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A technique is developed for

TEM waves between conical and/or

with no reflection or distortion

Abstract

the design””oflenses for transitioning

cylindrical transmission lines, ideally

of the waves. These lenses utilize

isotropic but inhomogeneous media and are based on a solution of Maxwell’s

equations instead of just geometrical optics. The technique employs the
. .

expression of the constitutive parameters, c and v , plus Maxwell’s

equations, in a general orthogonal curvilinear coordinate system in

tensor form, giving what we term as formal quantities. Solving the

problem for certain types of formal constitutive parameters, these are

transformed to give c and u as functions of position. Several examples

of such lenses are considered in detail.
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One of the techniques used in the solution of electromagnetic

boundary value problems consists in writing Maxwell’s equations in

orthogonal curvilinear coordinates and then solving, not for the

physical components of the fields, but for quantities which combine the

physical componentswith scale factors of the coordinatetransformation.

These new quantities are components of tensors and tensor densities

referred to the orthogonal curvilinear coordinate system. Similarly
—

the constitutiveparameters of the rnediuqare combined with the scale

factors in the resulting equations. In making such a transformation

one hopes to simpli~ the equations sad/or boundary conditions in some

way,

One type of problem

relates to waveguides (1,2).

tith a homogeneous isotropic

on which this technique

In this case one takes

has been used

a waveguide filled

medium, and transforms to an orthogonal

curvilinear coordinate system in which the boundary walls are more

convenientlyexpressed. The resulting transformed constitutive

parameters, however, are in general inhomogeneous and anisotropic.

Thus whi>e the boundaries hava.been..simplified,the.medium has become

-. -.
more complicated---

In this report we con,sideran extension of this”technique.”We

assume that the formal constitutiveparameters, as expressed in some

orthogonal curwi.linearcoordinate system, are of a particularly simpl~

form, i.e., homogeneous, at least as they relate to the allowed field

components. Furthermore,we assume that the constitutiveparameters,

. —
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before being trsmsformed to the curvilinear-system,are those of an

inhomogeneousbut isotropicmedium. From this we find many cases of

isotropic inhomogeneousmedia for which certain types of electromag-

netic wave propagation can.be simply expressed.
.

In this approach the medium is made inhomogeneousemd perfectly

conductingboundaries are geometricallyarranged such that when they

are transformed into the appropriate orthogonal curvilinearcoordinates

a simpler problem results which can be solved by more standard tech-

niques. The present approach can then be used to define geometriesfor

‘- perfectly conductingboundaries and distributionfunctions for inhomo-

geneous media such that dct~icesbuilt to such designs will transport

electromagneticwaves in certain desirableways. In particular,we
-,

consider cases which in the curvilinear coordinatesystem corresponds

to a problem of a TEM plane wave on a cylindricaltransmissionline.
..

In the reference cartesiu (x,Y,z) coordinatesthe waves are still

TEM, but not necessarilyplane. For the examples consideredthe

particular conductor geometries and media inhomogeneitiescan be used

to transitionwaves between two transmissionlines, each of which is a

.&- conical or cylindricaltrsmmission line. Furthermore,the transition

is accomplishedwith neither reflectionnor distortion of the wave.

Another applicationof such examples is for a highly directionalhigh-

frequencyantenna in which the special geometry and mediun inhomo-

geneity is used to launch an approximateTEM wave over a cross section

with dimensionsmuch larger than a wavelength.
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The approach followed in tlftsreport then represents a design

procedure for a certain kind of electromagneticlens. ‘Thepropefiie:;

of such a lens,‘combinedwith appropriateperfect conductors,are

independerit-of frequency-ass&ing that-the permittivity and permeabi-.
.- .——..

lity of the medium usedare real and frequency independentand that il;s

conductivityis zero. This result is in contrast to lenses based on a

geometrical optics approximation,such as the well known Luneburg

lens (3),which relies on the frequencybeing sufficientlyhigh. T’h

lenses_c~nsidered’heie~-used-withappropriatetrans~ssion lines, cam

then transmit arbitrary pulse waveforms without distortion.

While the cases considered represent exact solutions to the

vector wave equation, there are, of course, approximationsinvolved in

the practical realization of such devices, For example, for p~se

*.
applicationsthe permittivity’and permeability should be frequency

independent and have cemain prescribed vaLues as functions of position.

Such characteristicsca only be approximatelyrealized. As another

example, it will turn out that the lenses should, in some cases, have

infinite extent and so will have to be cut off, If, however, the lens

is large enough the relative magnitude of the fields (as compared to

the magnitude of the fields near the transmission line passing through

the center of the lens) can be small enough that the perturbation is

insignificant. The permittivity and permeabilitywill be

be infixiitein some places and less than their free-space

others, but such positions can be made to be far from any

required to

‘valuesin

significant

fields so that these requirements can be neglected. For certain trans-

mission lines the conductors restrict the fields to a closed region of

..

.
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space so that no lens material at all is needed outside this region.

For a particular applicationof these lens designs, one should consider

such things as the rmge of permittivity and permeability required and

the spatial.extent of the lens required. In this report we treat the

lenses from u idealized viewpoint.

In outline, this report first considers the definition of what

we call fomml. electromagneticfields, vector operators, and constitu-

tive parameters used with orthogonal curvilinear coordinates.

Restrictingthe forms of the permi.ttivityand permeabilitythe general,

but very restrictive,case with field components in

directionsis briefly considered. This is followed

of the TE14wave case with electric field components

all three coordinate

by a consideration

in two coordinate

directions. Jane general results are obtained for this case and a few
.

lens types are considered. Finallya the simpler case of two-dimensional

lenses is considered,together with a few examples.

. .



II. FORMAL VECTORS AND OPERATORS
—.

Let-us first consider a cartesian coordinate system (x,y,z)with

“+ +– +“

unit vectors ex$ e s ez
Y

, and an orthogonal curvilinearcoordinate

‘yStem ‘%* U2$U3)
+

with unit vectors e,;,~.
123

We restrict both

‘coordinatesystems to be right handed, i.e.

.+.. .+. = ;
e xe

x Y z (2.1)

and

(2.2)

The line element is

“&= $Xdx + $dy + gzdz =
‘3du3:3hl%$ + h2du2~2 + (2.s)

where-the‘sctie”fac~ors h, ‘a&
1

given for i=l,2~i as

h: = (*)2+(*)2+(*)2 =
-! .! >

(2.4)
J. L J.

taken positive and

any i=l,2,3 from

The hi are

hi= (),cu for

also often written using the

we exclude singular points where

our consideration. The line element is

metric tensor (g<,) as

●&+= ~ gii(du )2i
i=l

(2.5)

curvilinear

./
%1

o

where for orthogonal coordinatesthe metric tensor has the

simple form

o \l h$OO\

\

o H
2g22 o = o

‘2 0

1

(2.6:1

o 0
’33

0 0 h:

(giJ ) =(giidij) =

.—
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For later use we define some combinationa_ofthe hi as

and

(

.

‘2h3

‘1

o

0

0

‘3hl

‘2

o

0
\

o

‘lh2
1

‘3

(2.7-)

(2.8)

(2.9)

(2.10)

where 6 is the Kronecker delta function.
ij

In.the u. coordinate systen the standard vector operations are
1

the gradient

*,.

.. ->...-.

lao+ XI ao+ ~~ao+
V4 =—— —— ——

hl a~l‘1 h2 au2‘2 h3 a~3‘3
(2.11)

curl

(2.12)



and divergence

hlh2Y3)} (2.13)

The xi and. .Y: are referred to as the physical components of the
1.

vectors_ which have the representations

and

(2.14.)

arescalar and vector Laplacians

operations.

Other common operations such as the

formed as combinationsof the above

Now we define another set of

formal vectors and formal operators

vectors and operators which we caU

addition of asad symbolize by the

prime to the standard symbols. Related to ~ we define

of

(2.1’j)

% are related ascomponentsThus the

h:X$x; = (2.16)
L A

In tensor language the X; are the covariant components
L

Rel-atedto ? we define

(2.1’7)

Thus the componentsof T’ and ; are related as
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Y! =
Fry -— (2.18)

1
‘i i

h tensar language the Y; are the componentsof a relative contra-

variant tensor of

travarianttensor

vectors ~~ and

and ; appear in

weight +1 which csn also be called a relative con-

density (4). Note that we have defined the fo?nnal

~’ differentlybecause of the differentways that ;

equations2.12 and 2.23.

Now we define formal vector operatorsby

and

A G

.

Note that the formal vector operators

.. orthogonal curvilinearcoordinatesas

..
have in cartesian coordinates. These

the standard ones by /

(2.19)

(2.20)

(2.21)au3

have precisely the same form in

the standard vector operators

formal operators are related to

~1/h, O o\

.
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.——.
is related towhere the potential function O 4 by

‘3 = Q’ (2.23)--

and by “

.VX2=+ = (sij)-~ “ (v’ (2.24)●

.

and

(2.25)

A&in in tensor language @ is an invariant scalar, the componentsof’

V’*’ are the covariant components of V@ , the componentsof v? x ft

are the components of a relative contravarianttensor of

V ● ? is a relative sc~ar of’weight +1.

