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Abstract 

The problem of minimizing the induced currents on an axially symmetric 

body by impedance loading is formulated by means of the Lorentz reciprocity 
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i. .,_. 
theorem. The currents in the gap where the tangential electric field is 

non-vanishing are carefully defined anli critically examined from the view 

point of field :heory. 
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ABSTRACT 

The problem of minimizing the induced currents on an axially 
symmetric body by impedance loading is formulated by means of the 
Lorentz reciprocity theorem. The currents in the gap where the 
tangential electric field is non-vanishing are carefully defined and 
critically examined from the viewpoint of field theory. 
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I. Introduction 

In any electromagnetic field measurements it is necessary to minimize 

the interaction of the sensor platform with the field to be measured. The 
platform may take the form of a rocket which will simply be referred to as 
"antenna" throughout this note. Minimizing such interaction is tantamount 
to damping the induced currents on the antenna. One way to achieve this 
is to load the antenna with various appropriate impedances. In practice, 
the load impedance required for a given purpose may be realized by cutting 
a slot around the antenna with various appropriate materials filling the 
slot (Figure 1). This has the effect of increasing the electrical length 
of an otherwise unloaded antenna and thereby of offsetting the resonance 
condition for an incident wave of given frequency. 

Although the idea of minimizing the induced currents by impedance 
loading is intuitively simple from an engineer's point of view, it is by 
no means straightforward if one tries to formulate this idea into a satis- 
factory theory based on Maxwell's equations. The present note is an attempt 
to provide such a theory deduced solely from field-theoretic considerations. 
Only from such considerations can v&ious concepts used in circuit theory 
be clearly understood. Thus, the problem of minimizing the induced currents 
by impedance loading will be treated as a boundary-value problem in which 
impedance is no more than a derived concept, i.e., a quantity defined in 
terms of some basic quantities, namely the fields. Also, the problem will 
be formulated in accord with two requirements: (1) no major modifications 
will be needed of the presently available computer codes for calculating 
the induced currents on an unloaded cylinder 192 , and (2) the parameter 

zL ' the so-called load impedance whose value may be at one's disposal, 
should not appear in the intricate part of the computer codes to be developed. 
The requirement (1) will restrict our consideration to the case of axially 
symmetric antennas where the total axial current is not coupled to the other 
component. The requirement (2) is quite desirable, since one wishes to 
study the variation of the induced current with ZL without having to solve 
some complicated integral equations for each value of ZL. 

The best approach to the problem is found in the Lorentz reciprocity 
theorem which enables one to obtain the solution of the reception problem 
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directly from those of the transmission and parasite problems. The parasite 
problem is merely a special case of the reception problem andisimmediatelyobtain- 

able from the latter when 2 L is equal to zero. The transmission problem 

is defined to be one in which Maxwell's equations are to be solved outside 
the antenna and subject to the radiation condition at infinity for a specified 
distribution of the tangential electric field over a circumferential "gapIt 
on the antenna (Figure 1). Whether or not such a distribution of electric 

field over the "gap" can be realized in practice is irrelevant here, since 

our transmission problem is defined to be a purely mathematical problem. 
The motivation of our approach to the problem actually stems from the 

paper of Stevenson3 in which the principle of superposition is used to 

relate the solution of the reception problem to those of the transmission 
and parasite problems. In Stevenson's approach, however, the distribution 
of the tangential electric field over the "gap" in the reception problem 
is tacitly assumed to be similar to that in the transmission problem. While 

this would be the case if the "gap" were narrow enough and the antenna thin 

enough, it is not at all obvious that his assumption would remain valid in 

a more general case. The approach adopted in the present note avoids this 
somewhat moot question and requires less stringent assumptions, although 
both approaches lead to the same results; in-this sense the present approach 
is considered more general and more satisfactory. 

In this note only the mathematical formulation of the problem is 
presented; numerical results for the problem will be reported in a future 
note. 

Throughout the following discussion, the time-harmonic factor e -iwt 

will be suppressed and surrounding medium outside the antenna is assumed 
to be a vacuum. 
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II. The Reception Problem and The Reciprocity Theorem 

Let ($,$) and (Et , II') be the electromagnetic fields oscillating 
at the same frequency w and having no singularities-within the volume 
V bounded by the surfaces Sa and So3 (Figure 1). The superscript r 

(01: t> on a quantity denotes that that quantity is associated with the 
reception (or the transmission) problem. Then, the Lorentz reciprocity 
theorem gives 

J [ Et x Hr - &= x Ht l ndA = 0 - - - 1 - , 

‘a+‘ca 

where n Since n x Er and 
nxE t- 

is the unit normal pointing into V . - - 
vanish on S - - a except in the gap, equation (1) becomes 

