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Abstract
A technique is developed for the design of lenses for transitioning
TEM waves between conical and/or cylindrical t;ansmission lines, ideally
with no reflection or distortion of the waves. These -lenses utilize
isotropic but inhomogeneous media and are based on a solution of Maxwell's
equations instead of just geometrical optics. The technique employs the
expression of the constitutive parameters, € and u , plﬁs Méxwell's
equations, in a general orthogonal curvilinear coordinate system in
tensor form, giving what we term as formal quantities. Solving the
problem for certain types of formal constitutive parameters, these are

transformed to give € and ¥ as functions of position. Several examples

of such lenses are considered in detail.
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I. INTRGRPUCTION

One of the techniques used in the solution of electromagnetic

’EoundafyA§ai§éiﬁrdbié;§EEZﬂgiétsWin>wfiting Maﬁwéil's equations in

orthogonal curvilinear coordinates and then solving, not for the
physical components of the fields, but for quantities which combine the
physical components with scale factors of the coordinate transformation.
These new quantities are components of tensors and tensor densities
réfeffedugowthek5££hbgon;l curviliﬁéér coordiﬁate systeﬁ. Similarly
thé éé;$§§tu£ivé éégéﬁétgfé;éértﬁe mediuéiar; combined with the scalerj
factors in the resulting equations. In msking such & transformation

one hopes to simplify the equations and/or boundary conditions in some

vay.

- One type ofrproblemian which this fééhniqueihas been used
relates to waveguides (1,2). In this case one takes a waveguide filled |
with a homogeneous isotropic medium, and transforms to an orthogonal |
curvilinear coordinate system in which the boundary walls are more
conveniently expressed. The resulting transformed constitutive
paramefers, however, are in general inhomogeneous and anisotropic.

Thus while the boundaries have been simplified, the medium has become
more complicated. )

In this report we consider an extension of this'technique.'We
assume that the formal constitutive parameters, as expressed in some
orthogonal curvilinear coordinate system, are of a particularly\simple

form, i.e., homogeneous, at least as they relate to the allowed field

components., Furthermore, we assume that the constitutive parameters,
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before being transformed to the curvilinear-system, are those of an

inhomogeneous but isotropic medium. From this we find many cases of
isotropic inhomogeneous medisg for which certain types of electromag-
netic wave propagation canfbe simply expressed.

In this approach the medium is made irhomogeneous and perfectly
conducting boundaries are geometrically arranged such that when they
are transformed into the appropriate orthogonal curvilinear coordinates
2 simpler problem results which cen be solved by more standard tech-
nigues. The present approach can then be used to define geometries for
perfectly conducting boundaries and distribution funetions for inhomo-
geneous media such that devices built to such designs will transport
electromagnetic waves in certain desirasble ways. In particular, we
consider cases which in the curvilinear coordinate system corresponds
to a problem of a TEM plane wave on & cylindrical transmission line.

In the reference cartesian (x,y,z) coordinates the waves are still
TEM, but not necessarily ﬁlane. For the examples considered the
particular conductor geometries and medie inhomogeneities can be used
to transition waves betveén two transmission lines, each of which is a
conical or cylindricel trénsmission line. Furthermore, the transition
is accomplished with neither reflection nor distortion of the wave.
Another application of such examples is for a highly directional high-
frequency antenna in which the special geometry and medium inhomo-
geneity is used to launch an approximate TEM wave over a cross section

with dimensions much larger than a wavelength.



The”appfoach foiicuearin this repc;f then represents a design
procedure for a ¢??taip_ki%§,°f electrcmaguetic lens. rThe properties
of such a lens, combined with appropriate perfect conductors, are
indepeuaeﬁfxcf ffequencywassuﬁfué fﬂagnthe permiginit& and permeabi-
llty of the meqzum usedare real and frequency 1ndependent and that its
conductivity is zero. This result is in contrast to lenses based on a

geometrical optics approximation, such as the well known Luneburg

lens (3); which relles on the frequency being suffic1ently high. The

ienseé,ccnSid, ed’here, used with appropriate transmission llnes, carn

Ehenszaueﬁiffarbit;af§%pulse'wa&é?bfme ﬁithout distortion:

‘While the cases considered represent exact solutions to the

vector wave equation there are, of course, approx1matlons involved in

the practlcal reallzatlon of such dev1ces For example, for pulse

applications the permittivity and permeability should be frequency
independent and have certain prescribed values as functions of position.

Such characteristics can only be approximately realized. As another

example, it will turn out that the lenses should, in some cases, have

~infinite extent and so will have to be cut off. If, however, the lens

is large enough the relative magnitude of the fields (as compared to
the magnitude of the fields near the transmission line passing through
the center of the lens) can Be small enough that the perturbation is

insignificant. The permittivify and permeability will be required to

be infinite in some places and less then their free-space ‘values in

others, but such p051tlons can be made to be far from any 51gn1f1cant

fields so that these requlrements can be neglected. Tor certain trans=-

mission lines the conductors restrict the fields to a closed region of
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space so that no lens masterial at all is needed outside this region.
For a particular application of these lens designs, one should consider
such things as the range of permittivi%y and permeability required and
the spatial extent of the lens required. In this report we treat the
lenses from an idealized viewpoint.

In outline, this report first considers fhe definition of what
we call formal electromagnetic fields, vector operators, and constitu-
tive perameters used with orthogonal curvilinear coordinates.
Restricting the forms of the permittivity and permeability the general,
but very restrictive, case with field components in all three coordinate
directions is briefly considered. This is followed by & consideration
of the TEM wave case with electric field components in two coordinate
directions. Uiome general results are obtained for this case and a few
lens types are“éonsidered. Pinelly, the simpler case of two—diménsional

lenses 1s considered, together with a few examples.



IT. FORMAL VECTORS AND OPERATORS

"Let us first consider a cartesian coordinate system (x,y,z) with
o . o T , ,
e

s =
e, e
x* Ty? Tz

unit fgctofsr , and an orthogonal curvilinear coordinate

N . -> -> -> .
system (ul,uz,u3) with unit vectors el, e2, e3 + We restrict both

“"coordinate systems to be right handed, i.e.

