
.—.

:“3

SENSOR AND SIMULATION NOTES ..

NOTE 63
September 1968

mo CORRECTION FOR A BURIED”TwsMIWON-LINE s-ATOR
..

by

A. D. Varvatsis
Northrop Corporate Laboratories
Pasadena, California 91101

Abstract

The equivalent load admittance for an open transmission line buried

in a lossy medium is a function of the frequency. u . A series expansion

for the equivalent load admittance in terms of u starts with a frequency-

*
independent term which is the d.c. resistive end correction of the line.

In this note this resistive end correction is estimated for two arrays of

parallel wires serving as a transmission line.
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1. Introduction

In trying to understand the interaction of electromagnetic
fields with bodies of complex shape such as an airplane, a
building, etc. one is often faced with very difficult electro-
magnetic boundary value problems ihdeed. The bomdary value
problems one might solve would in general be only rough approx-
imations pertaining to some of the featunes of a real structure
of interest. In electromagnetic pulse (EMP) interaction ques-
tions the real structures of concern may have nuimrous design
features so that they cannot be considered as simple shapes
like spheres, circular cylinders, etc. without introducing var-
ious inaccuracies, sometimes significant, in some of the coup-
ling to various penetrations, etc.

Still, while the object of interest may be rather complex
there may be certain symmetries in the object which can be used
to simplify the analysis of the electromagnetic interaction.
By use of such symmetry one can determine some features of the
electromagnetic interaction and/or decompose the interaction
problem into more than one piece, each piece beiilg treated sep-
arately. This approach has found various applications as, for
example, in quantum mechanics and it can be considered as an
application of group theory.

In this note we consider some of the results which apply
to objects with an electromagnetic symmetry plans, a very sim-
ple type of symmetry with a s-ymmetry group corresponding to s2,
the symmetric group of degree 2. The fields, currents, etc.
are split into symmetric and antisymmetric parts or modes which
can be considered separately. In some cases of interest there
will be some small number of interaction modes (ior example
resonances) , each with its own current distribution etc. , which
are of dominant interest to the EMP interaction problem. Each
of these interaction modes can be categorized as symmetric or
antisymmetric or at least split into such parts. With this
splitting one can then hope to reduce the number of these dom-
inant interaction modes to be considered simultaaeou.sly because
of two separate treatments of the symmetric and antisymmetric
parts .

This splitting into symmetric and antisymmetric parts can
be used not only for interaction calculations but also for in-
teraction measurements of current etc. Furthermore E~P simula-
tion tests can be configured so as to separate to some extent
the symmetric and antisymmetric parts by making an appropriate
symmetry plane of the simulator coincide with the symmetry
plane of the object of interest.

Of course a real object of interest may onl~’ approximately
have an electromagnetic symmetry plane in the sense that there
are some small asymmetric perturbations of Wne electromagnetic
characteristics (e.g. shape) of the object. In such cases the
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results for the separation of interaction mo.~es into symmetric
and antis ymmetric parts axe only approximate and there is in
general some “coupling” between these parts :jrmodes. However
if this “coupling” is not too large then the approximate sym-
metry decomposition may still be useful for ~alculating, meas-
uring, and categorizing the interaction characteristics of the
object. On the other hand some electromagnetic objects (such
as EMP simulators or electromagnetic field ssnsors) are pur-
posely constructed to rather accurately have such symmetry
planes (or even higher order symmetries) to ;implify or give
other desirable characteristics to their performance and to
simplify the calculation and other understanding of their per-
formance.

The type of symmetry that we consider i,~ this note is sim-
ply reflection symmetry, one of the S2 kinds of symmetry in 3
dimensions. This gives two independent inte~-action modes:
symmetric and antisymmetric which might be thought of as some
kind of parity in the electromagnetic wave functions and might
also be referred to as even and odd. This type of symmetry is
appropriate to various real objects of interest such as certain
aircraft, ships, buildings, etc. In some cases other symmetries
including higher order symmetries may be present which would
permit even further decomposition of the interaction modes.
Perhaps some other symmetries could be considered in future
notes.

II. Reflection of Coordinates Through a Synwletry Plane

Consider then an electromagnetic s~eti:y plane, a surface
which we call P as shown in figure 1. SUCQ a plane can be
specified by a surface normal unit vector+n r,r~ichis indepen-
dent of position on P, and by some point r = rc which lies on p.
The general position vector isl

+
r = X;x+y; +z~

Yz
(2.1)

where we have used $artesian coordinates (x, y, z) with unit
vectors denoted by e with appropriate subscripts. Figure 1A
shows+P with some general orientation n and containing some gen-
eral rc. Figure lB shows a special form for P where we have
taken

+
r =3
c

+ +
n = e

z

(2.2)

I . All units are rationalized MKSA.
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This last choice is what we take for illustration with specific
coordinates in this note. However, th’is does not reduce the
generality of the results’because this choice merely corres-
ponds to a translation of the origin of the coordinates and a
rotation of the coordinates to make the z ax~.s perpendicular to
P.

In considering objects with an ~lectromagnetic syrrunetry
plane P w~ define for each position r a reflection or mirror
position rm on the opposite side of P. For the simple case

that P is the x, y plane as shown in figure lB this simply in-
volves changing the sign of z so that we could write

+
r: (X,y,z) = X:x+y: +2:2

Y

(2.3)
+
r = (X,y,-z) = X3X+Y:Y-Z:Z
m

where z can of course be positive or negative. This ca~ be+
gen~rali~ed to the case shown in figure $A by relating r - rc
to rm - rc with a general normal vector n as

which can be

(2.4)

= *-;c)-:’ (;

rewritten as

(2.5)

A general equation for ~m is then

+
r -; = ?-:
mc

C-2X[:” (;-;c) ] (2.6)

The projections of ; and ~m on P are the same while they are on
opposits sides of P and equidistant from P.
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For convenience we introduce a reflection matrix which,
for the case that P is the z = O plane, can be wi:itten as

+

()

10
O\

~ ~ (Rij) = o 1 0 (2.7)

o 0 -1

so that for this case of P we have

+
+
r = i“: , z
m

One might introduce
nates in the form

+
+
r’-: = 3“;

c

+

= ii”zm (2.8)

3
a rotation matrix U for rota~ing the coordi-

(2.9)

where this matrix is unitarv with real coefficients and ;~ =
(x’, y~r z’) is a new carte;i.an coo$di.nate system (sax as in
fi.qure 1A). Note the shift of the r’ coordinates by rc so that
we-can get a new carte.sian system from on~ whe$e
a rotation and a translati n: P contains r’ = rc
ordinate system. Because 8 is unitary we have