J I 
Et x H’ - E’ x  gt) l _ndA =, J [Et x H’ - g x g) . gra , 

gap %o 

where % is the outward, radial, unit vector. On the spherical surface 
(SJ at infinity one may write 

(1) 

(2) 

(3) 
rad gt(r> g&%x& ikr e 

0 kr 

and 

inc $(I)=E e 
ikr(e -r l nJ ikr 

+ gwd 5 

(4) 
inc $<r> =+-go XE 

ikr(e -r l %I 

e 
0 

.-.-__ _-_ 
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Here Z is the free-space wave impedance and s is the unit vector in 
0 

the direction of incident Poynting's vector, the incident wave being 
assumed to be a homogeneous plane wave oscillating at the frequency w . 

Substituting (3) and (4) into the right-hand side of (2) one can show 
by the method of stationary phase that 4 

J [ Et x H' - Er x  Ht  - - - - I l 2s = 

A2 - i-~inC(80,~o) RZ l EIad(eo,+o) , (5) 
0 

gap 

where X is the wave length of the incident wave. 
Let us now examine the left-hand side of (5). Since the distribution 

of the tangential electric field over the gap in the transmission problem 
can be specified at our disposal, we take the electric field over the gap 
to have only one component independent of $I , i.e., 

I .  
P 

i: I 
tr 

c 

Et = &E;(s) (6) 

and, because of rotational symmetry in the antenna, the tangential magnetic 
field over the gap likewise assumes the fo.rm 

Ht = e+,H;'s) . (7) - . 

The directions of (Et,gt) must be defined in such a way that the 
corresponding Poynting's vector has a positive outward component, whereas 
the Poynting vector corresponding to ($ ,H': > must have a positive inward 
component at the gap. This is clearly illustrated in figure 2 where is also 
indicated the convention usually adopted to define the directions of voltage 
rise and current flow. 

Insertion of (6) and (7) in the left-hand side of (5) gives (Figures 
1 and 2); 

; 

9 
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A A 

J 
Ir(s)EL(s)ds f 

I 
A2 It(s)<Er(s)>ds = - izg 

S 
inc(8,.40) l Iad(eo,lpo) ,  (8) 

-A -A 0 

where c 

2n 
'E;(s)> = & J E;(s,W$ 

0 

Ir (s) = p(s) J $(d)d4 
0 
21T 

It(s) = P(S) J H;(s)d@ = PspH; . 

0 

We now define the voltage, the current, and the impedance by 

t A 
: 

Vt - = ZTIt = -, J Est(s)ds , 
.A 

(9) 

'r 
= ZLIr = - ‘I cEr(s)>ds. . 

S 

-A 

Here It and yr are the average currents in the gap whose precise definitions 
will soon be given. Writing 

vt E;(s) = - x f$> <E;(s)>= 'r , - x frW (10) 

we obtain from (9) the following integral relations for the distribution 

functions ft(s) and f,(s) : 
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A A 
1 

I 
ft(s)ds = 1 , 1 

z 28 J fr(s)ds = 1 . (11) 
-A -A 

Substitution of (10) into (8) gives 

A2 VtTr + Vryt = iz Einc l Erad - - , 
0 

02) 

where as well as in (9) 

A 
it = $ J It(dfrWds 

I 
(13) 

I Ir kJf$)ds , 
-A 

that is to say, It and yr are the average currents weighted respectively 
by the distributions of <Ez> and Ez . 

Therighchand side of (12) can be expressed directly in terms of the 
induced current ‘f: 

P 
in the parasite problem. Setting Vr = 0 in (12) one 

immediately obtains, with Ir replaced by 7 , 
P 

. (14) 

With the aid of (9) and (14) we find from (12) that the induced current 
in the reception problem is given by 

-Lr = 'T I 
'T + 'L P (15) 
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at the gap. Of course, there is no gap in the parasite problem, but we still 
speak of "the current at the gap" simply for reason of clarity. 

Before proceeding any further let us discuss the definitions (13) for 
the average currents yt and yr . When the weighting functions ft(s) 
and f,(s) are not the same, two undesirable features will arise, viz. (1) 
the lack of uniformity in the definition of averaging and (2) the current 
in the reception (transmission) problem weighted by the distribution of the 
tangential electric field over the gap in the transmission (reception) 
problem rather than by that in the reception (transmission) problem. Un- 
fortunately, these undesirable features are inevitable if one insists on 
maximum generality in the formulation of the reception problem. However, 
due to the nature of the conditions (9) which specify only the integrals of 
the tangential electric fields over the gap, ft and fr may take many 
forms and yet satisfy the integral relations (11). In fact, one can take 

ft equal to f r without violating (11) and at the same time the afore- 
mentioned undesirable features can be avoided entirely. Hence we shall 
assume the distribution functions f and f r t to be the same in the following 
discussions. The simplest and the most useful is the uniform distribution. 
The other widely used distribution is the delta function which, however, 
leads to the difficulty of singularity. 