S - I TR, R O U . - -
ex % ey = e, . (2.1)
and
-> -> ->
I - 7el xrez = e3 (202)
The line element is
i > _ > > -> = - -> ->
dr = & dx + eydy + e, dz h,du,e; + hoduse, + h3du3e3 (2.3)

' where'the‘écaiépfacféfém‘Ei ‘are given for i=1,2,3 as

2 2 2 du, 2 du, 2 su, 2]-1
2 r3x_ Yy 3z i i i
By = Gy *faui ) = | ) } (2.4)

The hi are teken positive and we exclude singular points where

hi= 0, for any 1i=1,2,3 from our consideration. The line element is

also often written using the metric tensor (g,,) as

&

-> ES 3 2
=dr cdr = | g (au) (2.5)

" where for orthogonal curvilinear coordinates the metric tensor has the

Simple form

2
B g, 0 O oo o
N = = 2.6}
(g;5) =55 01y 0 gy O o ni o | ¢
0 0 0 0 n



For later use

BE =

(aid)

(8, )
and

(1,,) =
where 6ij

-6

we define some combinations of the hi

h.h h

17273
h 0 0
] (Gijhi) = 0 h, O
0 0 By
hohs 0 0
=z (8 H—-) 0 h.h 0
1J by 371
0 0  hh,
h. h
23 4 o
hy
= (5 g_.) 0 ﬁ Q
i} .2 h
he 2
i h.h
5 172
0 h
3

ig the Kronecker delta function.

(2.7)

(2.8)

(2.9)

(2.10

In the u, coordinate system the standard vector operations are

the gradient

V¢ =

curl

1l 3¢ g +‘;_ o¢ g " 1l 3¢ g
hl aul 1 h2 au2 2 h3 3u3 3
- L 2 R >
=5 by [gg (hg¥y) - g (a%p)] &)

3

3 3 >
* by [3— (thl) - == (h3X3)] e,

-
e

oo (X)) eg

(2.11)

(2.12)

)



h.h.Y )} (2.135

_)— . Sy B
VeY¥=z { (B,h1.) + (b h,Y,) + — (123

aul 2"3M1 a_u; 3712 9u3

The Xi "end,,Y;irere refeffedrﬁo asithe phfsical components of the

“vectors. X and ¥ which have the representations

and
(2.1k)

Other common operations such as the scalar and vector Laplacians are
formed as combinations of the asbove operations.

Now we define another set of vectors and operators whlch we call

formal vectors and formal operators and symbollze by the addition of s

prime to the standard symbols. Related to X we define

Y +xé’ Y z (a,, )% (2.15)

%= xy
1 1 2 3 3 iJ

Thus the components of f'r aﬁd X are related as

X' = nXx, (2.16)
1 ) ,l :l )

In tensor languasge the Xi are the covariant components of 'f .

Related to Y we define

= >
i 1 + Y2e + Yé 3 = (Bij) Y (2.17)

Thus the components of ?' and Y are related as



R | ~
o= oy (2.18)

In tensor langusge the Yi are the components of a relative contra-
variant temsor of weight +1 which can also be called & relative con-

travariant tensor density (4). Note that we have defined the formal

»a¥

- .
vectors X' end Y' differently because of the different ways that
-
and Y appear in equations 2.12 and 2,13.
Now we define formal vector operators by
- ad' » 3% > 3d' »
AR-L- e, + e, + — e (2.19)
Bul 1 3u2 2 3u3 3
t t L} T
. > 3X3 3X2 5 BXl 3X3 N
O & T O R A T T
2 3 3 1
1 ]
3X2 BXl -
5= - 5 e (2.20)
! 2 ,
and
ayY! 3Y! aY!
A T T (2.21)
1 2 M
Note that the formal vector operators have precisely the same form in
orthogonal curvilinear coordinstes as the standard vector operators
have in cartesian coordingtes. These formal operators are related to
the .standard ones by
1/h 0 0
1
- ~1 . 1651 = . [P N
Ve = (aij) v'e 0 1/112 0 v'e (2.22)
0 0 1l/h



where the potenfial function ¢' is related to 9 by

@ - C (2.23)

- - ,7° | =
and by
UxFad(a,.) (v xF)= (8 ) (v xF) (2.24)
- —=-  H "TiJ i )
and - 3 ~ =
I oo Lo oW S
- VeYy = Hv Y (2.25)

Agein in tensor languege ¢ is an invarient scalar, the components of
V'$#' are the covariant compoﬁents of V® , the components of V' x X

~are the components of a relative contravariant tensor of weight +1, and

vV e ? is a relative scalar of weight +1.

Finally we define a formal matrix (vij) related to (Vij) by
= — = =Tz ': -',,;3':" - == . = -l:‘f. - -
(Vij) S (Bij) . (Vij) . (aij) (2.26)

The vij are the components of a relative contravariant tensor of

weighfgll;: Thf;:ffénsfofmafign:&illrbé ﬁééﬁﬂiatér %or the constitutive
- parameters in Maxwell's equations. For the special case that (v,,) is

a id

diagonal we have

(13,) + (o) (2.27)

(vij)

It is this latter case which will be of concern to us in this report.
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III. FORMAL ELECTROMAGNETIC QUANTITIES

Now consider Maxwell's equations

VX§=--2% (3.1)

vx§=3+§—f (3.2)

veB=, (3.3)
and .

v.B3= 0 (3.4)

together with the constitutive relations

B (e,,) « E (3.5)

i3

and

B o= ()-8 ‘ (3.6)

J

and the equation of continuity

Vo:]” :--g—% (3-7)