Note that the reflection matrix in equatior:

Pisz= O by
in the new co-

(2.10)

2.7 is its own
inverse so that it is called an involutory matrix and we can
write

+-1
& =i, ;.;%:2=: (2.11)

where the identity matrix is

+ ()
100

3 = (6ij) = o 1 0

001
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The reflection matrix can be expres$ed in tl:e ~’ coordinate
system by applying equation 2.9 to rm to gi~e

+
++
r’-r = O“;m
mc (2.13)

Then applying the unitary rotation matrix t(, equations 2.8
(either one) we have

[ 1
+++--1 +

.[

+ + +-1
+-++
U*ROU

+++= “G”; = U-R*U 1.[:L;c]
+1=3.[;!-:C]

where we have defined

(2.14)

(2.15)

which is a similarity transformation of the reflecti~n matrix.
This can be considered the reflection matri:. in the r’ coordi-
nate sy$tem which reflects the coordinates through P using the
center rc as in equation 2.14. Note that tk,e rotated reflec-
tion matrix in equation 2 .15 is also involu~ory (i.e. is its
own inverse) .

The two matrices ; and 2 (also ? and 6’ ) form a group with
matrix multiplication as the operation. They comprise a repre-
sentation of the symmetric group S2.

III. Decomposition of Electromagnetic Quantities into Sym-
metric and .Antls’jmmetrlc Parts

Maxwell’s equations

Vxm,t)

VG(:,t) 0,

are written in the time domain as

V’xiw,t) =3

‘dx-,t) = p

7
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The constitutive relations plus Ohm’s law can be written using
Laplace transformed fields, etc. as

6(”;) = %“3(;)

(3.2)

+

3(;) = :(;) ”i(;)

where the permittivity, permeability, and conductivity have
been written as matrices and may be functions of s, the Laplace
transform variable~ for some cases we will take these param-
eters as scalars. The Laplace transfozm (two sided] of time-
domaim quantities is denoted by the addition of a tilde (.)
above the symbol. Note that the current density in equations
3.2 is the conduction current density and does not include
sources.

There are other related electromagnetic relations such as
the equation of continuity

V“w,t) + & L&t] = c1 (3.3)

There are other commonly used electromagnetic quantities such
as scalar and vector potentials which can be used to calculate
the fields as

(3.4)

FK,t) = Vx”m,t)

For free space (permittivity so, permeability TJO, and zero con-
ductivity) and some source current and charge densities the po-
tentials can be written as
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J
P(2,t ---+

f$(:, t) = g dV
o v 4T l:-;” J

(3.5)

with the speed of light

(3,6)

where ~“ is the position vector for integration over the source
volume V. The retarded time is used in equations 3.5 so that
only outgoing waves are included; no incident wave (from infin-
ity) is included in this formulation although other terms for
an incident wave can be added.

Corresponding to the’ reflection of ~ to ~m, the mirror po-
sition, one can make a reflection of the electromagnetic quanti-
ties . Here we wish to define mirror fields, mirror currents.
etc.

-s
which are in some se~se the reflection’~f the fields etc.

from the mirror position rm to the position r and also satisfy
Maxwell’s equations and related electromagnetic equations
(equations 3.1 through 3.6 and others);
would then have all the characteristics
Starting with the electric field define
in the same way the mirror position has
tions 2.8. Using a subscript m we have
mirror quantities as

such mirr~r fields etc.
of the original ones.
a mirror electric field
been defined in equa-
a consistent set of

++

im(;,t) = i?i”mm,t) , iim(%t) = -Fi”s(;m,t)

+

i3m(zt) = ii”mm,t) , im(:,t) = -ihwm,t)

Pm(h) = P(2m,t) ,

Qm($rt) = drnrt) ,

+
3#,t) = x“mmr t)

+

Xm(;,t) = K“x(;m,t)

(3.7)
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One could reverse the signs of all these mirror quantities and
still have a consistent set of quantities, but we ~refer this
convention because the scalar quantities reflect with no sign
change. N~te that if th~se mirror quantities are themselves
reflected rm returns to r and the original quantities are re-
turned because the reflection matrix is its own inverse and the
same applied to the negative of the reflection matrix.

For the reflection properties of equations 3.7 first con-
sider the simple case of scalar c, P, and o all+independent of
position, i.e. a uniform iso~ropic ~edium. If Em has the form
shown in equations 3.7 then Dm and Jm must also have the same
form to satisfy one of the constitutive relations and-,Ohm’s
law; if Hm has the form shown (with minus sign) then Bm must
have the same form because of the other constitutive relation.
The curl equations are satisfied
the cartesian forms as

+
e
x

Ex(:m,t)

+
e
x

+
= -i ● &

In

Ex(~m,t)

as can be

+

‘Y

E (;tt)
‘Y

+

‘Y

Ey(:m,t)

+

‘Y

seen by writing out

-Ez(~mrt)

= -& iim(:,t) (3.8)



and similarly

Wdi#,t) =

+
e
x

&
Hm (lrt

x

-Hx(~m, t)

+
e
x

+’

=i$’ &
m

Hx(;ln,t)

+

= H(;rn,t)

+

‘Y

Hm (;,t)
y

+

‘Y

z&-
c.

-Hy(~m, t)

-?-

‘Y

a

Ii
Y

+

+
r;,t)

+
rm, t)

= 3m(:, t) + ~bm (;rt)

e
z

Hm (;,t)
z

+
e
z

Hz (~m,t)

+
e
z

~

Hz (;m,t)

(3.9)

Thus the curl equat$ons are satisfied.+ Note that the sign
change in defining Hm (as compared to Em) is necessary to sat-
isfy equations 3.8 and 3.9. This sign reversal of the magnetic
field reflection formula is the same as is observed in coordi-
nate inversion (or changing the sign of all three cartesian co-
ordinates) ; the magnetic field is then often called a pseudo
vector.

The charge density reflection is related to the current
density reflection through the equation of continuity as
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(3,10)

which is as in equations 3.7. The reflection characteristics
of the scalar potential can be deduced from those of the charge
density applied to one of equations 3.5T those of the vector
potential are the same as for the current density as can be de–
duced from the second of equations 3.5. Alternatively one can
manipulate the curl and gradient in equations 3.4 to deduce the
reflection characteristics of the scalar and vector potentials
from those of the electric and magnetic fields. Having defined
a self consistent set of mirror fields etc. in equations 3.7
for our special cartesian coordinates for which P is the z = ~
plane, one can apply this to other cartesi.an systems such as r’
by multiplying (dot p oduc ) on the left by the unitary rotation
matrix $ and convert

$,o~ I
as before. For the scalars nothing

is needed.