Finally we define a formal matrix (v~J) related to

.

(V;j) = (8iJ) “ (Vij) “ (aid)-l

‘e ‘ij
are the components of a relative contravariant

weight +1, and

(wiJ)by

(2.26)

tensor of

weight +1. This transformationwill be used later for the constitutive

parameters in Maxwell’s equations. For the special case that (viJ) is
.-

diagonti we have

(2.27)(v;J) = (Yij) ● (viJ)

is this latter case which will be of concernIt to us in this report.
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ELECTROMAGN~C

‘ Now considerMaxwell’s equations

and
V* 3=0

together with the constitutiverelations

and

3 = h.lij)● if

and the equation of continuity

Note that p is the “free” charge density and

displacementconventionallyincluded in (z. ).1$

equationswe have assumedthat (ciJ) smd (PiJ)

QUANTITIES

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

does not include charge

In writing the above

are real constantxnatri-

ces, independentof frequency;they may, however, be functionsof posi-

tion. If we had written tfieabove equations in the frequencydomain,

then (c. ) and (p. ) could easily have been taken as complex functions
lj u

of frequency. .— .
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Equations 3.1”through 3.7
—.

are assumed to be expressedjn terms

+
e. unit vectors as in Section II. So
1

of the u. coordinates and the
1

now we &e some appropriate definitions of formal electromagneticquan-

tities. Since ~ and ~ appear with the curl operator,we define, as

(aiJ)

in the case of ~ ,

(,3.8)

divergence operator,we define, as

(3*9)

Now p equals a diverge~ce in equation-3.3 so we define

(3.10)

i, if,so that p is a relative scalar of weight +1. Substituting for

~, and ~ from equations 3.8 and 3.9 into equations 3.5 and 3.6 and

requiring

(3.11.)

the formal constitutiveparmeter matrices we shouldshows t“hat

define

for

. -.,

(ciJ)

(!lij )

(aij)-l●

●(lJ:J)

. . .

(aij )-1 (3.12)
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For some problems one might include a conlltictititymatrix (aiJ) so

that ~ includes a conduction current density (aij) ● ~ . Then we

would define

If kid), (viJ), =d (aid) are reqtired tobe diagonal, equations

3.12 and 3.13 reduce to

The formal electromagneticquantities defined in equations 3.8

through 3.12can now be substitutedinto Mawell’s equations,the con-

stitutiverelations and the equation of continuity. The curl anddi-

vergence operators can be replacedby the formal operators from equa-

tions 2.24 and 2.25. Equations 3.3.through 3.7 can then be rewritten

(3.15)

(3.16)

v?.&= () (3.18)

.,

...

.-
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and - —.

(3.21)

3.15”throukh 3“.21 are of the sme form aaNote that equations —

equations 3.1 through 3.’7. All electromagneticquantitiesand operators

are replaced with primed symbols, except for t which has remained

~ch~ged, However, the formal curl and divergence operators,using the

u, coordinates,have the same mathematical forms as have the standard
1.

operators, using the x,y,z cartesian coordinates. Suppose that we

formally think of the Ui as a cartesian coordinate system and think

of the primed quantities as the electromagneticfields, constitutive
..=

parsxaeters,etc. Then we can take a known solution of Maxwell’s equa-

tions related to cartesian coordinates, directly substituteprimed for

unprimed quantities and the Ui for the cartesian coordinates,and

thereby construct a solution of the above equations. Transformingthe

formal quantitiesback to the standard ones by equations 3.8through

3.13, we then have a solution of Maxwell’s equations for which (ciJ),

(Vij), and/or (UiJ) may be anisotropic and/or inhomogeneous. The idea

is then to pick (e~j), (l.I~J),and (U~J) of some particul=ly convenient

form and also tO choose any boundam surfaces to have convenient forms

in the u. coordinate system
1 so that we can obtain a solution in term

quantities. Choosing some particular

(coordinatesand X, y, and Z, the par~-

of the formal electromagnetic

relationshipbetween the Ui

(Bij),“ad (aij) the geometrg of the boundary.- eters (i. ),
lJ

as well as

issolutionsurfaces are determined ad the applied to the particular

case.
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Iv. RESTRICTION

In this report we

inhomogeneousisotropic

-I.4-

OF CONSTITUTIVEPARAMETERS TO SCALARS

are only concernedwith problems related to

media. The later examples of lenses will

utilize such media. Thus we restrict the constitutiveparszneterand

conductivitymatrices to be of the forms

(Cid) = E(aij) , (uiJ) =ll(aij) , (aij) =a(dij) (4.1)

where s, V, and a are scalar functions ot the coordinates. From

equations 3,14 the formal constitutiveparameters then have the forms

(c~d) = e(YiJ) , (I&) = !l(Yid), (a;j) = a(Yi J (4.2)

Also, we restrict a = O and assume that G and !-iare real and

frequency independent. However s and v may, in general, depend on

the coordinates. The formal constitutiveparameters (s~j) and (P~J)

are now diagonal matrices with the three diagonal terms possibly func-

tions of the coordinates.

Thus we are led to consider some possible forms for diagonal

(e~j) end (U~J)which sre consistentwith equations

like (Ej,) and (P~~) to have rather simple forms so
Ad Ad

waves, as expressed using

coordinates,have desired

by requiring (s~j) end

(4.2). We would

that electromagnetic

the formal electromagneticquantities and Ui

forms. A first case to consider is defined

(v{J) tobe expressible as s’(6ij) and

P’(did) with s’ and V’ independentof the coordinates. In

terms of the ~ormal quantities,this correspondsto a
.—

homogeneousmedium problam for which many types of solutionsof

,- .
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considered
.—. .

Maxwell’s equations are available.__~is first..case is in

to each

Section V and Appendix A.

haveIt is not necessary, however, for

their three diagonal components equal and independentof

the problem to correspond to one of a homogeneousmedium. In particu-

the Ui for

lar, suppose that for each matrix just the first two of the diagonal

components are constrained to be e~ual and independentof the coorikL-

nates. An inhomogeneousTEM wave with formal field componentswith

only subscripts 1 and 2 has no interactionwith &;3
‘r ’53’ adso

53 are unimportant in the case of such a wave.
‘d_Ku33 ._ ____ Such TEM

solutions are used to define lenses to match waves onto cylindrical

and/or conical transmission lines. This second case is considered in

Sections VI and VII and Appendix B.

As a further simplificationwe consider the two-dimensional

problem in which U3 = z , one of the formal electromagneticfields has

only a u
3

component, and the other formal electromagneticfield ha:;

only a
‘2

component. With appropriate restrictionson the compon-

ents of (c! ) and (u! ) this defines a third case considered in
lj lj

Sections VIII and IX. Solutions for this case are used to define

lenses for launching TEM waves on two parallel perfectly conducting

plates.

,
. .
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V. GENERAL CASE WITH FIELD COMFONENICS

COORDINATEDIRECTIONS

IN ALL THREE

Now considerthe case in which fi~ and ;’ are both allowed

have all three farmg,lcomponents. For this cage we constraj.nthe

to

constitutiveparameters to have the forms

(qj) = ~jC!(6. ) , (lqj) 5 li’(dij) (5.1)

where E’>o eadv’>0 are both independent of the
‘i

coordi-

nates. In ter& of the formal electromagneticquantitieswe have a

homogeneousmedium problem. One might then apply many known solutions

for homogeneousmedia to this case.

With (G’ ) and (u’ ) each constrainedby both equations 5.1 and
ij ij

4.2,we have

(

‘2h3

. ‘1

(Yij) = o

0

0 0
\

.

a

where s and u are both assumed nonzero at positions of interest.

This implies

From

g 1

SL
’11 ‘ ’22 = ’33 = E v

‘22Y33 = y331~l = Y11Y22

(5.3)

(5.4)

we obtain
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Since the hi are ti-l-%akenpositive, then we have them all equal

-which we express as

‘1 = h2 = h3’ (5.6)

equationThen from 5.3 E u are given by

(5*7)~h = p’

independent of theso that eh and ph are

However, we cannot

coordinates. In Appendix

for h which satisfy the

coordinates.

choose h to be any function of the

show that there are two general forms

restriction imposed by equation 5.6. The

first is given by h equals a constant for which the ui form a car-

tesian coordinate system. For

that the medium is homogeneous

The second form of h ,

this case s and u are constant so

A.27 and A.31, gives anfrom equations

byinhomogeneousmedium described

a2

xy2+z2
&—= J=&=
E’ u’ h

(5.8)

to a 6-sphere typewhere a # O is a real constant. This corresponds

of coordinatesystem. Defining the radius

(5.9)r’
222=x +Y+’Z

we have
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E v 1 a2 ‘-—=— =-=—
c’ P’ h r2

(5.10)

If one were to attempt to construct such a medium for frequency inde-

pendent c and v , then c and v would be constrainedto

least as large as their free space values.

there is a maximum r for which c and !-I

neighborhoodof r ‘ O is excluded because

and P there. Thus there are

With the hi restricted

of inhomogeneousmedia is then

sphericallystratifiedmedia of

next section we loosen somewhat

j

<

1

restrictions

For fixed c’, u’,

can be realized.

of the singularity

be at

and a2

Also, a

in c

on realizing such’s medium.

zs in equation 5.6, the associatedclass

rery restricted,being limited to

the form given by equation 5.8. In the

this restrictionon the hi .