Note that p is the "free" charge density and does not include charge
displacement conventicnally included in (Eij)' In writing the above

equations we have assumed that (si ) and (uij) are real constant matri-

J

ces, independent of frequency; they may, however, be functions of posi-
tion. If we had written the above equations in the frequency domain,

then (Ei ) and (u,,.) could easily have been tzken as complex functions

J i3

of frequency. —
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Equatibné 3‘lrthroﬁgh §;T'aré aséﬁﬁéaﬂto be expressed in terms
of the ui ‘coordinates and the gi unit vectors as in Section II.. So

now we meke some appropriate definitions of formal electromagnetic quan-

tities. Since E and ﬁ appear with the curl operator, we define, as
in the case of f ’

' li.-: 97-;7 77+' = .V—)

Bz (ay,) - & NP (3.8)

¥

Since §, 3, and J appear with the divergence opersator, we define, as

in the case of f ’

- Bz (s )« B, Feey) T ()

Bz (sy) - B, D= (g

Now p equals g divergence in egquation- 3.3 so we define

o' & H (3.10)

so that p 1Is a relative scalar of weight +l. Substituting for E, ﬁ,

'ﬁ, and § from eqqétiqnéi3.8 and;3.9 into equations 3.5 end 3.6 and

requiring

) o B (3.11)

= 1 . o ! = '
B (Eij) E . B (“ij
shows that for the formal constitutive parameter matrices we should

define

—
m

-
~—

"
—_
w
~—

.
—
m

—
=
~—
]
o0
~—
.
=
~—
Q
|
i
|_l
w
}=
N
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For some problems one might include a conductivity matrix (Uij) s0

that J includes a conduction current denmsity (o.,) * E . Then we

i}
would define

(af,) = (By,) + (ogy) = (a7 (3.13)

I (eij)’ (uij)’ and (Uij) are required to be diagonal, equations

3.12 and 3.13 reduce to

(Eij) 2 (Yij) . (Eij) + (Uié) (Y ) . (uij) ’

id

(cj'_J) s (YiJ) . (cij) (3.1L)

The formal electromagnetic quantities defined in equations 3.8
through 3.12 can now be substituted into Maxwell's equations, tl:ie con-
stitutive relations and the equation of continuity. The curl and di-
vergence operators can be replaced by the formal operators from equa-

tions 2.24 and 2.25. Equations 3.1 through 3.7 can then be rewritten

as
v B = - %-'- (3.15)

vox B o= o+ %%L (3.16)

vedr = g ' (3.17)

vt Bt = 0 (3.18)

Bt = (efy) - B | | | | (3.19)

B o= () - ® (3.20)



~and S e

3o’

et (3.21)

- "Note that equations 3.15 through 3.2 ere of the same form as
équafgéﬁs'3.l through 3.7. All electromagnetic quantities and operators

are replaced with primed symbols, except for t which has remsined

unchanged., However, the formel curl and divergence operators, using the

ui codrdinétes, have the same mé%heméfical forms as'have the standard

operators, using the x,y,2 cartesian coordinates. Suppose that we

rrfofmaiiyrtggﬁk of'fh;i'ui as;a céf%ééiaﬁ'ébordinafe system and think

of the primed quantities as the electromagnetic fields, constitutive

parameters, etc. Then we can ﬁake & known solution of Maxwell's equa~-
tions related to cartesian coordinates, directly substitute primed for
unprimed quentities and the v, for the cartesian coordinates, and
thereby construct a solution of the above equations. Transforming the
formaquuantities back to therétaﬁdard 6ﬁes ﬁy equatioﬁé 3.8 through

)s

3.13, we then have a solution of Maxwell's equations for which (sij
( ) mey be anisotropic and/or inhomogeneous. The idea
. . t t t

is then to pick (Eij)’ (uij), and (cij

form and also to choose any boundary surfaces to have convenient forms

“ij)’ and/or (cri'j

) of some particularly convenient

in the U coordinate system so that we can obtain a solution in terms
of the formal electromagnetic quantities. Choosing some particular

relationship between the u, coordinates and x, y, and z, the param-

" eters (Eij); (uiJ); and (Gis) as well as the geometry of the boundary

surfaces é;e d;%érminea“éhd éhé éolution is applied to the particular'

case.
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IV. RESTRICTION OF CONSTITUTIVE PARAMETERS TO SCALARS
In this report we are only concerned with problems relsgted to
inhomogeneous isotropic media. The later examples of lenses will
utilize such media. Thus we restrict the constitutive parameter and

conductivity matrices to be of the forms

(Ei.j) = E(dl,j) s (“ij) = u(ﬁij) s (Gij) = 0'(5]-3) (h.l)

Where €, U, and ¢ are scalar functions of the coordinates. From

equations 3.14 the formal constitutive parameters then have the forms
1 = t = ! =
(e1y) = elvyy) o (ugy) =ulyy)) , (ofy) = olv;,) (.2)

Also, we restrict ¢ =0 and assume that €& and p are real and
frequency independent. However e and u may, in general, depend on
the coordinates. The formal constitutive parameters (Sij) and (uid)
are now diagonal matrices with the three diagonal ferms possibly fune-
éions of the coordinates.

Thus we are led to consider some possible forms for diagonel

) end (u!,) which are consistent with equatiocns (L4.2). We would

(el By
like (Eid) and (uij) to have rather simple forms so that electromagnetic
waveas, as expressed using the formal electromagnetic guantities and ui
coordinates, have desired forms. A first case to consider is defined

by requiring (Eid) and (uij) to be expressible as e'(éid) end

u'(ﬁij) with €' and u' independent of the coordinates. In

texms of the formal quantities, this corresponds to a

homogeneous medium problem for which many types of solutions of

il
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Maxwell E equations are available , This first. case is con51dered in.

Section V and Appendix A,

It is not necessary, however, for (e!,) and (n!,) to each have

ij iy

their three diagonal components equal and independent of the Uy for

the problem to correspona to one of a homogeneous medi um. In particu~

lar, suppose that for each matrix Just the first two of the diagonal

components are constrained to be eoual and independent or the coordi-

nates. An 1nho;ogeneous TEM wave with formal field components with

~only subscripts 1 and 2 has no interaction with €é3 or ué3, and so

33 are unimportant in the case of such a wave. Such TEM

33 and u

solutions are used to define lenses to match waves onto cylindrical

and/or conical transmission lines. This second case is considered in
Sections VI and VII and Appendix B.