Now we can define the symmetric and antisymmetric parts of
the fields etc. The symmetric part or mode is defined as one
half the sum of the original quantity plus the mirror quantity.
The antisymmetric part or mode is one half the original quan-
tity minus one half the mirror quantity. The symmetric part is
denoted by the subscript sy; Ehe antisymmetric part is denoted
by the subscript as. One might also use the terms even and odd
respectively and consider each of the parts as different parity
states . The symmetric parts are
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Since the mirror quantities satisfy Maxwell’s equatians etc.
and since we are only considering a linear problem (i.e. the
permi.ttivity, permeability, and conductivity are independent of
the fields, etc.) then the symmetric and antisymmetric parts
also satisfy Maxwell’s and other associated equations. Note
that by adding the symmetric and antisymmetric parts the origi-
nal fields etc. are recovered; by subtracting the antisymmetric
from the symmetric parts the mirror fields etc. are obtained.
With the fields and related quantities written in terms of
their symmetric and antisymmetric parts we have a separation in
the sense that symmetric fields and p~tentia~s are associated

only with symmetric current and charge densities, and similarly
for the antisymmetric quantities. So far we have just consid-
ered the case of a uniform isotropic medium. Of course the
purpose for the separation is for the convenient treatment of
electromagnetic interaction with symmetric objects and this is
considered in the next section in terms of requirements on the
permittivity, permeability, and conductivity. In equations
3.11 and 3.12 the symmetric and antisymmetri.c parts have been
written for the case that the symmetry plane P is the z = O
plane, but just as with the mi$ror quantities these are simply
generalized tio a more general r’ cartesian coordinate system by
multiplying o~ the

i
left by a unitary rotation matrix 3 and con-

verting to R’ as before.

Having decomposed the fields etc. into symmetric and anti-
symmetric parts one can consider the symmetry of these two
parts with respect to the sy~etry plane P. In terms of the
cartesian coordinate system r where “P is the z = O plane one
can ~rite symmetry relations between the symmetric parts at ~
and rm and similarly for the antisymmetric p~rts. Comparing
the symme~ric parts as in equations 3.11 at r and the mirror
position rm we have symmetry relations

+

t 3sy(~mft) = -H#,t)

+

I Fi
Syv) = -i’”iisy(:,t)

+
ASy(;m,t) = i“isy(;,t)

(3.13)

o

Comparing the antisygmet.ric parts as in equations 3.12 at ~ and
the mirror position rm ‘we ha’~e the symmetry relations

14
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P##) = -Pa~(:, t) ,

$@m,t) = -Q&t) ,

+’

3J;m,t) = -i G#,t)
(3.14)

Note that the signs in equations 3.13 and 3.14 are exactly op-
posite. This feature is a convenient one and allows one to
better picture the spatial distribution of the symmetric and
antisymmetric parts. Note the predominant (but not exclusive)
use of the plus sign for the symmetry relations for the symmet-
ric part, and conversely for the antisymmetric part. The mag-
netic field has exactly the opposite symmetry relations for its
symmetric and antisymmetric parts as compared to the electric
field.

While the symmetric parts have plus signs in the symmetry

●
relations for the scalars as well as for the vectors%other than
the magnetic field, note that the reflection mat-rix k used with
the vectors reverses the sign of the z component (the component
perpendicular to the symmetry plane P). Thus the vector sym-
metric parts have a variety of symmetry relations for the var-
ious vector components. The electric field, current density,
and vector potential components parallel to P keep the same
sign on reflection through P while the components of-these vec-
tors perpendicular to P reverse sign. The magnetic field is
just the opposite in that the components parallel to P reverse
sign while the component normal to P keeps the same sign. ‘9te
that the symmetric magnetic field is perpendicular to P for r
unless it is discontinuous at P. The symmetric electric fie~d,
current density, and vector potential are parallel to P for r
on P unless they are discontinuous at P.

The antisymmetric parts have minus signs for the scalars
on reflection through P. Again the electric and magnetic
fields have different signs on reflection and the reflection
matrix gives different reflection properties to the vector com-
ponents. The antisymmetric electric field, current density,
and vector potential have their components parallel to P re-
verse sign on reflection and those perpendicular to P keep the
same sign. The antisymmetric magnetic field has its components
parallel to P keep the same sign on reflection and its component
perpendicular to P reverse sign. The antisymmetric electric

15



field, cu$rent density, and vectcr pctential are perpendicular
to P for $ on P. The antisymmetric magnetic field is parallel
to P for r on P.

The symmetry relat
parts in equ~tions 3.13
coordinates r where the

ions for the symmetric
and 3.14 have been wri
symmetry plane P is z

and
.tten
= o.

antisymmetric
for cartesian
For the

Now that the symmetric and antisymmetric parts are sepa-
rated note that the symmetric electric field, current density,
magnetic fieldr etc. go together and the same applies to the
antisymmetric parts. The synunetric and antisymmetric parts can
be treated separately, i.e. there is no cross coupling between
these parts or modes. For calculations one can treat each part
separately, and because of the symmetry relations (equations
3.13 and 3.14) the quantities need only be considered for a
half space on one side of the symmetry plane P. This fact can
be used, for example, to effectively reduce the number of zones
into which an object of interest is divided for numerical elec-
tromagnetic calculations. By use of this symmetry decomposition
measurements of various quantities such as current and charge
can be made so as to explicitly display the symmetric and anti-
syrrunetricparts. Of course in this section we have only con-
sidered the simple case 05 a uniform, isotropic medium which
only applies to portions of our region of interest, such as the
free space (air) , earth, water, etc. surrounding our object of
interest which has the symmetry plane P. In the next section
we consider a more general case consistent with ‘the minimum re-
quirements imposed by the simple medium used here.

Iv. Object with an Electromagnetic Symmetry Plane

The reason for splitting the fields etc. into symmetric
and antisymmetric parts is for convenience in treating electro-
magnetic problems involving an object with a symmetry plane P.
For the case of a uniform isotropic medium this splitting gives
symmetric and antisymmetric parts which have no cross coupling
so that they can be treated separately. We would like this
feature to hold for a more general medium which is perhaps both
nonuniform and anisotropic. In particular we would like this
decomposition to apply to some object situated in some medium
such as free space, soil, water, etc. or combination of such
media. This requirement poses the q~lestion of what is meant by
the electromagnetic symmetry plane P. The object of interest
situated in various media can be considered as one medium with
nonuniform and possibly anisotropic characteristics. The sym-
metry plane P must apply to this complete medium which includes
the object with its surroundings.