.
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n. tiEE-DIMENSIOfiAL“TM WAVES

Now we restrict our attention to waves of a certain form. Consi-j

der inhomogeneousTEM plane waves such as propagate on ideal cylindrical

transmission lines, including cosxial cables, strip lines, etc. Such a

structure supports TEM plane waves which propagate parallel to some

fixed direction, say the z axis. It has two or more separate perfect

conductors which form across section (in a plane perpendicularto the

z sxis)which is independent of z . Also, let the medium in which the

perfect conductors are placed be homogeneous.

Next apply this type of inhomogeneousTEM wave solution to the

formal fields discussed in

+11~ direction and let the

forms

..—

Section III. Let the wave propagate in the
—

formal constitutiveparameters have the

...- .-..

where s’ > 0 and y’ > 0 are constants but
2

fied. Since we shall only consider waves with no

parallel to the _u3 direction, then :1
3

and U’
3

fomal constitutiverelations, equations 3.19 and

dependenceof
‘i

and p’
3

on the coordinatesis

o\

and u: are unspeci-

. .

2

field components
.-.

nowhere enter the

3.20. Then the

irrelevant snd can

be ignored. For this TEM wave the medium can then be formally consi-

dered isotropic and homogeneous since only e’ and Uf are signifi-

cant,

—
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Specifically,considez formal fS.el~sof the form

where we define

(6.4)

and where we cm choose the form of f(t ‘%
-~) tospecifY thewavefom.

This is the well-known form of TEM waves on cylindricaltransmission

lines (5). The formal field components

_~. .

and

—>

---?

---+

E;

where Z; is the formal

= z! H’
/2

wave impedance (

are related by

(6.5)

(6.6)

iefined by

(6.7)

Equations 6.5 and 6.6 express the orthogonalityof S’ and ~’j i.e.

3’ *I’ =0 (6.8)

Also fi and ~ cm be derived from scalar potential functionsas

~) v’ @e(u@J2) ,z? = f(t -
c1

.
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,;

where o
e

V’2= v! ●

H’ ‘3)V’oh(ul> *—.=f(t-~ u) (6.9)

and
‘h

both satisfy

v’ operator). These

the Laplace equation (using the

potential functions can be combined

to fomn a complex potential @e + i~
h

which allows one to use conformal

transform techniqueswith the complex variable ~ + iu2 . AU these

equations, 6.2 through 6.9, are merely the direct applicationof known

results for cylindricaltrans&ssion lines to their formal equivalents

using formal field components and the u,
1

coordinates in place of

physical field components and cartesian coordinates.

Note, of course, that while the results for cylindricaltransmis-

sion lines assume constant E and u , the present results using the

formal quantities assume constant E’ and U’ . Likewise the present’
.

results require that the two or more perfect conductors forming the

transmission line intersect surfaces of constant U2 in such a manner

that the representation

‘3 “
Put simply, these

sented in terms of only

d

in terms of ~ and U2 is independentof

perfectly conductingboundaries can be repre-

their & and U. coordinates,
1. L

The important feature of these TEM waves is

restrict the first two diagonal components of the

parameter matrices as in equations 6.1. We still

as in

where

that we only need

formal constitutive

asstie that (cij) and

correspondto isotropic,but iIlhOmOgeneOUSmedia having the forms

equations 4.1

(cij) = C(6. )
lj

E>o andv>O

(n<,)= P(a,, )

may be functions of the coordinates.

(6.10) ‘-
, .;.

Then as

\
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in equations 4.2 the formal constitutive~remeters have the forms

(E;j) = dYijl , (u; J)= ll(YiJ)

Combining equations 6.1 and 6.11 then gives

(YJ= o ‘3hl ~

‘2
hlh:

oo—
‘3

This implies

end

o

u’

o
-J

(6.11)

(6.12)

(6.13)

(6.14)

From equation 6.13 we find that the first two scale factors are equal

which we express as

Note that h3

greater degree

h

is

of

l!?OW& snd

.zh =
3

=hl=h2 (6.15)

not included in this equation. This will allow us a

fkeedom in choosing our ●ui coordinate systems.

(6.16)



so that eh
3

and Vh
3

are both independent of the coordinates. The:2

the formal wave impedance from equation 6.7 is the same as the physical

wave impedance because

(6.17)

Since E; and U’
3

are arbitrary, then any orthogonal curvilinear

coordinate system which satisfies equation_6,15 is acceptable. The h3

that results defines & and v by equationa 6.16. Not just any ortho-

gonal system,_however,satisfies equation 6.15. In Appendix B we show

that surfaces of constant
‘3

can only be planes or spheres (with res-

pect to an xjy,z cartesian coordinate system). Two exampIes of such

coordinate systems have alrea~y appeared in Section V (and Appendix A),

namely ca.rtesian coordinates and

examples sll three Ui surfaces

hi were made equal.

In the next section severs.1

6-sphere coordinates.

are planes or spheres,

examples of orthogonal

In those

since all thres

curvilinear

coordinate systems satisfying equation 6.15 are considered. These are

uSed to define types of inhomogeneouslenses which are then combined

with conical.and/or cylindricaltransmission lines. Some of these

lenses have rotational symetry, while the associated Ui coordinate

system is not a ~otational system. For convenience in’such cases we

then introduce an additional orthogonal curvilinear coordinate system

-vl,v~,v3which is both right handed and rotational. We define the “- ‘“

cylindrical cootiinates P,$,z with -a-
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where 4 = O is taken from
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(6.18)

tan($) = y/x (6.19)

the xz plane for x positive. To msh the

‘i
coordinate system a rotational system we define

‘2=+ (6.20)

In order to distinguishthe scale factors for the vi coordinate

system we write them as h ,h , and h where
‘1

and V my be
‘1 o ‘3 3

replacedby other symbols for a particular rotational coordinatesys-

tem. There are many well-known rotational.coordinatesystems for

which the h are tabulated (6).
‘i

To construct the Ui coordinatesystems we consider a trsasforma-

tion from the vi s~stem of the form

(6,21)

‘2
= A(vl) sin ($) (6.22)

and

(6.23)

with A(vl) assumed non-negative. There are several reasons for con-

sideringthis type of transformation. Surfaces of constant U3 are

sJ.sosurfaces of constant V3 which must then also be planes or

spheres. The functionalform &(v3) gives us some flexibilityin

choosing h3 which in turn defines z andv. The choice for
‘1

and u
2

will make hl = h2 . The functional.form A(vl) is used to
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.—
gain flexibilityin trying to make surfaces of constant

‘1
and sur-

faces of constant
‘2

orthogonal. As an illustrativeexample, let

v~Y4Yv2 be cylindrical coordinates p,$,z and let k(p) = p ,

g(z) = z_. ~en. U,,U9,U2 is just x,y,z . This correspondsto tht:
A.d

well-known case of a TIN wave propagating in the +Z direction on a

cylindricaltransmission line in a homogeneous medium.

Surfaces of constsnt VI, V2 and V3 are mutually o~hogonal

hypothesis. Then since neither” ul nor u2 are functionsof v

3

while
‘3

is a function of v
3

only, surfaces of constant
‘3

are

orthogonalboth to surfaces of constant ~ and to surfaces of con-

stant U2 . This leaves the question of the mutual orthogonalityof

surfaces of constant U1 and surfaces of constant u
2“ For ortho-

gonality of constant u, and constant Ua surfaces we need

or

Since the vi surfaces are c~rthogonalwe have

so that equation 6.25becomes

or

o

(6.2h)

(6.25)

(6.26)

(6.27’)
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Using the relations

4
%

= arc tan(-) ,
?

we find

A
2 1/2

= (<+U2)

*_ cm(+)
au2 A

and

dv,

For h
4

we have

[ 1
1/2

‘$ =
(%)2 + (*)2 = p

Substitutingthese results in equation 6.28 gives

dvl
h— .f

‘1 ‘A
or

- M= YL[dvJ=2-2pvJ
A P ‘$

(6.28)

(6029) .

(6.3o)

(6.31)

(6.32)

(6.33)

(6.34)

Now we have

. .



.—

h ——

~= ~

[

1/2

][
~ (*)2 + (3-)2 + (*)2 = * (*)2+

‘$ 1 s 1 ? 1
1/2

(*)2
1

(6.35)
L L

so that h /h is independent of @ . In
.V1 +

we find, from the requirement that surfaces

Appendix B (equationB.12)

of constant v~ be spheres

or planes, that h /h+ is independentof
‘1 ‘3 ‘

Hence h /h is
‘1 $

only a fun.ction..qfv
1“

Then equation 6.34 can be integratedto obl;ain

A ss only a“fhnction of vl . Thus, from an orthogonal system Vl,<j,v
3

equations 6.2I.

surfaces of ccn-

with surfaces of constant v:, spheres or plsnes only,
-1

through 6.23 define an orthogonal Ui system in which

Stant
‘3

are spheres or planes only.