As a further simplification we consider the two-dimensional
problem in which u3 =2z , one of the formal electromagnetic fields has
only a u3 component, and the other formal electromagnetic field has
only a u, component. With appropriate restrictions on the compon-

ents of (e!,) and (u!,) this defines a third case considered in

i id
Sections VIIT and IX. Solutions for this case are used to define
lenses for launching TEIM waves on two parallel perfectly conducting

pletes.
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V. GENERAL CASE WITH FIELD COMPONENTS IN ALL THREE
COORDINATE DIRECTIONS

Now consider the case in which E' and H' are both allowed to
have all three formal components. For this case we constrain the

constitutive parameters to have the forms
t = ! t = '
(e1) = e'lsyy) »  (ufy)= wegy) (5.1)

where e' >0 and y' > 0 are both independent of the uy ccordi-
nates. In terﬁs of the formal electromagnetic quantities we have a
homogeneous medium problem. One might then apply many known solutions
for homogeneous media to this case.

With (Eid) and (uid) each constrained by both equations 5.1 and

4.2, we have

h.h
2 3 0 0
h
) . h3hl g’ B
() =| o HE o J=E(s)=t(s,)  52)
5 b,b,
Bq

where €& and u are both assumed nonzero at positions of interest.

This implies
_ - - &L _ul
Y107 Yoo T Y33 ¥ T (5.3)
From
Yop¥33 T Y3311 T Y112 (5.4)

we obtain
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:;i

ol -
2

|
I
Wl“' f\)

7SinEéV%hé'7H;ﬁEZEe giir%zkin'p051tlve, then we have them all equal

‘which we express as

h=h, =h.=h_ (5.6)

" ¢h=¢g' s ph = p' ' (5.7)

so that eh and uph are both independent of the cocrdinates.
~-However, we cannot Just choose h to be any function of the
coordinates. In Appendix A we show that there are two general forms

for h which satisfy the restriction imposed by equation 5.6. The

first is given by h equals a constant for which the ui form a car-

tesian coordinate system. For thls case ¢ and p are constant so
that the medium is homogeneous.,
The second form of h , from equations A.27 and A.31, gives an

inhomogenecus medium describved by

2
, 2 (5.8)

xa + y2 + z2

= =i =
n!

(Y]
:I'II—-‘

where a # 0 is a real constant. This corresponds to a 6=-sphere type

of cocrdinate system. Defining the radius
r2 =) x2 - y2 + 22 (5.9)

we have

2
T T



e _L_&a_ T ' (5.10)

If one were to attempt to comstruct such a medium for fregquency inde-
pendent € and u , then € and ¢ would be constrained to be at
least as large as their free space values. For fixed €', u', and =a
there is a maximum r for which € and # c¢an be realized. Also, a
neighborhood of r = 0 is excluded because of the singularity in ¢
and uy there. Thus there are restrictions on realizing such' a medium.
With the hi restricted as in equation 5.6, the associated class
of inhomogenecus media is then very restricted, being limited to
spherically stratified media of the form given by equation 5.8. In the

next section we loosen somewhat this restriction on the hi .



VI. THREE-DIMENSIONAL TEM WAVES

Now we restrict our attention to waves of a certain form. Consi-

der inhomogeneous TEM plane waves such as I;ro:i:a.ga"rcre on ideel cylindrical

transmission lines, including coaxial cables, strip lines, etc. Such =

structure supports THY plane weves which propegate parellel to soms

fixed direction, say the z axis. It has two or more separate perfect

conductors which form a cross section (in a plane perpendicular to the

z axis)which is independent of =z Also, let the medium in which the

perfect conductors are placed be homogeneous.

Next apply this type of inhomogenecus TEM wave solution to the
formel fields discussed in Section III. Let the wave propagate in the

+u3 direction and let the formsl comstitutive parameters have the

forms .
— el 0 0 ! 0 0
1 = 1 1 - t
1 1
R , ¥ ,
where ¢' >0 and u' > 0 are constants but eé and ué are unspeci-

fied. Since we shall only consider waves with no field components -

parallel to the ‘p3 direction, then Eé and ué nowhere enter the

formal constitutive relations, equations 3.19 and 3.20. Then the -

é and ué on the coordinates is irrelevant and can

be ignored. For this TEM wave the medium can then be formally consi- .

dependence of ¢

1

dered isotropic and homogeneous since only ¢ and u' are signifi-

cant.
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Specifically, comsider formal fields of the form

! = t u3 [ - ] | U-3 | t =
E) = Elo(”l’“z) £(t - 57) 5 B} = Ego(ul.ug) £(t - =F), B} 20 (6.2)

and )
Y3 Y3
f = H! - - L 4] J— t = .

By Hlo(ul’ue) £t c.) » B} Hao(ul,u2) £(t c,), B, 50 (6.3)
where we define

¢! = L s ¢ E ——x {(6.4)

Yite! fuoeo
and where we can choose the form of f£{t - ;;0 to specify the waveform.

This is the well-known form of TEM waves on cylindrical transmission

lines (5). The formal field components are relsted by

Bl = %H'z (6.5)
and
Eé = -%‘; H]'_ (6.6)

where Zé is the formsl wave impedance defined by

7t = (R (6.7)

o g!

£

' . > >
Equations 6.5 and 6.6 express the orthogonality of E' and H', i.e.

B .H = o0 (6.8)

Also E and ® can be derived from scalar potentiai functions as

§'=f(t~u—3)V'¢(u u.)
¢! et 1?27



|

i

1
N
=

1

:,§7 = £(t - ——Q”v'¢ (ul,ug)f 7 7 B (6.9)

where ¢e and ¢h both satisfy the Laplace equation (using the

V'2 = y' « 7' operator). These potential functions can be combined
to form a complex potential ¢e + i¢h which allows one to use conformal
transform technlques with the complex varlable u1 + iu2 . All these

equations, 6.2 through 6 9, are merely the dlrect application of known
results for cylindrical transmission lines to their formal equivalents
using formal field éomponents and the ui coordinates in place of
physical field components and cartesian coordinates.