16



Given the symmetric parts (equations 3.11) and the anti -
symmetric parts (equations 3.12) as satisfying Maxwellls and
other related equations, then by taking sums and differences of
these parts both the original fields etc. and the mirror ones
can be obtained and by linearity they satisfy Maxwell’s equa-
tions etc. The criterion for what constitutes a medium with
symmetry plane P is that the mirror quantities and thereby the
symmetric and antisymmetric parts can be formed and all satisfy
Maxwell’s equations and tl?e other related equations. The orig-
inal fields, etc. of course must satisfy these equations includ-
ing any variation of the parameters of the medium with position
and/or frequency. Applying the original fields etc. to form
the mirror quantities the medium properties only enter in cer-
tain relations between the quantities from equations 3.2. Thus
the matrix permittivity, permeability, an~ conductivity have to
satisfy relations at the positions r and rm for the orioinal
fields and current density as

:-+>+
s(r) OE(r) ,

+
:(:) ”3(;) ,

+
++3+
o(r) OE(r) ,

111

+

mm) “i(;m)

+
++
u(rm) ●i(;m)

+

:(;m) “i(:m)

.

(4.1)

also satisfy
These same relations must hold for the mirror quantities which

these as well. as Maxwell[s equations, giving

Note that we

+-
+11(mm(:) , im(;m)= hm)”ii(: )

mm

are using the cartesian coordinates ~ where
symmetry plane P is z = O for this development.

Equations 3.7 give the relations between the mirror

(4.2)

the

quanti -
ties and the ~riginal ones. Now take the mirror quantities
evaluated at rm in equaticns 4.2 and multiply these three
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$equations on the left by or -; as appropriate. This converts

them to equations for the oiiginal quantities as

(4.3)

which use the fact that $ is its own inverse. Now compare

these results with the forms in equations 4.1 for the original
quantities at r. Depending on the form of the fields incident
on our object of interest (due to particular source locations)
there are various tYPeS of resultin9 electric and ma9netic
field distributions- fiossible.

+ ++ -+

:(2) = fi”a:m).ii

+ +-+
++
P(r) = mq’i

and use this as our definition
ject of interest together with

Let us then in general require

(4.4)

of what is required for an ob-
any surrounding media of signif–

~cance to have a symmetry plane P. There may be cases that

various of the matrix components do not need to have this sym-
metry relationship because certain fields or j~st+particular
field components are zero so that for various r, rm combinations
various of the matrix elements are multiplied by zero. An ex-

ample where the fields are zero is the case of the fields in-
side a perfectly conducting shield with initially zero fields
and with no sources interior to the shield. There may be var-

ious cases in which various features of the perrnittivity, per-
meability, and conductivity have only a small (perhaps negli-
gible) effect on the fields, currents, etc. over large parts
(or even most) of the volume of interest. If these features

which give small effect over most of the object are not sym-
metric as required in equations 4.4 one might still use the
symmetry decomposition of the fields etc. as a convenient ap-
proximation.
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The results of equations 4.4 can be extended to the more
general cartesian coordinate system r: (as before) by multiply-
ing on the left by a rotation matrix U. HoweT~er in the ~ sys-
tem the results are compa atively simple due to the simple form

tof the reflection matrix . as in equation 2.-/. In order to see
some of the details of the symmetry of the+permittivity, perme-
ability, and conductivity matrices in the r system one can mul-
tiply out the right sides of equations 4.4 and explicitly dis-
play the resulting matrices in terms of their components; this
gives

+

W?)

[

&xx (2)

(;)‘yx

E=x(3

+

●R

(
wxx

(;)

(;)
~yx

PZx
(3

(
!JXxq) ‘Jx\,(rm). .

= ~ vyx(rm) (rm)

\

‘yy

-Bzx(rm) -P~y(rm)

-& ~z (Zm)

(:m)-&yz

E ~z (Zm))

(4,5)
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a
xx

‘yx

a
Zx

Oxy (q
+

‘yy ‘rm.)

-C7~y (q

-ox

-is
Y

Cs
Zz

Note that the XZ, ZX, yz, and zy cofiponents of the permi.ttivity,
permeability, and conductivity matrices all change sign on re-
flection while the remaining five components of each matrix
keep the same sign.

The symmetry requirements for the object
media are the general ones in equations 4.5.
cases it may be more appropriate to deal with
instead of the volume ones, as in the case of
ing bodies or perfectly conducting surfaces.

and surrounding
In some special
other parameters
perfectly conduct-
For cases that

the object of interest or part of it is perfectly conducting
(or can be approximated as such) then the details of the con-
ductivity matrix need not be considered for such parts of the
object. One only needs $he .sQape to be symmetric with respect
to P so that reflecting r to rm reproduces the same perfectly
conducting parts. For typical cases that the perrnittivity,
permeability, and conductivity are scalars the results of equa-
tions 4.4 reduce to the simple symmetry relations

E(T) = &(;m) , u (:) = u(:m) , 0(:) = G(:m)

which again can be typically viewed as a geometrical property
of the object. For example, a plastic part with a certain c on

(4.6)

one side ~f P has to hav~ a“mir~or part-with
other side of P.

In the common case of highly conducting
is usually convenient to introduce a surface
(amps/meter) and a surface charge density os

the same & on the

metal surfaces i$
current density Js
(coulombs~meter2) .

Cor;espondi.ng to equations 3.7 the mirro~ quantities are

Ps (h) = P&t) , 35 (i% = i“35(m
m m

(4*7)
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The symmetric and antisymmetric parts corresponding to equa-
tions 3.11 and 3.12 are

P~ (;tt) = ;[PJ:A)+PS (J,t)l = +[PJh)+P&.#H
Sy m

P~ (;rt) = iJPJLt)-Ps (:,t)l = 4j[PJLt)-PJ:m,t)l
as m

(4.8)

These parts have symmetry relations corresponding to equations
3.13 and 3.14 of the form

Ps (;m,t) = p (;,t) , ps (rm,t) = -p (;/t)
Sy ‘Sy as

s
as

(4.9)
-+ +

3s (:m,t) = i3”3 (;,t) , 3
s

(;m,t) = -3”5 (Z,t)

Sy Sy
s
as

s
as

The surface charge density and surface current+density on a
surface+can be related to displacement field (D) and magnetic
field (H) respectively which are adjacent to the surface of in-
terest. These fields can be used in designing sensors to meas-
ure the surface charge density and surface current density.