Next consider the hi ad relate them to the . For h= we
.L

have

(6.36)

or

dv3
‘h

‘3 V3 ~ (6.37)

For hl we have

(6.38)

(using equation 6.26)

h: =
A A -1.

A

for h from
‘1

Substituting equation 6.33 simplifies this last result to

‘1 = (6.39)
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For h. we have similarly
-—

c

which, using equation 6.33,simplifiesto

Thus the form of the

(6.40)

‘1 =h (6.42)

u, givenby equations 6.21 through 6.23,with
L

X(vl) satisfyingequation 6.335 also satisfiesthe requirementof

equation 6.15 that hl = h2 , We then have an acceptable Ui system.

Note that the Ui system definedby equations 6.21through 6.23

and equation 6.33 is based on a rotational system, VL5$,V3, with

propagation in the AV3 directionwhere surfaces of constsmt V3 are

spheres or plsnes. This is not the only wey to define an acceptable

u. system. The last example in the next section will constructthe
1

ui system differently.
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VII, THREE-DIMENSIONALTEM LENSES

In this section we consider some examples of lenses for trans-

porting TEM waves of the form considered in Section VI. These

inhomogeneousTEM waves propagate on transmission lines with two or

more..ind.ependen.tperfectly conductingboundaries

f(u@J = o

described in the form

(7.1)

so that the bound~ies ‘areiridep”endentof
‘3 “

The simplest example

of this case is given by u15~121u3 equal to x,Y,2 respectivelywhich

correspondsto a_cylindricaltransmission line with a homogeneous

medium. We first consider the example of conical transmission lines as

a simple illustrationof the method developed in the last section. This

is followed by two inhomogeneouslenses based on bispherical and

toroidal coordinate systems. We also show how these can be used to .

transition TEM waves between conical and/or cylindricaltransmission

lines. The bispherical lens can be thought of as a converginglens

agd the toroid.~.lens..asa diverging lens. Finally we consider a lens,

based on cylindrical coordinates, which can be used to transition TEN!

waves between two different cylindrical transmission lines which have

their propagation axes pointing in two different directions.

A. Modified Spherical Coordinates

As a first example start with a rotationalorthogonal curvilinear

coordinate system V19+,V3

illustratedin Figure 1 and

X=r

coordinates O,$,r

(7.2)

..... .



.
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I
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Fig. 1. S@%mical Coordinates
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(703) ““

(7.4)

Note that surfaces of

.== ~=- ~
1

= r COS(8)

where z. is a constant we can choose later,
1.

constant
‘3=r

are spheres

the r direction. The scale

smd we are consideringpropagation in

factors are

h~ ‘_r , _h$ =rsin(~)=p , hr=l (7*5)

—

Next we construct the Ui system for which we need ~ (0) and

~(r) for equations 6.21 through 6.23. From equation 6.37 we have

‘3
= h“ ~’ = ~

r du
3 3

(7.6)

conveniencewe choose

choose later, giving

For e(r) =r+r , where
o r is a constantwe

o

Cqn

r+
‘3 =

r0’ ‘3=1 (797)

6.34asNow we find a A from integrating equation

,. . —

(7*8)

lr/2

This givesz >0 is a constant for later use.
o

where

!Ln(* ) = Ln[tan($)]
o

(7.9)

or

A = 220 tan(;) (7.10)

.- ..

., ..-
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so that
—

From equation 6.41.the associated scale factor is

~=~= rsin(~~ =* [1 + COS(8}I

220 tan(g)
o

(’7.11)

(7.12)

*Notethat O < h < co on the +Z axis (~ = O, r > O) so that the Ui

coordinatesystem is well behaved there, even though the ‘i system is

singular there. We csll this Ui system modified spherical coordinates.

The required constitutiveparameters are given by equations6.I.6

as

(7*13)

Thus for the present choice of u.1
coordinatesthe medium is homogene-

ous. For conveniencewe might choose c’,PI as C03Po msking S,W

also &o,uo so that the medium is ~ree space. The structure defined

by the perfect conductorssatis~ing equation 7.3.is called a conical

transmission line. The transformationsof equations 7.7 and 7.11,

giving the Ui, are the well-known transformation

waves on such a conical structure(7).The present

then a comparativelysimple one and the resulting

for finding the TIM

example for the Ui is

medium is homogene-

ous. However, this exsmple illustrateshow to constructthe u.1

systems. In addition the conical transmission line is used later in

conjunctionwtth inhomogeneouslenses.

—.



—.

B, Modified Bispherical Coordinates--

Fo_r_constructing.anexample of am inhomogeneoualens, start with

the rotational system ~l,$,v,l given as bispherical coordinates

~,’$,~ as illustratedin-Figure 2 and defined by (6)

.

.

%%%+*
(7.lL~)

a sin(~) sin($)
cosh(n) + COS(Y) (7.15)

(7.16)

a). Surfaces of constant
‘3=”1

‘1
= + intersect planes of constant

are

with O.__~$ ~ IT and --<q<

spheres; surfaces of constant

in circles The scale factors

a sin(~)
‘+ = cosh(q) +Cm= p ({.17)

(7.18)
—.- hn =h = P

$ cosh(~) Y Cm = sin($)

Next construct the Ui system. First we calculate A from

equation 6.34 as

(7.19)

which gives

A = a tan(g)0. (7.20)
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z=a

za=-.

I

Rotate $ from O to 2r

to give surfaces

\

Y

.—— —

xl-
/

/

/

/

/ 1’
2“/

of constant

.

\
x

Fig. 2. BisphericalCoordinates
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so that

‘2 = aotaa(~) sin(+)~= aotsn($) Cos(+) , (?.2:L)

equation 6.41 thewhere a. > 0 is a constant we can choose. From

associated scale factor is

(7.22)

the

—.

O<h<m for-a <z<aonthez~s so thatwhich has

is well behaved there.

equation 6.37 we have

u.
1

Now

system

From

d?I
TG-
3

‘3 = (7.23)

‘3
is related to the constitutive byparameters

E u 1
Y=T=--E u

‘3
(7.24)

E
o

conveniencelet c’ = s , ~t = p
o 0 ad also restrict z a

B. * This implies the restriction

.h ~1
3_ (7.25)

Next observe fOr O ~ ~ < IT and for fixed ~ that h
3

is a

tally increasing function of 1)● Then consider some maximum

monotoni-

$ of

interest and call it +o with O < +0 < IT. Then restrict the space

occupied by the inhomogeneousmedium to o+l/J<+ Then to0“ minimize

. .

—
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the magnitudes of s and B required,

gives

cosh(~) + COS(tjo)

‘3 = cosh(n) + COS(+)

and we choose

(7.26)

dn—= ~cosh(n) + co$($o)]
du
3

(7.27)

Note that there are many other forms that one could choose for ~ .d~

3
The present choice is for the sake of convenience and definiteness.

From equation 7.27 we then calculate
‘3

as (8)

n

~
dnl

‘3
=8

cosh(n’) + Cos($o)
o

.
= -*

arctan [tanh(~)tan(~)l
o

This last result can

n = O and by second

be verified by first observing

differentiatingthe result and

angle formulas for the trigonometric and hyperbolic

have all the Ui coordinateswhich for the present

modified bispherical coordinates.

(7.28)

that U3 = O for

using the half

functions. We now

geometrywe call

“Nowthat the ui coordinatesand hi scale factors are calcu-

lated, consider the combinationof this bispherical lens with a

cylindricaltransmissionline. On the plsme z = O , on which n = O

andu=O
3

, we have from equations 7.14, 7.15 and 7.21, sad defining

a S8,
o

(7.29)‘1 =x 9 ‘2 ‘Y
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modi~ing u ‘ad s be present only for u < 0
3

(correspondingto n < 0, z < o). Then for z > 0 let the medium be

free space-with constitutiveparameters &o$ll ● Next let there be two
o

or more perfect conductors fo:rminga transmissionline described in the

form

f(x,y) 3 f(u@@
z

Since on the dividing plane we have u = x.—. J.’

tors are continuousthrough this interface.

tors form a cylindricaltransmission line on

form (from equations6.9)

= o (7.30)
~o

‘2
= y, then the conduc-

For z A O these conduc.-

which a TEM mode has the

i= f(t - $) v@e(x,Y) , x = f(t - :) v@h(x,Y)

The potential functions solve v2Q(x,y) = o

boundary conditions from equations-7.30. Similarly for

‘3
~ O, there is a correspondingTEM mode of the form

i’= f(t - >) v’oe(u1,u2) , 3’

(7.31.)

appropriate

Zg O , making;

‘3) v’@h(u1,u2=f(t-~ ) (7.32)

we purposely use @e ~d @h for both z ~ () ad u ~ O beeause
3

they solve the ssme Laplace equation and boundary conditions on both

sides of z = O with UI,U2 on one side exchanged for x,y on the

other. Note that from equations 6.5 and 6.6 the componentsof ~ and

+
H are related by the wave impedance. Since we want both @e and Oh

the same on both sides of the boundary then we must have
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Zozpj=p/$=;

which we have already required. Now right at z = O

and Uq = x, U9 = y so that

(7.33)

we have h = 1

=ii

=0

(7.34)Z=o+

and the twoare cmtinuous across z

T134waves are exactly matched there. Then a TEM wave as in equations

7.32 in the inhomogeneouslens will propagate into free space in the

formoi’equations 7.31with no

An alternativeapproach

z = O interface is to define

reflection.

to matching the TEN

one u. coordinate
1

mode through the

system for both

positive

for z ~

a Ea.
o

and negative z . Forz~O let (%,ufi,u.) ~ (x,Y,z) while
-LGJ

O let ~su23~ be deffnedby equations 7.21 and 7.28 with

Then h is continuousat z = O while h3 has a step dis-

continuity

describing

coordinate

there, since for z > () we have h = h = 1 .
3

Note that

the combinationof the lens with free space by a single u.1

system automaticallyposes the restriction of equation 7.33

in that the ratio p/E must be the same at all positions of interest

in order to satis& equations6.16. In terms of this composite Ui

coordinatesystem the TEM wave is then describedby equations 7.32. This

type of lens-transmission-linecombinationis illustratedin Figure 3

in which the cylindricaltransmissionline for Z+o is taken as a

strip line. The lens is stopped a little before the singularityat

(X,y,z)= (0,0,-a)is reached.