Note, of course, that while the results for cylindrical transmis-

sion lines assume constant & and u , the present results using the

formal quantities assume constant ¢' and ' . Likewise the present’

>

ré;uits require thatithe two or more perfect conductors forming the
transmission line intersect surfaces of constant ﬁ3 in such a manner

that the representation in terms of u end u, is independent of

2

u Put simply, these perfectly conducting boundaries can be repre-

3 .
sented in terms of only their W and u2 coordinates.

The important feature of these TEM waves is that we only need
restrict the first two diagonal components of the formal constitutive

parameter matrices as in equations 6.1. We still assume that (Eij) and
(uid) correspond to isotropic but inhomogenecus media having the forms

as in equations 4,1

) = e(s,,) , (ugy) = wsyy) (6.10)

i3 ciJ iJ

where £ > 0 and u > 0 may be functions of the coordinates. Then as
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in equations 4.2 the formal constitutive parameters have the forms

(aij) = E(Yij) R (uij) = u(Yij) (6.11)

Combining equations 6.1 and 6.11 then gives

ﬁ 3 0 0
1 c! 0 0 ut 0 0
h.h
- 31 = = ' = L
(Yij) 0 h 0 [=Z| 0 = 0 |= = 0 u' 0 |(6.12)
t !
0 0 hlh2 0 O 63 0 0 u3
h
3
This implies
ﬁ-ﬁ—i—ﬁ (61)
h T h T e +13
1 2
and
? r
22 . 3.3 (6.14)
h3 € n '

From equation 6.13 we find that the first two scale factors are equal

which we express as

h = b = h (6.15)

Note that h, is not included in this equation. This will allow us a

greater degree of freedom in choosing our u, coordinate systems.

Now ¢ and | are given by

(6.16)
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80 a eh3

_ the formal wave impedance from equation 6.7 is the same as the physical

and uh3 are both independent of the coordinates. Then

-~ wave impedance because

S T ,Z;O/ = S_' = ';E;: c = Zp/ (6.17)

Since ¢! and ué are arbitrary, then any orthogonal curvilinear

3

coordinate system which satisfies equation 6.15 is acceptable. The h3

that results defines ¢ and W by equations 6.16. Not Just any ortho-

that surfaces of constant u3 can only be planes or spheres (with res-
pect to an X,y,z cartesian coordinate system). Two exampleé of such
coordinate systems have already eppeared in Section V (and Appendix &),

nemely cartesian coordinates and 6-sphere coordinates. In those

eéamples ali'ihfée Uy surfaces are pianes or éphéres, since allrthrée
hi were mgde equal.

Inrthe next section several examples of orthogonal curvilinear
coordinate syéféms satisfyihg eéuatibn 6.15 are considered. These are
used to define types of inhomogeneous lenses which are then combined
with conical and/or eylindricel transmission lines. Some of these
lenses have'rotational symmetry, wnile the associated Uy coordinate
systém is not a ?otational system. For convenience in such cases we
thén intféauce aﬁiﬁdditional orthogonal curvilinear coordinate system
‘vl,vg,v3 thch is both right handed and rotational. We define the .

cylindrical coorfiinates 0,9,z with
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o = (2 + 22 (6.18)

and
tan(¢) = y/x (6.19)

vhere ¢ = Q0 1s taken from the Xz plane for x positive. To make the

vy coordinate System'a rctational system we define
v. = ¢ (6.20)

In order to distinguish the scale factors for the A coordinsate
gystem we write themas h_, h,, and h where v, and v, mnmay be
vy ¢ Vs 1 3
replaced by other symbols for a particular rotational coordinate sys-
tem. There are many well-known rotational coordinate systems for
which the h, ~are tabulated (6).
i

To construct the uy coordinate systems we consider a transforma-

tion from the v, system of the form

u, = A(vl) cos (¢) (6.21}

u, = Alv) sin (9) (6.22)
and | .

u, = E(v3) (6.23)

with A(vl) assumed non-negative. There are several reasons for con-
sidering this type of transformstion. Surfaces of constant u3 are
also surfaces of constant v3 which must then alsoc be planes or

spheres. The functional form £(v,) gives us some flexibility in

3

choosing h3 which in turn defines ¢ and 1w . The choice for Uy

and u, Wwill make h, =h

5 1 5 - The functional form X(vi) is used to
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gain flex1blllty in trylng to make surfaces of constant U and sur-

faces of constant u2 orthogonal As an illustrative example, let

vl,o,v be cyl 7& ioal coordlnates D,ﬁszt and let A(p) = p

]

—E(i) =3z . Then u u2,u3 is Just =x,y,2 . Thls corresponds to the
well-known case of a TEM wave nropagatlng in the +z direction on a

cylindrlcal transmission line in a homogeneous medium.

Suffacés of”constsnf Vfl, v andrv are mutualiy orthogonal by

2 3
hypothesis. Then since neither u, nor u, are functions of vy o
while u3 is a function of v3 only, surfaces of constant u3 are

orthogonal both to surfaces of constant ul and to surfaces of con-

stant Uy This leaves the question of the mutual orthogonality of

snrfécesfof'oonsﬁsnt ul: and surfaces of constant u, . For ortho=-
gonality of constant ul and constant U, surfaces we need
3r_ or
r
= = = 0 (6.24)
aul 8u2
or 7
{3; ! + —ai—aﬂ [—a; —Bvl + 3F 3¢ } =0 (6.2%)
Svl aul a0 aul avl 8u2 3d 8u2

Since the A surfaces are orthogonal we have

3 oz :
) Ti-— [ —BE = 0 | (6-26)

so that equation 6.25 becomes

e T aE | aF e e (6.27)
) 7?Yl ale?ul 3u, 773¢ ??73u173P2
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3v, v
h2 1 l
v