In addition to the surface charge density and suzface cur-
rent density one might consider some more macroscopic parameters
such as charge and current. For use with decomposition with re-
spect to the symmetry plane P one might consider the+charge in
some volume described by a range of the coordinates r; one
would then need to consider th$ charge in the mirror volume as-
sociated with the coordinates rm ranging over the mirror posi-
tions corresponding to all r in the original volume. Similarly
one might consid$r a current I as the surface integral of the
current density J over some par2iculQr surf-ace and define a
mirror surface-
surface. Note
scalar it does

by transforming r to rm for all points on the
that while current is normally considered as a
have a direction, i.e. it passes through a
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surface in a particular direction if the current is non zero.
When confined to a narrow conductincj path. such as a wire the
current can be considered as a localized quantity with a direc-
tion parallel to the path idealized as a line.

As an example to illustrate some of the features of the
symmetry decomposition into symmetric and antisy-mmetric parts
consider the example in fig’ure 2. Here we have a somewhat gen-
eralized airplane with a conducting skin and a vertical sym-
metry plane passing through the nose and hail with one wing on
each side of this symmetry plane P. Of course there may be
some asymmetries i.n a real aircraft related to various things
such as antenna locations, wheel well positions, electrical
cable routing, etc. ; these asymmetries are assumed to have neg-
ligible effects on the overall charge and current flow on the
exterior of the aircraft. There is assumed to De some form of
incident wave and this is split into symmetric and an’cisymmetric
parts . Some of the reflection symmetries for the fields, cur-
rent, and charge are shown for the symmetric ‘part in figure 2A
and for the antisymmetric part in figure 2B. The cu’rrent I is
defined as the total current passing through each open surface
(say planar) which intersects the fuselage or wing in a manner
perpendicular to the long dimension of the fuselage or wing.
With this definition note that for the antisynunetric part the
net current on the fuselage is zero rather conveniently. There
is a significant current on the wings which can have a signifi-
cant resonance at a frequency where the total wing length is OE
the order of a half wavelength. On the other hand the symmetric
part has a significant fuselage current which also goes out onto
the wings and tail structure. It can also have a significant
resonance with a half wavelength of the order of the fuselage
length with corrections for loading by the wings and tail
structure. Thus we have identified a resonance associated with
each of the two parts of the symmetry decomposition. By making
this symmetry decomposition then one can avoid mixing these twc
different resonant nwdes and thereby look at their variation
with the various parameters of the aircraft separately. Note
in figure 2 how the charge distribution varies over the air-
craft for the symmetric and antisymmetric parts. Also note how
for both symmetric and antisymmetric parts the magnetic field
(resultant, not just incident) is perpendicular to the surface
current density in its immediate vicinity as well as parallel
to the assumed highly conducting skin. For our present example
we have considered some of the features of an aircraft far re-
moved (compared to its size) from earth or any other electromag-
netic medium other than free space (air) .

v. Decomposition of an Incident Plane ~~aITeinto Symmetric and
Antisvmmetric Parts

Now that a general field. distribution has been split into
symmetric and antisymmetric parts with respect to the symmetry
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plane p let u.s consider an example. Specifically consider the
symmetric and antisymmetric parts Of a plane wave” in a ur~iform~
isotropic medium. This simple example can be used to describe ●
the symmetry decomposition with respect to P of a plane wave
incidefit on an object of interest with such a svmmetry plane
where the object is placed in a uniform isotropic medium such
as free space. This plane wave does not represent the total
fields but only the incident fields. However, we can Still
treat the symmetric and antisymmetric incident fields separately
to calculate the associated symmetric and antisymmetric total
fields respectively.

In the Laplace transform domain we can express a general
plane wave in a uniform isotropic medium in the form2

++

ii(i!) = ioe-y”r

->+
3(?) = + JXioe-y”r

with the constraint

;“fio = o

The wave admittance is

CT+SE ‘/2[1Yz;=_
Sp

and the propagation vector is

where the propagation constant is

y = iK = [S!J(G+SE)]l’2

(5.1)

(.5.2)

(5.4)

(5.5)

2. P. C, Clemmow, The Plane Wave Spectrum Representation of
Electromagnetic Fields, Pergamon, 1966, chapter II.
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The unit vector :1 is the di
vector which is independent
Note that equations 5.1 and

J-V

= o

.rec~ior.
of r b~
5.2 can.

of propagation and
t may be a ftinction
also be written as

a

(5.6)

One can see that this type of plane wave satisfies Max-
well’s equations and the constitutive relations plus Ohm’s law
(equations 3.1 and 3.2). ‘rhe

The curl of

‘7X;(:)

curl of the electrlc field is

[

“;1-’{zl xi

Ve
o

= -Spin

the magnetic field is

[

-?
_y;L “z

= ‘x ‘;lxEoe 1

++

(5.7)
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provided

●

+3 +- -:=1
‘l*EO = 0 ‘ ‘1 1

(5.8)

(5.9)

. .

The first of equations !5.9 is the restriction on ~0 stated in
equations 2.6 and the second of equations 5.9 is the require-
ment that e~ be a special kind of unit vector.

Note that ZI can be complex and the second of equations
5.9 can be written as

(5.10)

+

‘1 + iIm[~, ]

Complex XI can be used to describe various types of plane waves
which are often not considered as plane waves. An example is a
surface bound wave near an ippedance plane.

Other convenient terms are found by taking the components
of the propagation vector along the three cartesian axes (x, y,
z) giving

(5.11)

With this breakout of the components of the propagation vector
we can write
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~-~02 = ~-iZ*; = ~
-yxx -yy~7 -yzz -iKXx -iKyy -iKzz

e e = e e e (5.12)

Since ~. and ~1. do not depend on the coordinates then the only
coordinate dependence is contained in the exponential factor.
As shown in equation 5.12 this term f-actors into separate terms
containing the three cartesian coordinates separately so our
plane wave fits the classical separation of variables approach.

Again let the symmetry plane P be the plane z = O so that
we have the position vector and its-image

+’
r = (X,y,z) = x:x + yzy + Z37.