. .
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Fig.--3. Bispherical.Lens with ~lindricaI
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Next introduce a second interfaceat__rl= no < 0 . Such a sur-

face is a sphere describedby (6)

X’+y’+(z a’- a coth(nol)2=
sinh’(rio)

(7.35)

This sphere is centered on the z axis at z = a coth(no) and has a

radius alsinh(no)l-l. A cross section of the lens in the zx plane is

illustratedin Figure 4 and a

line conductorsis illustrated

sphere n = no is assumed to

perspectiveview with the transmission

in Figure 5. me region inside the

be free space and in this

a conical transmissionline with conductorsmatching to

lens.

Recall the conical transmissionline discussed in

region we place

those in the

Section VIIA.

In order to center the apex of the conical line at the center of the

n no= sphere we choose 21 in equatian 7.4 as

‘1 E a coth(no) (7.36)

From equations 7.11 we have for the conical line

(7.37)‘1 = 220 tan(~) CoS(@) , u2 = 220 tan(~) sin($)

while from equations 7.21 and a. = a we have for the lens

5
= a tsn(~) cos(o) , u2 = a tan(~) sin($) (7.38)

We would like ~

nn.= Thus we
o

and u‘ to be continuousacross the surface

need on rl= Q
o’

a tan(f) = 2Z0 tan(~) (7.39)
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Fig. 5. BisphericalLens with Cylindricalmd Conical Transmission
Lines
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To do this consider p on T]= n For the conical line we have

0’

while for the lens we

-“a
m,? ‘in(Q) (7.l\o)

have

— .— —.
a sin($)

P—= cosh(~c})+cos($)

The 8. and $ coordinates--arethen related on this surface by

sin(e) = -
sin($) sinh(no) ~ ~

cosh(qo)+COS(~)

Then we have

where, after some manipulation,we obtsin

1 + cosh,(no)COS($) -
--m = —

cosh(rto)+ COS(4)

(7,1,2)

(7.b.3)

(7.44)

Substituting from equatiori7.44 into equation 7.43 and using the half’

angle_formul* for the trigonometric.an?

tan2(;) = tanh2(~-) tan2(~)

or

tin(;) = - tanh(g:) tan(:)

where the minus sign is used because ~
o

hyperbolic functions gives-.

(7.45)

(7.46)

<0. Therefore we define
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n

(7*47)

so that equations 7.46 and 7.39 are made equivalent. This makes
Y

and U
2

continuousacross the spherical surface n = n .
0

In order to

tion 7.7 that on

make
‘3

continuous at ~ = il we note from equa-
0

n n.= we have
u

‘3=-— Sima(no) + ‘o

while from equation 7.28we have

2a
‘3 =

arctan{tsnh(~) tan(~)l
sin(jJo)

Equating these results gives

(7.48)

‘ (7.49)

r
o 1
a— = Shlh(no)

as our definitionof

With U1 and

2
‘- arctan[tanh(+) tan(~)l

r.
o

‘2
continuous across q = no , a surface of

(7.50)

constant u= , h is automaticallycontinuousthere. However,h= has
J

a step discontinuityat this surface. Then

atn=v as before at rI
o

= O, namely the

surface without reflectionand is described

2

we have the same conditions

TEM wave passes through this

by equations7.32. In sum-

mary, inside the n = no sphere the Ui are given by

and 7.11 and the constitutiveparameters are just co

the lens boundedby n = no , n = O and $ = $0 , the

equations 7.?

and U. . In

u. are given
1

by equations 7.28 and 7.38, and the consti.tutiveparameters are given

,.
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by equations 7.24 and 7.26 with *= Eo, P’ = P. . For z ~ O

and the cons~itutiveparameters are

conductors in ~1 three regions have

u~3u2su3 are X,Y,Z

exactly.ThetransmJssi.on_line

the same descriptionas functions of UI and U2 only as in equation

7.1.

From equations 7.24 and 7.26 the constitutiveparameters for the

lens are given by

(7.51)z cosh(n) + COs(+)—= L=L=_
E
o !JO ‘3

cosh(n) + COS($O)

For convenience one might prefer to have this relation expressed in

of p and z . To do this we form complex variables from equa-terms

tions 7.16 and7.17 as

p+iz
a

(7.52)sin($) + i sinh(n) = ~m(V + in,
COS(Y) + cosh(n) 2

.
so that

y
.

arctan(~z)

2
+ *Ln[

p2+ (z+a)
2J

(7.53)

p2+ (z-a)

is

lm+& 2aP
-2

.2 arctan[
2-,2- 22]

where k

imaginary

we have

integer or zero (9)4 Separately equating real and

functions of P and z . Then,parts gives + and n as

cosh(n) = (7.54)

and
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Cc)s($)= *[1+ tsr?($)]-~/* =
EL2-P2-Z2

(7*55)
[(a2-fJ2-

2 2 1/2
22)2+ 4a P ]

These can be substitutedin equation 7.51 to find e and u as func-

tions of P and z for a given value of $0 . Note from equation 7.51

that since O ~ 4 ~ $0 < T the maximum c and B for any fixed rl

occurat $=0. Since Cos(!o) < 1 then varying n for $ = O we

see that the meximum s and u occur at the minimum of cosh(q) .

Assuming n = O is in the region of interest, the minimum occurs there

and we have

& !J 2 1=—
T u = 1 + COS(IJO) = co#($Jq

o max o max
2

(7.56)

The minimum c and u are, by previous choice> c and P which
o 0

occur on 4 = $0, the maximum 4 for the region of interest.

Referring to Figures 3 through 5 one can better appreciatethe

approximationinvolved in placing a boundary on the lens at $ = $ .
0

In these figureswe have used a strip line to illustrate a typical

cylindricaltransmissionline. For such a transmissionline the fields

for the TIM mode extend over the entire cross-sectionsurface, a plane

of constant z, or more generally a surface of constant
‘3 “

However,

these fields fall off in amplitudewith distsmce from the conductors,

for large distances. Thus we require that YO be chosen large enough

that the fields in the T~ mode for 4 ~ to are insignificantcompared

to the fields near the conductors. For certain types of cylindrical

transmissionlines, such as cosxial lines, the fields are zero outside
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closed outer perfectly
- —.

conductingboundary. For such cases thesome

lens material is not needed outside the outer conductingboundary and

stopping the lens at some external ~ ~ ~ creates no disturbance
o

in

the fields.

This lens, based on a bispherical coordinate system, can be

classified as a converging lens. Referring to Figure 5, a spherical

TEM wave launched near the apex of the conical transmissionline is

converted into a plane TEM wave on the cylindricaltransmission line.

c, Modified Toroidal Coordinates

For an exsmple of an inhomogeneousdiverging lens define the

rotational system vl,$,v
3

as toroidal coordinates v,$,.q as

illustratedin Figure 6 and definedby (6)

. a sinh(v) cos(+~ (7

(7

57)x

Y

z

cosh(v) + COS(~)

‘1

58)= a sinh(v) sin(~

cosh(v) + COS(g)

(7.59)a sin(c) _~

cosh(v) + Cos(g)

of constant v. = CV<cn

nstmt

with -1’r<q

are spheres;

–factors are

L

~na,nd

surfaces

o

of

Surfaces

toroids. The scaleco = v are

(7.60)a sinh(v)_=
Ll,= u,.
‘$ Cogh(v)+ Cos(<)

.- .- ,
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Rotate $ from O to 2n

to give surfaces of consts.nt
z
A

——— .——

Fig. 6,. Toroidal Coordinates
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P
hv= h<= (7.61.)

