsql = fwe | =< o4 T (123)

Again, for the .graphs the expressions for the waveforms are considered
as exact; so the reader should keep these restrictions in mind.

A. Short-Circuit Termination

Let the terminaction impedance at x=d be zero, a short circuit,
distributed over the whole width, w, of the transmission line. First
apply a step-function voltage at x=0 and t=0. For this case the
appropriate normalized voltage or vertical electric field is

- ) '» -
2de(l x') Yxx+le

l-e
T e (124)
X
l-e

o
FA

(s,)) = =
Zd d sd

Note the -1 reflection for the vertical electric field at x=d,
The impedance of this short-circuited transmission line is
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-2y.d
l-e x

=2y d (125)
I+e X

The appropriate normalized current or magnetic field for this case of
a step function voltage is then

-2y d(l-x")
e (s,) b -Z-]‘ Lte Z e
z d w -2y d
d L I+e X
x'=0

—de+le

v
hd(sd)

-2y_d(l-x') _
L Y1pre X YT "
s, Y -2v_d e (126)
d 'x X
1l=e

n

Note the +1 reflection for the magnetic field at both x=d and x=0. If,
in equation (121), x' is replaced by x'+1;, where v, is taken as the
normalized time of arrival of the various reflections at x', then
equation (121) gives the magnitudes of the step discontinuities
associated with various reflections. The sign of these step discon-
tinuities depends on the +1 or -1 reflection coefficients at each

end of the surface transmission line, as appropriate for the particular
field component.

Figures 9 through 12 have the pulse shapes for a step function
voltage driving the short-circuited transmission line for two values
of tp/ty. Each graph is for a particular value of p3 and each curve
for a particular x'. All the curves are for the case of €410, Note
the step discontinuities in the waveforms for the case of ty/tg=l.

As py is increased these discontinuities become less noticeable,
Note that hy continually increases at long times because a step
voltage is driving the short-circuited transmission line.

As a second case apply a step~function current to the short-
circuited transmission line at x=0 and t=0, The normalized current
or magnetic field is

-2y _d(1-x")  _
szl Le = o L
< s Sd -2de (127)
l+e

The associated normalized voltage or vertical electric field is
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A Ze .
d h -2y d
1 X
Z‘=O l-e ’
o o (128)
: =2y_d(1-x') V—Y X+ ¥,X
=1 2}5 le X e ¥ !
s. Y -2y d
d L 1+e =

Note that the magnetic field has a + 1 reflection coefficient at x=d, but has
a=1 reflection coefficient at x=0, Again equation (121) with x' replaced by
x' + 1. gives the magnitudes of the step discontinuities in the waveform
associated with the reflectionms.

Figures 13 through 16 have the pulse shapes for a step function current
driving the short-circuited transmission line. The choice of the various
parameters is the same as for the previous case of a step function voltage.
All the curves are for the case of ¢_ = 10. Note that with the use of a step
function current h, does not increasé without bound at long times. Also note
that, while large values of p., reduce the prominence of the recurring step
discontinuities, large values”of Pj also increase the rise time of hd'
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B. Resistive Termination

Let the termination impedance, Zt’ be resistive and match zL in the high-

frequency limit. Thus we let bt

h
Z oz (129)

and this is assumed uniformly distributed over the width, w, and height, h, of
the transmission line above the ground at x=d., There are various ways this
might be done, including the use of a structure similar. to the wave launcher
at the input of the transmission line. How this termination is accomplished
is influenced by what high-frequency characteristics are needed. The reflec-
tion coefficient for the voltage or vertical electric.fileld is then

Tx

2y Lo 1-7m (130)

L 1+ 'x
Y1

For the present case of a resistive termination we assume a step function
voltage at x=0 and t=0. The normalized voltage or vertical electric field is

-2y _d(1~x") -Y_x + v,%
g, (s) L l+Tee * e ¥ 1 (131)
d T s
d 1+ e-zde -
e
The impedance of the resistance - terminated transmigsion line is

7 =7 1+ T, e-zde
L L, = (132)

l1-r e-zde

e
The normalized current or magnetic field is then
-2y _d(1-x")
- - +
By(s) = & (s) h o Zp 1T Te® % Tt TE
d'd z d = = e
d w ZL -2y d
- re e 4
x'=0
- -l -
= 1 Ii lL-1e e Zyxd(l x') . Y X T Y% (133)
s, Y -
d % l+r e 2de

e
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Figures 17.through 24 have the pulse shapes for this case of a step fumction
voltage driving the terminated transmission line. Each figure is for a particu-
lar value of t_/t,, each graph is for a particular value of p,, and each curve
is for a particular value of x'. All the curves are for the case of £_=10.

Note that with the use of this particular resistive termination there are no
step discontinuities in the pulse shapes after the initial rise. In the limit
of large Td both hd and ezd approach one, For large values of p3, however, hd

rises to one comparatively slowly.
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Vii. Summarv

In this note we have ccnsidered some of the response characteristics of
a possible simulator design for placing a fast-rising electromagnetic pulse
over a ground surface, This rype of simulator consists of a wide conducting
sheet above and parallel to the ground surface. It is driven by electrical
energy sources at one end and terminated in some fashion at the other end.
The medium above the ground is assumed to have electromagnetic parameters
the same as free space so that the wave propagates with approximately the
speed of light in vacuum, As the wave propagates along this type of surface
transmission line the high frequencies. are preferentially attenuated. This
is reflected in an increase in the rise time along the transmission line.
However, the rate of increase of the rise time along the transmission line
can be decreased by increasing h which decreases both p, and p,. Two types
of termination are considered for this type of surface transmiSsion line.
With a short—circuit termination the multiple reflections are quite pro=~
nounced unless there is sufficient loss of high frequencies in the wave to
significantly degrade the rise time. With the transmission line terminated
resistively so as to avoid the reflection of the highest frequency components
at the termination, the rise time can be made small without introducing
significant reflections into the wave. However, this is accomplished at the
expense of efficiency since energy is lost in the resistive termination.
Perhaps other kinds of terminations with frequency dependent Impedances can
be used for greater efficiency while still terminating the high frequencies.
Note that there are restrictions on the ranges of various parameters for the
derivation of the results in this note,

The perfornance of this type of surface transmission line is improved
in the case of large ground conductivi:izs. A large 9, makes tr‘ small and
reduces the loss of the high frequencies in the wave pTropagating over the
ground. On the cother hand the Brewster angle wave matcher (Ref. l) works
best with small o,. Thus these two tyzes of simulation techniques are
somewhat complementary. Note that for ooth of these techniques the ratio
of the electric and magnatic fields is of the order of 377 ohms, the wave
impedance of free space. If very large magnetic fields are desired, in
order to simulate the electromagnetic pulse close to a nuclear surface burst,
then the corresponding electric fields are quite large, perhaps leading to
problems with electrical breakdown. The surface transmission line discussed
in this note and the Brewster angle wave matcher may then be more appropriate
for simulating the fast-rising portions of the nuclear electromagnetic pulse
at somewhat less than full levels. Note that the influence of the air con-
ductivity is not included in either of these simulation techniques.
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