+-
r = (X,y,-z) = x:x + Y:y - Z:z
m

(5.13)

Corresponding to the original plane wave in equations 5.1 or
5.6 we can form a mirror plane wave by using equations 3.7 to
give

(5.1.4)

Note that

‘lx ‘1
Y

E. E.
x Y

+
e
z

‘1 z

E.
z

=-

+ + -+
e
x ‘Y ‘z

‘lx ‘1 -el
Y z

60 i -ii.
x ‘Y z

(5.15)

For convenience one could define

27



(5.16}

so that

(5.17)

Having the mirror fields equations 3.11 can be used to

- [yxx+yyy]
= e I~. cosh(yzz)~:<+~o cosh(yzz)~ -~ sinh(yzz

x Y
y 02

+
e
z

(5.18)
-[ YXX+YYYI (: -yzz_;*$ e~zz

ESy (:)
I

= ;[i(;)+im(:)l ‘;e ~Hoe o

- [YXX+YYYI \ .
= e ‘1~-Hoxsinh (yzz)~x-~oysinh (yzz)Sy+~ozcosh (yzz)ez ~

Similarly from equations 3.12 the antisymmetri.c parts are

- [yxx+yyy]
= e

{
-i. sinh(yzz)~x- ~. Sillh(YzZ)=y+~o cosh(yzz)gz

x Y z 1
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- [yxx+yyy]
= e 1ii.cosh(yzz)~x+io cosh(yzz); -fro sinh(yzz)~z I

x Y
Yz

I

The cosh(yzz) and sinh(yzz) t-erms are even and odd respectively
in z and contain the symmetry characteristics with respect to P
consistent with equations 3.13 and 3.14.

Now that an incident plane wave ~Laplace transformed) in a
uniform isotropic medium has been spilt into symmetric and anti-
symmetric parts let us consider the special case of free spa$e
(s = EC), B = Po, ~ = O) in the time domain. Also constrain el
to be a real unit vector independent of s (or frequency) , ‘rhe
propagation constant is then

y=iK=~ (5.20)c

Then equations 5.6 become in the time domain

++

++

im,t) = iiO(t-yr)

io(t) = Yo:lxio (t)

(5.21)
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For

so i

mirror quantities in the time

++
-+

(A&t) = -3”i30t- ‘l’im~

convenience

+

‘m

50 (t)
m

i. (t)
m

:hat

ii. (t)

m

we can

c /

define

domain

(5.22)

J-

+

(5.2.3”)

= -i”iiO(t)

+ + +

=Yj21 Xi. (t)

mm
(5.24)

which can be compared directly to the corresponding equation in
equations 5.21. The original fields and the mirror fields are
illustrated for this uniform plane wave in figure 3.

The symmetric parts of this uniform plane wave in the time
domain are
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(5.25)

ii J:(t) = ;Mjt)+iim(;,t)]

The antisymmetric parts are

(5.26)

i3J:, t) = ;Fi(lrt)-fim(z,t) 1

Note that for the case of free space and real <I. the frequency
domain form with s = iw shows uniform field amp~itudes w{th x“
and y but a sinusoidal variation of the field amplitudes with z
for both symmetric and antisyrmmetric parts. The time domain
parts as in equations 5.25 and 5.26 can be thought of as two
interesting pulsed waves with. planar wave fronts .as are quite
distinct in ~he case of a
independent polarization.

Having the symmetric

step-function type of fiowith ~ime

ancl antisymnetric parts of an inci-
dent plane wave then fcr an object with symm~try plane P one
can consider the symmetric and antisymmetric parts separately.
Taking one of these parts only half of the object need be
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considered because the f-i-e-ids,etc. on one half are directly
applicable to the otlher half. This fact can be ‘used for reduc-
ing computational difficulty and for increasing numerical ac-
curacy. Furthermore various of the electromagnetic features
such as resonant modes will each be associated with one or the
other of the symmetric and antisymmetric parts. This will tend
to give a separation of the electromagnetic features into dif-
ferent parts which can be used to reduce the complexity of un-
derstanding the electromagnetic response of the object.

VI. Use of Symmetry-Plane Decomposition in lMeasurements of
Electromaanet~c Interaction with an Oblect

The decomposition of fields, currents, etc. into symmetric
and antisymmetric parts based on an electromagnetic symmetry
plane P has another use besides simplifying some of the calcu-
lation and understanding of electromagnetic interaction with a
body which has such a syrmwtry plane. In particular this de-
composition can be used as an experimental technique. Since
various features of the electromagnetic interaction are associ-
ated with one of the two parts (symmetric or antisymmetric) ,
then if one measures the symmetric and antisymmetric parts of
some electromagnetic quantity (such as current, charge, etc.)
one can have some separation of the various interaction modes
such as the different resonances directly in the data. This
could prove to be useful in making the data more easily under-
standable.

In order to measure the symmetric and antisymmetric parts
of an electr~magnetic quantity of interes~ one must measure the
quantity at r and the mirror quantity at rm and then take the
sum and difference to find the symmetric and antisymmetric
parts respectively. This can be done as part of a data agal-
~sis effort by mathematically combining the results from r and
rm; for such dat-a reduction one must know the time relation be-
tween the two time domain experimental w-aveforms, or the phase
relation if frequency-domain techniques are used. .~,lternatively
one could directly sum and difference signals from the two
measurement positions and display and/or record the symmetric
and antisymmetric parts. How this is done depends on the ob-
ject on which the electromagnetic interaction is being measured.
If the object of interest is highly conducting (at least in
part) such that there exists a highly conducting+curre~t path
(idealized as perfectly cc~nducting) between the r and rm pair
of interest, then this conducting pat~ can Qe utilized to
“hide” conducting signal cables from r and rm symmetrically
laid to arrive at a common comparison position on the syrrunetry
plane P. This could be a rather convenient technique involving
symmetrically positioned sensors and cables leading to a cen-
trally placed recordinq svstem such as an oscilloscope (with-..- .-
shielded enclosure, power supply,
ferencing is also performed. For

etc.) where summin; ar.d dif-
some practi-cal objects of
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interest (such as metallic aircraft) conducting paths for rout-
ing signal cables from the sensor to a posikion on the symmetry
plane and on the metallic conductors of the body are commonplace o

giving numerous cable routing geo~ekrie~. In other cases one

might telemeter the signals from r and rm (via microwave tech-
niques, optical techniques~ etc.) to some remote position where
the telemetry signals can be demodulated and combined to form
the symmetric and antisymmetric parts.