~sh(v)a+ cOs(~) = sinh(u)

To constructthe u. system first calculate A from equation
1

6.34as

(7.62)
J

wEL
o

which gives

!2n[ta6h(~)] (7.63)

-- or

a. tanh(;) (7.64)

SO that

9 ‘2 = aotanh($) sin(+) (7.65)

h from

‘1 = aotanh(~) Cos(f$)

which is chosenwhere a > 0
0

is a constant

equation 6.41 as

later.

h+

From

\

cosh(v) + 1
cosh(v) + COS(C)

(7.66)~ sinh(v)
—’-)1+ Cos(c) ‘;

aa- ta(,:)

equation 6.37we have

dJ_ a ~
du3 = cosh(v) + COS(~) du3 (7.67)

As before we set G’ = s., p’ = y. and restrict s A c. , o11o
u u v

which together require 61.
‘3

Observe that for v ~ O
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fixed c with -T < t < T , h3 is a monotonically decreasing function

Ofv. Thus for fixed C,h3 is a maximum for v = O , the z axis.

Then to minimize the required ~ and p set h3 = 1 on v = O .

This gives

‘3 =

and we choose

1 + COS(L)
cosh(V) + Cos(<) (7.68)

s+= +[1 + Cos(c)] (7.69)

Again * could have many other forms. Then U3 is calculatedas
3

?-

(7.70)

We now have all the Ui coordinatesand call them modified toroidal

coordinates.

Having the Ui and hi fQr this toroidal.lens we now join

cylindricaland conical transmissionlines to the lens. One boundary

surface for the lens is taken as the plane z = O on which C = O ,

‘3=0”
Combining equations 7.57, 7.58, and 7.65 and defining

a = a gives for z = O ,
0

‘1 =x ? ‘2 ‘Y (7.71)

Let the lens material be present only for U3 > 0 (correspondingto

C’o, z>o). Let the medium for z c O be free space with consti-

tutive parameters CO,PO and let ul,u2,u3 for z ~ O be simply

X,Y,Z. The transmission line conductorsare constrainedby equation



7.1 fOr all U3 considered. -‘-Thus, for z ~ O we have a cylindrical

transmission line, while in the lens the conductors are curved to

satis.~_equations7,1 and 7.65with a. = a , Note that there is a

singularityin the ui at p = a, z = () corresponding to v =%,

Thus for the toroidal coordinateswe confine

fying O~v+V <+~, We Let V=v
o ~ be

.- —— —
material.

our interest to v sati:s-

a boundsry for the lens

The Ui, h, and the transmission line conductors are continuous

through the plane z = O, We have a TEM wave, as before, of the form

3’ =f(t - 2) v’oe(yu2)
c’

if’ ‘% v’4h(ul,u2=f(t--# ) (7.72)

Since h is continuousthrou@ z = O , tangential ~ and ~ are .

continuousthrough z = O as required. Note, however, that h3= h = 1

for z < 0 and that h~ has a step discontinuityat z = O .

Introduce another lens surface at z = co with O < g < ~ .
0

This surface is a sphere described by

x’ 2+y2 + (z + a cot(go))2 =—
sin’(go)

(7.73)

This sphere is centered on the z axis at z = -a cot(co) and has a

radius aIsin(Co)l-l i Figure 7 illustrates a lens cross section in

the_zx plane and Figure 8 gives a perspective tiew with the transmis-

sion line conductors. The region outside the sphere described above is

assumed to be free space and contains a conical transmission line with

.—



-52-

x

‘1 = Const.

C=o

Rig. 7* Toroidal Lens

0
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.
conductorsmatched to those in the lens.

Now we match the u. coordinatesat C = c using the modified1 0

spherical.coordinatesof Section VITA to describe the continuationof

the Ui coordinatespast C = ;0 . Center the apex of the conical

line at the center of’the sphere correspondingto c = Go by choosing

21 in equation 7.4 as

‘1
E -a Cot(;o)

For the conical line we have, from equations 7,11

(7.74)

%
= 220 tan(;) Cos($) ,

‘2 = 2Z0 tan(~) sin($) (7*75)

and for the lens

%.,= a t~(~j COS(0) , U2 = a ts.nh(~)sin($) (7.76)

Thus on L = Co we need

a tanh{~) = 2Z0 tan(;) (7.77)

Then considering p on c = go we have for the conical line

P =

and for the lens

P =

&
— sin(0)
sin(La)

a sinh(v)
cash(v) + Cos(q

0)

(7.78)

(7.79)

The Q and v “coordinatesare then related on this surfaceby

sinh(v) sin(~o)
sin(~) =

Cosh(v) + Cos(co) (7.80)
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—.. .
This has the same form as equation 7.42 if we replace no by v and

t) by -c. . Then from equation 7.46we have the result

tar+) = tanh(f) tan(~) (7.81)

(7.82)

we define for this caseTherefore

making equatio-ns7,81fid 7.7’Tequivalent. Then U1 and U
2 are con-

tinuous across the spherical surface < = CO ,

From equation 7.7 we have, on C = LO 9

“*-”’ ‘o (7.83)‘3 =

“ while
.

from equation 7.70we have

‘3-‘“=
“at-an(>) (7.84)

These results give, as a definition of r. for this case,

Cot(co) (7.85)

NOW .5 and U2 are continuous across C = ~ so that h iso

also continuousthere. However, hs has a step discontinuitythere.

Then the TEM wave describedby equations 7.7’2passes through this surface

without reflection~_In sugm~, for z ~ O we have
‘1’U2’U3 ‘qual

to X,y,z and the constitutiveparameters are E and llo● In theo

lens,boundedby G=O, ~=~o,~d V=v
o
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equations 7,70 and 7.76;the constitutive ~a”rsmetersare given by equa-

C
tions 7.24 and 7.68with E’ = c V’ = B. . For U3 A s,tani~) the0’

u. are
1

E ylJ ●00

for all

given by equations 7.7 and 7.11with constitutiveparameters

The transmissionline conductorsare describedby equation “/.1

values of ua of interest.
-1

The constittrtiveparameters for the lens are given by

E 111—= — = —= cosh(v) + cos(~)
E
o MO ‘3

1+ Cos(c) (7.86)

To express thisresult in terms of P and z s as in Section VTIB, we

form a complex variable

(7.87)

so that, just as in equations 7.52 and 7.53

,g+iv=
2 arctan(~)

.&+l 2 az 22+(9+2)2
1I+*4Z2+ (p-z)22

~ arctaa[
a2- 22-,2

(7.88)

with k an integer or zero. From this we obtain

(7-89)

and

22
=*[lwLn%@’2 =

~2
Cos(c)

a-z-
(7.90)

[(a2- ~2- 2 2 1/2
02)2+ ka z ]

●
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‘2=o=
(X2 +y2)l/2 –

(7.93)

with O 4p<m, ()4$ < 2iT where p_ > 0 is a constant and $ = O

correspondsto

v. coordinate
L

Starlt u
3

are

u

y=o, x>o, Note that the intermediaterotational

system is not used for this example. Surfaces of con-

planes. The scale factors are

‘2

satisfying equation

are egual we have an

6.15. The resulting

acceptable coordinate

lens and transmission

(7.95)

(7996)

system

lines

the u+ modified cylindricalare illustratedin Figure 9. We call

coordinates.

The constitutiveparameters are

EI=C
o YU’=?J as

o

E u 1 ‘o—=— =—=—
c0 u‘o ‘3 Q

&

given from equations6,16with

(7*97)

Consider P = P. one surface of the lens and constrain o ~ Po for

P = pl with O

with Z2 > 0 .

Fix other lens surfaces as

P then occur for P = Pl giting

P.
— (7’.98)
‘1

.
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Fig. 9. CylindricalLens with Cylindrical TransmissionLines
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Including the cylindrical trammissl%n lines in the Ui coordi-

nate system, we define, for ~ 0%
‘3

u u,uas
1’23

Z,x,y . For

O ~ U3 ~ Po$o the Ui are ciefined-oyequations 7.92 through 7.94. For

%* P.$_ the u. are defined (frmn a rotation in the xy plane) by
.2 Uu 4.

‘1 Zz ,U
2

=x

‘3

COS($J + y sin(+o),

= -x sin(+o)+y COS(40)+PO00 (7*99)

With these definitionsthe Ui are all continuous across the surfaces

$ = O sad @ = $0 . For U3 outside the lens we have h = h3 = 1 so

that h is continuous across these latter two lens surfaceswhile h3

has step discontinuitiesthere. The transmission line conductorsare

describedby equation 7.1 for all U3 of interest. The TEM wave in all

three regions of U3 is describedby equations6,9. Note that if
.

$0 > IT then one Or both cylindricaltransmissionlines may need to be

cut short to prevent their intersectingeach other.