2 38 38 |
— =t = (6.28)
1 duy duy % Bu 1 U

Using the relations

¢ = arc tan(E?) s A= (ui + ug)l’/2 (6.29)
we find
sin( 36 _ cos(¢)
Boome g =
and
av v dv
alsax L L cos(p) =%
Yoy 4
v av. dv
1 _ 2A 1l _ _ 1
o, = by T sin ¢ —= ey (6.31)
For h¢ we have
1/2
n, = [(%)2+ (%ig-)?] . (6.32)

Substituting these results in equation 6.28 gives

dvl o
s, [ = 8 (6.33)
or
: hy by,
= _pi v | = 5= fav, | (6.34)
¢

Now we have



h -
Lo L[R2, 2rg2, (222 Y2 4 202, 222 1/2
h¢) T Bvl Bv1 Bvl o Bvl Bvl
T T , (6.35)
80 that h_ /h 5 is independent of ¢ . In Appendix B (equation B.12)
1
~~we find, from the requirement that surfaces of constant v3 be spheres
or planes, that h_ /h is independent of v, . Hence h_ /h is
vy ¢ 3 vy )
only a function of v Then equation 6.34 can be integrated to obtain

I

‘A as only a function of v

_ - Thus, from en orthogonal system v, ,0,v,

with'éﬁrfadéérdf coﬂéﬁéﬁ% 7v? séheregmbr planes only, equations 6.2l
. A . < - R . ) .

ﬁhro£é§”6:23 definewén”orfhogohél ”ui ”sysfem in which surfaces of con-

- stant u, are sphereé or planes oaly.

3
Next consider the h, end relate them to the h_ . For hy we
L . S i
have :
O N L T ALY .
h3 = S T T v, av (du ) (6.36)
3 3 3 3 983
or . _ =
dv3
hy = h ‘d—u-‘ (6.37)
3 3
For h; we have (using equation 6.26)
2 3% 3F _ 9F 3% (12 aF | aF s 2
Sl aul Bul Bvl Bvl aul o 39 Bul
av, » 2
= 12 (=2 cos?(s) + &= sin®(0) (6.38)
vl dA x2

Substituting for h _~ from equation 6.33 simplifies this last result to

(6.39)

b
]
>4|'0
"
»L;T
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For h, we have similarly

3

+ - > B > >
h2 = or . ar = ar . ar ( 1)2 + QE'_ . E( 39)2
2 3u2 3u2 Bvl 3vl 3u2 3¢ 3¢ 8u2
dv 2
= B2 (=92 sin?(4) + & cos?(4) (6.40)
v, dAa 2
1 by
which, using equation 6.33, simplifies to
- . , - 7
h,= £ =2on = n (6.41)

2 A A 1

Thus the form of the wu, given by equations 6.21 through 6.23, with

i

A(v,) satisfying equation 6.33, alsc safisfies the requirement of

L)
equation 6.15 that hl = h2 . We then have an acceptable uy system.
Note thet the u, system defined by equations 6.21 through 6.23
and equation 6.33 is based on a rotational system, Vys$sVas with
propagation in the :ys'direction where surfaces of constant v3 are
spheres or planes. This is not the only way to define an acceptable

uy system. The last example in the next section will construct the

U system differently.
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VII. THREE-DIMENSIONAL TEM LENSES

- In this section we consider some examples of lenses for trans-

porting TEM waves of the form considered in Section VI. These
inhomogeneous TEM waves propagate on transmission lines with two or

. more_independent perfectly conducting boundaries described in the form

f(ul,ug) = 0 . (7.2)

so that the boundaries are independent of LA The simplest example
of this case is given by ul,uz,u3 equal to X,y,z respectively which
corresponds to & cylindrical transmisgion line with a homogeneous
medium. We first consider the example of conical transmission lines zs
a simple illustration of the method developed in the last section. This
is followed by two inhomogeneous lenses based on bispherical and
toroidal coordinate systems. We alsc show how these can be used to
transition TEM waves between conical and/or cylindrical transmission

lines. The bispherical lens can be thought of as a converging lens

“and the toroidal lens as a diverging lens. Finally we consider a lens,

based on cylindricgl coordinates, which can be used to transition TEM

waves between two different cylindrical transmission lines which have

their propagation axes pointing in two different directions.

A, Modified Spherical Coordinates

As a first example start with a rotational orthogonal curvilinear

éoordinate system vl,d:,v3 given by the spherical coordinates 6,¢,r
illustrated in Figure 1 and defined by

x 2 r sin(8) cos (9) (7.2)



Fig. 1.
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Spherical Coordinates
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y = r sin(é&nsin(¢) (1.3)

(7.4)

‘
|
i
I
I
5
'
I3
"
H
0
o B
0
—
o
-

where zl is a constant we can choose later. UNote that surfaces of

constant V3 = r are spheres and we are considering propagation in

the r direction. The scale factg;érafe

hy=r , h,=rsin(8)=p , h =1 (7.5)

Next we construct the Uy system for which we need A (6) and

&(r) for equations 6.21 through 6.23. From equation 6.37 we have

- ) - |axr dr
h3 = b du3 du (7.6)

For convenience we choose £(r) =r + Toos where r, is a constant we

_can choose later, giving

u. =r +r , Z =1 - ' 7 (7.7)

Now we find a A from integrating equation 6.3k as

o, S - , , ,
ax' as’
’ N (7.8)
:l;Zfi”:,,”gzo m/2

where zo > 0 1is a constant for later use. This gives

or
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gso that

w =2z tan(%ﬂ cos(9) s Uy = 2z tan(gﬁ sin(¢) {(7.11)

From equation 6.41 the associated scale factor is

h .
h = fi - —rsin(6) 220 [1 + cos(8)] (7.12)

e
2z tan(a)

Note that O < h < = on the +z axis (6 = O, r > 0) so that the uy
coordinate system is well behaved there, even though the A system is
singular there. We call this u, system modified spherical coordinates.