We can now proceed to find, by the principle of superposition, the 
current Ir(s> at some point on the antenna rather than at the gap. Thus, 
we write 

Ir (s) = Ip(s) + crIt(s) I) (16) 

or being a constant for all values of s ranging over the antenna's surface. 
First, we average (16) over the gap to obtain the value for 0: with the aid 
of (15). Then, substituting the value of IX thus obtained into (16) we have 

(17) 
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Equation (17) is as far as one can get from the Lorentz reciprocity 
theorem and the principle of superposition with f 

: 
taken equal to fr . 

Let us recall that fr is the distribution of <Es> while the other 
possible tangential component 
of our choice (6) for E: . 

Ei does not enter the formulation because 
Thus, taking ft equal to fr is not in 

general the same as assuming the distributions of the tangential electric 
fields over the gap to be similar in the transmission and the reception 

problems. In fact, no assumption is made by equating f, to fr , since 

ft can be chosen freely. Hence equation (17) can be regarded as exact. 
What remains to be solved now is the transmission problem the solution 

of which will enable us to determine not only the solution of the parasite 

problem by (14) but also the solution of the reception problem by (15) and 

(17). 
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III. The Transmission and The Parasite Problems 
We now go on to solve the transmission problem. Our point of departure 

is the representation of x at an interior point I in a source-free 
region V bounded by a regular surface S in terms bf the values of g 
and g on S , viz. 5 

H(r) = - iwe@' x g)G - (2' x H) x V'G - (2' l g)V'G dS' 
1 

, (18) -- 
S 

where 

1 eik J(z - z')~ + p2 + p' 2 - 2pp' co.s(l$ - @'I 
G&f > = 4n ; (19) 

J(z -' z')2 + p2 + p' 2 - 2pp' cos(f$ - I$') 

S is the surface enclosing the antenna when no sources are present at 
infinity; 2' is the outward unit normal to S (See figure 1). 

Let us first multiply (18) scalarly by the unit vector 
% 

and by the 

axial distance p . Then, integrating the resulting equation with respect 
to $ from 0 to 2a we obtain, after bringing 2 onto the surface S ' 

s2 s2 

+ It(s) + 
I 

K(s,s')I$s')ds = J Y(s,s') <E;(8)> ds' , (20 

where, as before, 1 t and <EEz are defined by 

2n 

It(s) = P(S) J H+4dd@ 
0 

2n 
<Et, = - 1 

S 2n J E;(s,WJ 
0 

Moreover, Y and K are given by 

. 



AFWL EMP 1-3 

27' 

Y(s,s’> = 27riwePo' J cos 4~ G($)d$ (21) 

0 

27' 

K(s,s') = - p {cos '/J $$ - sin x sin $ T- p' ;;bW , cm 

0 

where & = (p - Cp' , cos x = n l es , p = p(s) , p’ = p’(s’> , etc.. 
In the case of a circular cylinder of radius a equations (21) and (22) 
reduce to, respectively, 

2ika2 r/2 2 
Y(z - 2') = 7 

I 
cos 2$ 

eik J(z - z') f 4a2 sin2 I$ 
d+ 

0 
0 J(z - z')2 + 4a2 sin2 I# 

(23) 

n/2 2 
K(z - z') g$-$ 

I 
e ik J(z - z') + 4a2 sin2 4 

d+ l (24) 

0 J(z - z’)2 + 4a2 sin2 $I 

Since <EE> is zero on the antenna's surface except in the gap where 
it is given by the first equation of (lo), equation (20) becomes, with f 
replacing f, and f r' 

s2 

3 It(s) + 
I 

v A 
K(s,s')I$s')ds = - 2 

I 
Y(s,s')f(s')ds' (25) 

s1 -A 

For a given f equation (25) can readily be solved for It(s) with 
the aid of a computer and then ZT can be computed from (9). . 

In the parasite problem an additional term glnc , the magnetic 
intensity vector of the incident wave, will appear in the right-hand side 
of (18), viz. 

H(r) = H -- - + [ { (2' x H> x V'G + (n" g)V'G)dS' - (26) . 

Following the same procedure as in the transmission problem 
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we have 

s2 
II (s) + 
2 P J K(s,s')Ip(s')ds' = I inc(s) . (27) 

9 

Equation (27) has been programmed and solved for the case of a circular 
I,2 cylinder . 



Figure 1: The geometry of the reception problem. . 
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'Ht - 
n . 
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Et - 
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L n - 
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Figure 2: The convention of voltage rise and current flow. 
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