For illustration let us briefly consider what might be a
typical application of this experimental technique. In a pre-

vious section (equations 4.7 through 4.9) we have considered
the symmetric and antisymmetric parts of two quantities useful
for experimental purposes, namely the surface charge density
and the surface current density. These two quantities are ap-

propriate when considering interaction of electromagnetic
fields with objects with large metal surfaces. The surface

charge density on one side Qf t~e surface is equal to the dis-
placement vector component n ● D perpendicular to the surface.
An electric type sensor on the surface then can measure the
surface charge density. The surface current density on one
side of the surface (for sufficiently large conductivity and
thickn~ss ~f the metal skin) is equal to the tangential magnetic
field n x H on that side of the surface; the surface curre~t
density, magnetic field, and normal vector to the surface n are
all mutually perpendicular. A magnetic type sensor on the sur-
face can then be used to measure the surface current density.
Of course a metallic skin such as on an aircraft might have a
charge and current on both sides of this skin (idealized as a
surface) . If one wishes the net surface current density and/or
surface charge density (both sides) then appropriate sensors on
both sides can be used to sum the results from both sides to ob-
tain the total coulornbs/meter2 or amps/meter on (or in) the
skin. Other related quantities such as total current through
some surface (such as a total fuselage or wing current) or the
total charge on some large area of the object could also be
measured with other types of sensors.

For a pictorial example refer to figure 4. Here we show

an aircraft. Note in figure 4B that such an aircraft might
even be sitting on the earth (runway, taxiway, conducting
ground plane, etc.) ; with the symetry plane of the aircraft
perpendicular to the earth surface (as well as perpendicular to
any stratification layers in. the earth near the aircraft) the
symmetry-plane decomposition of the fields etc. still applies.
The aircraft might also be connected to the earth (“grounded”)
provided such connection(s) were also symmetric with respect to
P. Figure 4 shows an aircraft with surface current density
sensors (perhaps using the magnetic field) located at symmetri-
cal positions with symmetrical orientations on top of the wings.
Signal transmission lines (cables) have their outer conductors
in electrical contact with the qetallic wings and fuselage so
as to appear as small perturbations in the conducting wing and
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fuselage surfaces. These transmission lines are routed along
symmetrical paths to a shielded oscilloscope enclosure centered
on P; for example the shielded enclosure might be placed as a
bulge on top of the fuselage as shown in figure 4. Alternative-
ly the signal transmission lines might enter the fuselage at
symmetrical positions with respect to I?usi~g special feed-
through panels and from there go to the oscilloscope (shielded
if needed) inside the fuselage.

The illustration in figure 4 is only typical, One might
have surface charge density sensors near the wingtips, surface
current density sensors on opposite sides of the fuselage or on
opposite engines slung under the w-ings, etc. One might measure
voltages (negative line integral of the electric field) between
symmetrically positioned pairs of locations or measure total
current on symmetrically located conducting structures. The
possibilities are quite large.

VII. Symmetry Plane of Object Made Coincident with a
Symmetry Plane of a Simulator

In measuring the interaction of electromagnetic fields
with an object* one often uses some kind of simulator to produce
a desired field distribution in the vicinity of the object.
Such a simulator might be simulating various aspects of the
nuclear EMP in either time or frequency domain. For various
reasons, such as the large size of the simulator structure or
the desire to maximize field strengths, the simulator structure
is not always far away from the object compared to the object
dimensions . For typical simulators the fields scattered from
the object can then interact with ,the simulator structure and
be rescattered back to the okject, thereby altering the cur-
rents etc. on the object. For a simulator not significantly
larger khan the object placecl inside it t!len the fields in the
absence of the object cannot be considered in an accurate sense
as the incident fields. This is an important question in simu-
lator design and has been considered in several notes.

In this note we are considering the splitting of the elec-
tromagnetic interaction into symmetric and antisymmetric parts.
This splitting has required that the object be symmetric about
a plane P. If the fields scattered from the object are rescat-
tered back to the object to s.significant extent by the simu-
lator then it is necessary tk.at the symmetry be preserved in
this rescattering. This requires that th,e conductor positions,
impedances, etc. associated with ‘the simulator also be sym-
metric with respect to the same symmetry plane P as is the ob-
ject. The fields, currents, etc. can be a combination of sym-
metric and antisymmetric parts so the simulator sources (gener-
ators) do not need to be symmetrically positioned if the asso-
ciated source impedances and gepmetric structures are placed at
the appropriate mirror positions. This syrmnetry requirement on

.

0
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the simulator then restrict-s somewhat tke geometry of simula-

● tion tests if one l~ailtSth.f? coupling bet’~een symmetric and
antisymmetric parts on the object to be negligible. Alt-erna-
tively one can make the simulator large enough compared to the
object or far enough away from it that the rescattering of the
fields from the simulator back to the object is negligible.

An interest-ing approach to simulation experiments on an
object with a symmetry plane P wouid be to not only make the
simulator have the same symmetry plane, but also make the
sources be placed so as to give either a symmetric or an anti-
symmetric field distribution (but not both) . This would give
only the corresponding symmetric or anti-symmetric current,
charge, etc. on the object. Thus we have a way to experimen-
tally separate the symmetric and antisymmetric parts by produc-
ing them separately. Compare this technique to the one dis-
cussed in section VI in which the two parts are separately
measured in a situation in which both parts are present. De-
pending on the simulator design the production of only one of
the two parts may restrict somewhat the flexibility (angle of
incidence, polarization, etc.) in the variations of the field
distributions that. are achievable.

As a first example consider a symmetric object such as an
airplane symmetrically positioned in a symmetrical parallel
plate transmission line as shown in figure 5. The basic re-
quirement is that the symmetry plane P-of the airplane also be
a symmetry plane of the simulator including the sources with
their source impedances. Figure 5A shows a configuration which
excites only the symmetric parts; the symmetry plane P is par-
allel to the incident electric field and divides each of–the
plates into two equal parts. Not-e–that for this type of sym-
metrical excitation the object (airplane) can still be rotated
to various orientations as long as the symmetry plane P is not
moved. Figure 5A also shows a dielectric stand for the air-
plane also symmetrically centered on P. Figure 5B shows a con-
figuration which excites only the antisymmetric part; the sym-
metry plane P is perpendicular to the incident electric field.
and is spaced halfway between two symmetrically positioned
equal plates. Again the object (airplane) can be rotated as
long as the symmetry plane P is not moved. Note that. a dielec-
tric stand (like a large railroad trestle) and even the pres-
ence of a conducting dielectric such as soil etc. can also be
included as long as they are symmetric with respect ‘co P. This
general type of simulator has application to testing things
like airplanes in their inflight configuration; some of the
features of this kind of simulator are discussed in another
note.3 Here we wish to point out that this type of simulator

3. Capt Carl E. Baum, Sensor and Simulation Note 82, Some Con-
siderations Concerning a Horizontally Polarized Transmission-

● Line Simulator, April 1969.