Referring to Figure 9 we require for this cylindricallens that

the fields in the TEM mode for P ~ PI , for P ~ P. , and for Izl ~z2

(separately)be negligiblecomparedto the fields near the transmission

line conductors. This lens is neither a convergingnor a diverginglens

but might be better termed a prism or a redirectinglens.
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VIII, TWO-DIMEN31ONAL T~ WAVES

Now consider a restricted form of the u coordinatesby defining
i

which

while

formal

ponent

implies

1
.?3 ==.=..... (8.2)

~ and U2 are taken independentof z . Also let either the

electric field or formal magnetic field have only a Ua com-
2

component.and let the .reqaining.f~wal field have .onlya UO

Let the formal

wave propagate

field componentsbe only functions

in the +Ul direction. In terms of

and let the

and thethe Ui

formal field componentsthis represents a uniform

Again we assume, for the constitutiveparameters, that

(Eij) = mid) , (!lij) = lmij) (8.3)

with the conductivityzero. Thus the medium is isotropicbut, in

general, inhomogeneous . The formal constitutive parameters are assume(i

o
\

to have the forms

/ ‘i 0 0 \
(8.4)

We also have

(S;j)= E(Y. )
lj , (B;j) = P(Yij)



(8.6) -
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where,becauseof equation8.2, ——

[)

h2/hl O 0

(Yij) = O hl/h2 O

0 0 hlh2

Note in equations 8.4 that the diagonal componentsof (c;J) and (v}J)

may be all unequal, However, since the formal electric and magnetic

fields are each assumed to have only one component,then only one of

the c; and one of the u; will be significant. These significant

c! sad B’i will be assumed independentof the coordinatesso that
1

in terms of the u. coordinatesand
3.

tively homogeneous.

We have two cases to consider.

field parallel to the z axis Case 1;

field parallel to the z axis Case 2.

For Case 1 we assume a wave of

formal.fields the medium is effec-

Call the case with the electric

call the case with the magnetic

the form

(8.8)

where Et
3 ad %..

are independentof the coordinates. Then for
o

Case 1 we asswne that Vi > 0 and c~ > 0 are independentof the Ui .

Then from equations 8.4through8.6we hs,ve
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.:;- .– . .. . ‘-- ~.= ‘2E-=— Y
––.-hlh2 -- -

“b q (8.9)

Note for Case 1 that since .~ _is parallel to the z axis, perfectly

conductingplsmar sheets can be placed perpendicularto the z axis and

used as boundaries for this TEM wave.

For Case 2 we assume a waveof_the fo~

z’=: ‘12E~ f(t -~) ,
0

with

3 +-
=

‘3
u

‘-’1‘ v’
E; = ~ H’
o ‘2 30

Y

where E: and H: are independent of the u< , For
‘o ‘o

then assume that p’ >
““3

also have

Y

For Case 2 since ~ is perpendicular

u

J.

are independent

.

P
‘i

‘~

this case

(8.10)

(8.11)

we

of the Ui . We

(8.12)

to surfaces of constant
‘2 ‘

perfectly conducting sheets can be placed along these generally curved

surfaces and used as “Boundariesfor this TEM wave.

There are many possible ways to choose Ul(x,y) and U2(X,y) and

form an orthogonal curvilinear coordinate system. Then calculating h,
L

and h
2

one can find s and P from equations 8.9 or 8.12. For the

exmples in the next section w~ consider coordinateSystems with

(8.13)
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Define the complex variables
— ..

(8.14)

Then we have for the line element

tdp12= (ti)2 + (dy)2 =hf(d~)2 +h;(du2)2

= h2[(d~)2 + (du2)2]= h21dq12 (8015)

Thus if we are given a conformaltransformationof the form q(p) or

its inverse, we can calculate an h as

(8.16)

Then from q(p) we can also obtain ul and U2 ,

With the restrictionof equation 8.13, look again at Case 1.

Equations 8.9 become

so that p is homogeneous for Case 1. Similarly for Case 2, equations

8.12become

so that c is homogeneous for Case 2.

For conveniencewe choose c> = so , p; = P. for Case 1, and

‘6 = ‘o ‘ ~i ‘Uo ‘or Cwe 2’ Then for each case one of the consti-

tutive parameters is the same as for free space. Requiring E ~ E. ,
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—.

!lbo , then for both cases we require h k 1 . In the next section

we choose exsmples of two-dimensionallenses which might be appropriate

for launching TEM waves between wide perfectly conductingparallel

sheets. After defining the conforms.1transformation,giving
‘1 ‘d

‘2‘
regions with h > 1 are excluded from consideration.

—.

..
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IX. TWO-DIMENSIONALTIM LENSES

As a first exsmple of a coordinate system for a two-dimensional

lens consider the coriformaltrans formation defined by

This is illustratedin Figure 10. This transformationalso describes

the potential distribution around a uniformly charged wire grid (in a

homogeneousmedium) terminating a uniform electric field for x >> 0 .

From equations 9.1 we have, for ~ snd U2

21TX ~

~ln[e a - 2e a cOS(~) + 11
‘1 = 2T

Jr&

[

e asin(:)
~ arctan‘2=Tr 1

+akvx/a
e cos(~ ) - 1

(9.2)

(9.3)

where k = 0,53 . Note that a is just a parameter which can be used

to scale the dimensions,

The scale factor h given by equation 8.16 is

h= 11+ e-W/al-l= ll-e-v/al

In terms of x and y this is

h’ /= 1 - 2e-Tx a cos(~) + e-2rx/a

(9.4)

(9.5)

Since only regions with h ~ 1 are of interest we find the contour for

h = 1 given by

--=
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whicc is indicated in Figure 10. In terms of

factor has the form

1 -“’5/’ ,o~~‘2

F=’”e
--) +

Concentratingour attention on the region near

(9.6)

‘1 and U‘ the scale

-27ru1/a
e (9.7)

the positivex axis, ve

see from this last equation that if we restrict lu2/al ~1/2 , then

this will assure having h ~ 1 . For Case 2 (magneticfield parallel to

the z axis) one might place perfectly conductingboundaries on surfaces

of constant u2 within this restriction. From equations8.17or 8.I.8

the maximum c or B , as appropriate,is related to the maximum of

h-’ in the region of interest.

‘1
of interest. Note that the

on
‘2

=0 for which y=O.

-2
maximum of h occurs at

%0

2
~

~[ 1

-mlO/a

h2
=l+e

a

Consider some 5=
-2maximum of h for

Then varying ~ we

so that

Also note that as x+ co we have

h+l, %+x, u2+y

One of the constitutiveparameters of the lens is the

’10 as the minimum

fixed ul occurs

find that the

(9.8)

(9.9)

sameas free space;

the other tends to the Yree-space value as x + cu , Then for suffi-

ciently large x the hns material can be stopped without significantly



distorting the TEM wave.

defined

~
a

This is

As a second example,

‘oy
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—–

consider the conformal transformation

nq/2a
~rcsinh[e 1 (9.10)

illustrated in Figure 11. This transformationalso describes

the potential distributionaround a uniformly charged wire grid (in a

homogeneous mediun) terminating uniform, equal but opposite, electric

fields for x >? O and x << 0 . .Ob+aining ‘1
and U2 from ea.ua-

tions “9.1O,we have

. “~
* a) ‘a($~)l + 2*arctm[coth(z 3 (9.,12)

‘2 ‘rr
.

where k = -O,*1 .

The scale factor h is given by

In terms of x and y this is

l-2e
-nxla ~os(nY~) + e-2”x’a

o

h’ =

l+2e
-nx/a cos (Qj) + e-2”x’a

The contour for h = 1 is

1

(9.13)

(9.14)

(9.15)



\
h=l.—— — ———

.

I

1

.5

‘2 *—=
a

-. 5

-1

L.5

1’
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-—.

in Figure 11. In terms

s

and U_ we haveof.which indicated u,
-L 2

(9.16)
,

+e -L

u

Consideringthe region near the positive x axis, note that by restrict-

ing lu2/al~ 1/2 this will assure having h g 1 . For this second

example consider ~ as the minimum u. of interest and note that the
4.
0

h occurs on ‘2=0

1 -ml _/a

.L

(for which y = O) snd atminimum =U
‘1 10‘ _—=..—

that

1

(9.17)-0..~m==l+e

8.17 or 8.18.The maximum E or II can then be found from equations
.. —.—

Also as x + = we-have

..

- ~Ln(2)h+l”, .%+x (9.18)

stoppedat suf-

9 ‘2+Y

lens material can be

—.

Then, as in the first exmple, the

ficiently large x without significantlydistorting the TEN wave.

Figure 12 illustratesthe present types of two-dimensionallenses

together with appropriateparallel-platetransmission lines for both

cases of field polarization discussed in Section VIII. Note that the

conductors and the inhomogeneousmedium are stopped before reaching the

singularityon the z axis; sources to launch the TEM wave might be placed

here. The perfectly conducting sheets and the inhomogeneousmedium are

This distorts the TEM wave,also stopped _onsurfaces of constant .U2 .

particularlynear the edges of the sheets. However, the sheets are
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—.

assumed to be much wider than the sheet separationto minimize the

influence of this distortion.

.-

—

.-

.,

. ..

.. .. >>.

.
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X. CONCLLK51Q$

In summary there appear to be many ways of speci~ing inhomogen-

eoua media such that simple electromagneticwaves, such as the T324waves

used here> can propagate in the medium. These types of inhomogerieous

media can be used to define lenses for transitioning TTM waves , without

reflectionor distortion,between conical and/or cylindricaltransm.i.s-

sion lines. Of course, there are practical.limitations in the

realizationof such lenses. For example, in some cases the lens should

ideally be infinite in extent; limiting the extent of the lens can

introduceperturbationsinto the desired pure TIM wave, and care will

have to be taken to insure that these perturbations are small. Another

limitation lies in the characteristics of practical materials used to

realize the desiredpermittivity and permeability of the inhomogeneous

medium. The available rsnge of these parameters will be limited and

their frequency dependence imperfect. Of course, perfect characteristics

are not really necessary. Elsewherewe have proposed a lens based on

geometricaloptics for transitioningTEM waves between conical and

cylindricaltransmissionlines (10). The lenses discussed in the

present report, however, have the advantagethat, within the limitations.

mentioned above, the TEM wave passes through the lens undistorted,

bssed on a solution of Nsxwellts equations.