The regquired constitutive parameters are given by equetioms 6.16

= o B 1 (7.13)

Thus for the present choice of Us coordinates the medium is homogene-
ous. For convenience we might choose ¢',p' as €5sHy making e,u
also eo,uo so that the medium is free space. The structure defined
by the perfect conductors satisfying equation 7.1 is called a conical
transmission line. The transformations of equetions 7.7 and T.1ll,
giving the u, 5 are the well-known transformation for finding the TEM
waves on such a conical structure(7). The present example for the v is
then a éomparatively simple one and the resulting medium is homogene-
ous. However, this example illustrates how to construct the u;
systems. In addition the conical transmission line is used later in

conjunction with inhomogeneous lenses.



B, Modified Bispherical Coordinates

For constructing an exemple of an inhomogeneous lens, start with
the rotational system vl,d>,v_.5 given as Dbispherical coordinates

Usd,n as illustrated ih,Figufé 2 and defined by (6)

. asin(¥) cos(¢) .
¥ = Cosn(n) + cos(v) (7.14)
_ . a sin(¥) sin(¢) -
Y= Zosh(n) + cos(y) (7.15)
. = a sinh(n) o - (7 lé)
cosh(n) + cos{y) )
with O£y €71 and -» <n <, Surfaces of constant v_ = n are

Spheres; surfaces of constant vy o= Y intersect planes of constant ¢

in circles. The scale factors are

_ a sin(y) _
By = Zosn(n) + cos(yy - ° (7.17)
- n =n, = 2 . (7.18)

n ¥ cosh(n) + cos(¥) = sin(y)

Next construct the Uy system. First we calculate A from

equation 6.34 as

A v

ar' _ ay'
[ <A J e (7.19)
a m/2

which gives

(7.20)

o
[}
®
ct
:g;‘
ope
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ol ]

Rotate ¢ from O to 27

to give surfaces of constant
n.w .

Flg. 2. Bisphericeael Ccordinates



so that T

w = aotan(%) cos(¢) uy = aotan(20 sin(¢)

(7.21)

where a_ > 0 1is a constant we can choose. From equation 6.41 the
associated scale factor is

hf;h;‘eq a _sin(®) ___ 1 a1+ cos(®)
X oag tan(v¥/2) cosh(n) fﬁcoETw) - 2, cosh(n) +cos (V)

] (7.22)
which has 0 <h < = for =-a < 2z < a on the 2 axis so that the
uy system is well behaved there.
From equation 6.37 we have C S i
dan 8 dan
A - ]
By n du3 cosh(n) + cos(v¥) du3 (7.23)
- Now h3 is related to the constitutive parsmeters by
£ 1
Pl ET = 5 (7.2L)
T R S LT - 3 —
For convenience let ¢e' = €0 u' = and also restrict ¢ 2 €, s
u 2 Mo This implies the restriction
h, = .2
- 3 ° 1 - 7 (T.25)

Next observe for 0 £ ¢ < m and for fixed n that h3 is a monotoni-
- ”1cally ihéreésing funéfion of % . Then consider some maximum ¢ of
interest and call it ¢_ with O < wo < m . Then restrict the space

occupied by the inhomogeneous medium to 0 £ ¢ < wo .

Then to minimize
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the magnitudes of ¢ and required,'éét h3 =1 on ¢ = wo « This
gives

h. = coshin) + cos(wo_)
3 cosh(n) + cos(y) (7.26)

and we choose

dn _l 1
du3 = E{cosh(n) + cos(wo)J (T.27)
Note that there are many other forms that one could choose for %&— .
3

The present cholce is for the sske of convenience and definiteness.

From equation T7.27 we then calculate u, as (8)

n

_ dn'

3T 8 J cosh(n') + cos(y_)
5 o

. = 22 tana(D) tan(o2)] 8
;}m arctan ttanh > an > (7.28)

This last result can be verified by first observing that u3 = 0 for
n=0 and by second differentiating the result and using the half
angle formulas for the trigonometric and hyperbolic functions. We now
have all the ui. coordinates which for the present geometry we call
modified bispherical coordinates.

Now that the U coordinates and h; scale factors are calcu-
lated, consider the combination of this bispherical lemns with a
cylindrical transmission line. On the plane z = 0 , on which n =0
and u3 = 0 , we have from equations 7.1k, 7.15 and T.21, and defining
a =a,

o
U, = X . u, =y (7.29)
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"Let the lens meterial modifying u and € be present only for u3 <0

(corresponding to n < 0, z < 0). Then for z > 0 let the medium be
free space with constitutive parameters E Mg Next let there be two

or more perfect conductors forming & transmission line described in the

form

(7.30)

n
(@]

Vf(x,y) =0 , f(ul,ug)
Z

z 20 £0

Since on the dividing plane we have W =X, U, 7Y, then the conduc-
tors are continuous through this interface. For 2z = 0 these conduc-
tors form a cylindrical transmission line on which a TEM mode has the

form (from equaticns 6.9)
- - E- > - - E_
E=f£(t - C) vq;e(x,y) , H=f(t - 3) Wh(x,y) (7.31)

The potential functions solve V2®(x,y) = 0 subject tc appropriate
boundary conditions from equations T7.30. Similarly for z € 0 , making

Uy £ 0, there is a corresponding TEM mode of the form

u u

B'= ot - =) vo_(u,u) , B o= o6 - =) e (uuy)  (7.32)

1’72

We purposely use ®e and ®h for both z 2 0 and uq £ 0 because

they solve the same Laplace equation and boundary conditions on both

sides of z =0 with u on one side exchanged for X,y on the

1°%2
other. Note that from equations 6.5 and 6.6 the components of ¥ and
ﬁ are related by the wave impedance. Since we want both Qe and Qh

the same on both sides of the boundsry then we must have
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.

n : ’
= /_£= /E.= el -
zO = : - - = Z! (7.33)

which we have already required. Now right at z = 0 we have h = 1

and u, = x, u

1 5 =y so that -

-

ﬁ'l = Et = ﬁlz=0+ ., H' + (7.34)

z=0~ z=0" lz=0‘ h

Thus tangential ¥ and H are continuous across z = 0 and the two
TEM waves are exactly matched there. Then a TEM wave as in equations
T.32 in the inhomcgeneous lens will propagate intc free space in the
formof equations T.31 with no reflection.