37



I
iSYMh4ETRY
I PLANE P
I

PLATE OR I
GR!D

\
I

t _ INCIOENT
ELECTRIC

TRESTLE
RETRACTION OF LANDING

PLATE OR
GRIO

EARTH

A. SYMMETRIC EXCITATION: FRONT VIEW

;SYMMETRY
IPLANE P

PLATE OR_
GRID

INCIDENT I

\

[
ELECTRIC I

+ FIELD 1*

I
- #Ai’;E ‘R

ALLOW
GEAR

‘OIELECTR!C SUPPORT TOALLOW
OIELECTRIC— RETRACTION OF LANDING GEAR
TRESTLE J

vf~h /
/

EARTH

B. ANTISYMMETRIC EXCITATION:FRONT VIEW

FIGURE 5. SYMMETRICAL OBJECT SUCH AS AN AIRPLANE SYMMETRICALLY
PLACED IN A PARALLEL PLATE SIMULATOR

38



a #-

can also be used to excite only the antisymmetric part, at
least for restricted directions of incidence. Note also that
the same dielectric support (trestle) can be used for both sym-
metric and antisymmetric excitation by reconfiguring the con-
ducting plates (or wire grids) that guide the fields into the
two different geometries shown in figure 5. These options (and
even other plate configurations with respect to the dielectric
support) give a simulation facility of this type considerable
flexibility.

The parallel plate or TEM transmission line type of simu-
lators are applicable to testing objects like aircraft in their
inflight mode. Another interesting class of simulators is the
hybrids useful for testing objects near the ground with a simu-
lated “high altitude” type of EMP as it would be incident onto
the earth’s surface. A particularly good type of hybrid is the
TORUS4 ; it can give an essentially complete set of angles of
incidence and polarization{ good high and low frequency perform-
ance , and has a convenient geometry for electromagnetic calcu-
lations. With this type of simulator one might be testing say
an aircraft on the- ground surface (runway, etc.) . Besides us-
ing various angles of incidence and polarization for more gen-
eral tests one might configure the object and the TORUS so as
to produce only one of the two parts: symmetric or antisymmet-
ric. Figure 6A shows a configuration for producing only a sym-
metric part. The TORUS is in it-s vertical configuration and
its major radius lies on the symmetry plane P, so for an air-
plane the fuselage and the TORUS structure can be roughly con-
sidered as lying in the same plane if the structures are thought
of as lines. Note that the angle of the pulse generator along
the half circle is arbitrary in producing the symmetric part
and this gives some flexibility. However the direction of–in-
cidence is basically parallel to the plane P and the polariza-
tion of the incident electric field is parallel to P. Figure
6B shows a configuration for producing only an antisymmetric
part. The “plane” of the TORUS is perpendicular to P and the
pulse generator and TORUS structure are symmetrically placed to
extend on both sides of P. By varying cl (the angle of bend of
the TORUS structure from the vertical) the direction of inci-
dence can be varied while still parallel to P (for fields near
P) . However the polarization of the electric field near P is
restricted to be perpendicular to P. Thus for both of these
TORUS configurations the direction of incidence can be varied,
though only parallel to the vertical plane P near P, while the
polarization near P is either parallel or perpendicular to P.
Note for the antisymmetric case that one could move the gener-
ator away from 1? if a second identical generator were placed in
the TORUS structure at the symmetrical position with respect to

4. Capt Carl E. Baum, Sensor and Simulation Note 94, Some Con-
siderations Concerning a Simulator with the Geometry of a Half
Toroid Joined to a Ground or Water Surface, November 1969.
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FIGURE 6.SYMMETRICAL OBJECT SUCH AS AN AIRPLANE SYMMETRICALLY
PLACED IN A TORUS SIMULATOR ●



P and with polarity such that both generators drive curuent
around the TORUS in the same direction. There are various
other modifications of TORTJS that one might use to get more
g-ene-ralangles of incidence and polarization for each part
(symmetric or antisymmetric) separately, such as by combining

two such simulator structures, perhaps even intersecting. How-
ever this introduces various complications which make electro-
magnetic analysis much more difficult. Note that while we have
shown the TORUS placed over an aircraft parked on the ground
there are various other objects such as symmetrical buildings
which have an approximate electromagnetic symmetry plane P and
are of interest.

VIII. Summarv

The presence of an approximate electromagnetic symmetry
plane in an object of interest then has various implications
regarding electromagnetic interaction with the object~ -The
fields , currents, etc. all have corresponding mirror quantities
which also satisfy Maxwell’s equations and other associated
equations (including boundary conditions) ; this is derived from
a reflection of the f-ields etc. as well as the object through
the electromagnetic symmetry plane P. Combining the original
quantities with the mirror quantities in sum and difference
fashion gives the symmetric and antisymmetric parts of the elec-
tromagnetic quantities. Each of these parts can be treated in-
dependently as there is no cross coupling between them. Fur-
thermore each of these parts has a convenient set of symmetry
relations on reflection through the symmetry plane P which sim–
plifies somewhat the treatment of the separate parts. Since
the two parts can be treated separately various features of the
interaction of fields with such a symmetric object can be con-
sidered in the analysis of one of the two part-s. The complexity
of the electromagnetic interaction can then be reduced somewhat
by removing from the analysis various features associated with
the other part not considered in the calculation. For example
the lowest frequency resonances can be associated with the dif-
ferent parts thereby perhaps reducing the number of these low-
est frequency resonances to be considered with each part-sepa-
rately.

This symmetry-plane decomposition applies not only to cal-
culating the electrontagnetic interaction with a symmetrical ob-
ject of interest but to measurements of this interaction as
well. By use of symmetrically positioned sensors with summing
and differencing of the signals from the sensors the symmetrical
and antisymmetrical. parts can be measured. Alternatively by
appropriately configuring an EMP simulator so as to have the
same symmetry plane as the object of interest and produce only
a symmetric or an antisymmetric field distribution then only
the corresponding part is excited on the object of interest.
Depending on the simulator design, however, the excitation of
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only one part of the general field distribution may restrict
somewhat the flexibility of the simulator in simulating all the
features, of a desired E.MP (direction of incidence, polarization,
etc.).

This symmetry decomposition of the electromagnetic quanti-
ties into symmetric and antis:ymrretric parts can prove rather
useful for understanding the electromagnetic interaction with a
complex but symmetrical object such as an aircraft. However
such real objects are in general not perfectly symmetric with
respect to a symmetry plane. Thus there can in general be some
coupling between symmetric and antisymrnetric parts, although
this coupling can be quite small. One may have to quantify
this coupling question for real not-quite-symmetric objects of
interest.
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