In this report we only consider isotropic inhoxnogeneousmedia for

the lenses, Within this area we consider a few examples each of three-

di.mensionaland two-dimensional lenses. To extend the present work

one might consider several other such examples in order to have
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geometrie_sm-d inhomogeneities. For a wider

extension one might allow the medium to be anisotropic as well as

inhomogeneous. This would remove some of the restrictionson the coor-

dinate systems which could be used. However, such an anisotropic

itiogmgerieous-mediummight be more diffictit to re~ize. =

*

--

. . ..- ..
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APPENDIX A: CHARACTERISTICSOF COORDINATE SYSTEMS FOR FIELD

COMPONENTS IN ALL THREE COORDINATEDIREC!TTONS

In Section V, when consideringthe case of formal field com-

ponents in all three coordinatedirections,we require that (E~j) and

(B;j) reduce to constant scalars times the identity matrix. Combiaing

this with the earlier requirementthat (sij) and (uij) reducetO

scalarstimesthe identitymatrixleadsto the result of equation 5.6,

namely

h ~hl=h2=h3 (Al)
.

This yery restrictiveform of the hi leads to the natural question of

what forms of h(x,y,z) or h(~,u2,u3) are possible.

Nowthe Ui form an orthogonal curvilinearcoordinatesystemby

hypothesis. It is then necessary and sufficientthat the hi satisfy

the

and

Lam6 equations,nemely
.

a%. 1 a%ahi o1 Y?!L____—- .
auj a;

=
hj a% auj ‘k auj a%

(A.2)

(A.3)

where i,j,k is a permutation of 1,2,3 yielding six independentequa-

tions (11)0 Substitutingfrom equation A.1 gives

\

a% 2 ah ah = ~—- .——

auja% h auj a%
(A.4)
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and -—

(A.5)

—,

Intreduce a change of variable defi”nedby

~ -&v
h

where ‘iy points with v = O,= are

(A.6)

excluded from our consideration.

Equations A.k and A.5 then become, respectively

i%=
auja%

o (A.7)

and

(*)2 +~ (%2 = o
V2 a% (A.8)

J

Rewrite equation A.8

(A.9)

Since this holds for i=l,2,3 we

,=. . —.-—
32V”

aU2

-. =...

. “&
au~

.=

for

-.

(A.1O)

J.

Also, from equation A.7 we have, i+j

(All)a2V
auiau

J
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Now

But then

we have a

from equationAll ~T/~Ui & at most a function of ui .

a2~/au~ is at most a function of u. .
1

.funCticnof Ui equal to a function of

From equationA.1O

‘J
and thus both

are a real constant, say cl,

Integrating we obtain

av
q = Clui +

where di is a real constant,

‘i *
Integratingagain gives

2
c,u:

i.e.

a2v

au;

di

since a~/aui is at

v= ~+ d.u. + ei(u ,
2 11 j %)

where, as indicated, e. is at most a function of
1

i,j,k distinct. Summing over i (from 1 to 3) on

tion A.9 gives

(A.12)

(A.13)

most a functionof

(A.lk)

‘J and \ for

both sides of equa-

(A.15)

Substitutingin this last equation from equationsA.12 and A.13 gives

2clv=”~ (cluk+dL)2
&=l

(A.16)

We now consider two cases.
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equation A.16
-—.

first case assume that c, = O.For the

we have

-L

(A.17)0=

which implies for i=l,2,3,

(A.18)d,=O
4.

-v=
ei(”j ‘Q

A.1~ becomesThus equation

(A.19)

This implies that vof Ui for i=l,2,3.so that v is independent

as well, i.e.is a h

‘l-
h=-=c;v

(A.20)

-

a

where ‘2
+ O is aresl constant. Then for this first case the Ui

are just a cartesian coordinate system. This is the trivial case of

the coor-homogeneousmedium in which z and u are independentof

dinates.

o s’ Then-from
,. - —-

For the second~as-e’”~sume-that“cl # equation

A.16 we have

(A.21.)

Note that c1 > 0 since v > 0 ! Defining new real constants a and

b~ ~ the general form for h is

. . . —
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where a#O since Cl #o. Now by a simple

coordinateswe make b = O giving the simple
!2

~2
h= ~ z z

‘1+ U2+U3

(A.22)

linear shift of the UL

symmetricalresult

(A.23)

From equation 2.5 we can write the line elqnent as

(&)2 = (dx)2+ (dy)2+ (dz)2 = h2[(dul)2+ (du2)2+ (du3)2]

(A.24)

Rewrite this as

(du1)2 + (du2)2 + (du3)2 = ~ [(dx)2+ (dy)2-I-(dz)2]

so

as

n
(A.25)

momentarily regardingthe Ui as cartesisa coordinates, X,y,z

the orthogonal curvilinearcoordinates,and I/h as the scale fac-

tor, we can repeat the foregoing derivation froIuthe Iam< equations

by interchangingthe quantities in equation A.22, obtain the result

where a1 md b’ are real constants and al # O . Make a linear
t

shift in the x,y,z coordinatesso that b? = O giving~

h=&
*’2

[X2+ y2+ ’22] (A.27)

and,
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- —.

sphere

in one

This t~e of h in equations A.23 and A.27 corresponds

coordinates or the inversion of cartesi=

of its fow

x

-.

Y

z

by (6)

=.

=-

=-

2
a u,L

222
‘1+ U2+U3

2
au 2

g+u; +u;

2
au

3
222
‘1+ U2+U3

coordinates,

to 6-

given

(A.28)

(A,29)

(A.30)

We have included minus signs in these equations to make the Ui coor-

dinate system right handed. The scaling constant a2 is required for

these equations to be consistentwith

have .

a2 = a’2

equations A.23 and2.h. We also

(A.31)

which comes from equating the right sides of equationsA.23 and A.27 and

using equations A.28 through A.30 to relate X,y,Z and ~,”2,u3 -

Thus for this special h ‘givenby equationA.1 there are

types of solutions. The

of coordinate.systems.

u.
1

form either cartesian or 6-sphere

two

type
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APPEltDIXB: CHARACTERISTICSOF COORDINATE SYSTEMS FOR FIELD

COMPONENTS IN TWO COORDINATEDIRECTIONS

In Section VI we consider the case of formal field componentsin

only the ~ and U2 coordinate directions. Imposing appropriate

requirements on the constitutive parameters and on the formal consti-

tutive parameters (equations6.1o and 6.1,

restit of e%uation 6.25, nsmely

h sh1=h2

In this appendix we consider a restriction

orthogonalcurvilinearcoordinatesystems.

Eisen.hart(12) defines

(whichwe take as definedby

ferentis.1fomn

the

ally

respectively)leads to the

(B.1)

which this imposes on the

second fundamental

particular Ua) a5

.
@ = D3(d@2 + %d’%du2 + %@u2)2

form of a surface

which for sm orthogonal curvilinearsystem reduces to

the quadratic dif-

Q = D3(dul)2 + D;(du2)2

with

hl ahl h2 ah2

‘3 = -iipq ‘
——

‘; ‘-h33u
3

(B.2)

.

(B.3)

(B.4)

The first fundamentalform of a U3 surface is just the line element

given by

(ds)2 = h:(d~)2 + h;(du2)2 (B95)

..

.-
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However, substituting h ~ hl = h2‘into equat-ionsB.4 gives

The first

i.e.

We

in

and

then apply

proportion

this case) is

second fundamentalcoefficientsare

(B.6)

then_in proportion,

(B.7)

a result of Eisenhart (12) that these coefficientsare

if and only if the surface (given by constant
‘3 ‘n

—
a plane or a sphere. Thus for this-restrictionon the

coordinate system, given by equation B.1, surfaces of constant
‘3 cm

only be planes or spheres (with respect to an X,Y,Z cartesian coordi-

nate system).

@_so in:,Secti,onV-Ismother orthogonal curvilinearcoordinate.L-..

system with coordinates ~194,v3

tional with

from equations 6.18thro~h 6.20

scale factors for the vi system

is introduced. This system is rota-

(X2 +y2)l/2
(B.8)

and eauation 6.32. Note that the

are designatedby hv . Because of
i

equation 6.23 relating U3 and zv , surfaces of constantv
3
are also

planes or spheres. Since surfaces of constant ‘3
are planes or spheres,

we again invoke the result of Eisenhart that the first and second

fundamentalcoefficients for a v
___ x

surface must be in proportion,



which we express as

where
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—-

Combining equations B.9 and.B.1O gives

3V3L = aV3

But this implies

av -
3

-W3 - 8V3

or, in other word=. , hv /h
,4

is independent

used in constructingtie Ui from the vi

Ofv.
3

.

,
.—

(B.11)

(B.12)

This result is

.-
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