An alternative approach to matching the TEM mode through the
z = 0 interface is to define one ui coordinate system for both
positive and negative 2z . For 2z 2 0 let (ul,ue,uB) = (x,y,z) while
for z £ 0 let ul,uz,u3 be defined by equations T.21 and 7.28 with
a Za. Then h 1s continuous at 2z = 0 while h3 has & step dis-

o}
continuity there, since for z >0 we have h =h_ =1 . HNote that

3
describing the combination of the lens with free space by a single uy
coordinate system automaticaily foses the restriction of equation T7.33
in that the ratic u/e must be the same at all positions of interest
in order to satisfy equations 6.16. In terms of this composite ui
coordinate system the TIM wave is then described by equations 7.32. This
type of lens-transmission-line combinstion is illustrated in Figure 3
in which the cylindrical transmission line for z = 0 is taken as a

strip line. The lens is stopped a little before the singularity st

(x,y,2) = (0,0,-a) is reached.



lens

cylindrical
transmission-line
conductors

" Fig. 3. Blspherical Lens with Cylindrical Transmission Line
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Next introduce a second interface at_n = no < 0 . Such a sur-

face is a sphere described by (6)
2 2 2 a2
X +y + (z - a coth(n })° = ——o (7.35)
o L. 2
sinh (no)

This sphere is centered on the z axis at z = a coth(no) and has a

-l. A cross section of the lens in the zx plane is

radius a!sinh(no)|
illustrated in Figure U4 and a perspective view with the transmission
line conductors is illustrated in Figure 5. The region inside the
sphere n = "o is assumed to bte free space and in this region we place

a conical transmissicn line with conductors matching to those in the

lens.
Recall the conical transmission line discussed in Section VIIA.

In order to center the apex of the conical line at the center of the

n=ng sphere we choose zy in equation T.U4 as

™
1]

za coth(no) (7.36)

From equations 7.1l we have for the conical line

w, = 2z tan(gﬁ cos(4) , u, = 22 tan(%Q sin(¢) (7.37)

while from equations 7.21 and ao = a we have for the lens

P .
u, =a tan(EO cos(¢) » U, =a tan(gﬂ sin(¢) (7.38)
We would like uy and u2 to be continuous across the surface
n=n_. Thus we need on n=n_ ,
o !
a tan(yﬁ = 2z tan(gﬁ (7.39)

2 o] 2
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| i

u const.

free space

> 2

1 z=a coth(no)




lo-

conical X
transmission-line ?
conductors

cylindrical
transmission-
line conductors

Fig. 5. Bispherical Lens with Cylindrical and Conicel Transmission
Lines
H



To do this consider p on n =n_ . For the conical line we have
. e e g e o - .
p = — sin(6) (7.40)
s:.nthOT
while for the lens we have
T asin(v)
= WA
L cosh(no)+cos(w) (7.51)
The 6 and w coordinates are then related on this surface by
sin(e) = —Sinly) sinh(ng) _ (7.142)
cosh(no) +cos(y)
Then we have
) .. 2,0 1 - V1 -a®
“tan®(3) = (7.43)

1+ 1-ac

. -where, after some menipulaticn, we obtain

1 + cosh(n_) cos(v) - ]
“V1-aA° = 2 (T.hL)
cosh(no) + cos (V)

Substituting from equation 7.4l into equation T.43 and using the half

__angle formulas for the trigonometric and hyperbolic functions gives

; .
ten®(2) = tamn®(2) tan® (D) | (7.45)
or
n
tan(g-) = - ta.nh(-g')r tan(éw-) (7.46)

- where the minus sign is used because "5 < 0 . Therefore we define
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n .
a _ Mo —
-2?0— = - ta.nh(2 ) (7.L7)

g0 that equations 7.46 and 7.39 are made equivalent. This makes Uy

and u2 continuous across the spherical surface n = n

In order to make u3 continuous at n = no we note from equa-

o

tion 7.7 that on n = N, e have

e —
ug = sinh(no) +r (7.48)
while from equation 7.28 we have
2a "o wo
ugy = ————-—-arctan[tanh(if) tan(zfﬁ] e (7.49)
sin(y )
0
Fquating these results gives
r n P
o _ 1 2 _o. Jo
= sinh(no) + Sin(wo) arctan(tanh( 2) tan( 2)] (7.50)

as cur definition of ro .

With uy and u2 continuous across n = n, s @ surface of
constant u3 s, b 1is automatically continuous there. However, h3 has
a step discontinuity at this surface. Then we have the same conditions
at n = n, as befere at n = 0, namely the TEM wave passes through this
surface without reflection and is described by equations 7.32. In sum-
mary, inside the n = no sphere the u are given by equations T.T
and 7.1l and the constitutive parameters are just €, and Mg In
the lens bounded by n = My » N = O and ¢ = wo , the u, are given

by equations T7.28 and 7.38, and the constitutive parameters are given
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by equations 7.24 and 7.26 with et-= e u' = Wy » For z 2 Q
ul,ue,u3 are x,y,z and the constitutive parameters are € oMy
- _The transmission line conductors in 21l three regions have exactly

the same description as functions of Uy and U,

only as in equation

T.1.

From equations T7.24 and 7.26 the constitutive parameters for the

lens are given by

€ _ 4 _1 _ cosh(n) + cos(v)
e H_ h (1.51)

cosh{n) + COS(wO)

For convenience one might prefer to have this relation expressed in
terms of p and 2 . To do this we form complex variesbles from egua-

tions 7.16 and 7.17 as

o +iz _ sin(y) + i sinh(n) _ Y+ in
- e " cos(y) * cosh(n) = tan( P) ) (7.52)
so that )
b+ iﬁ - Vp + 1z
> = arctan( = )
. 2 2
= Es Lerctan[ 2 —) + L n[EF zxa); (1.53)
a”- 07~ 2z p°+ (z-a)

where k 1is aniihfeger orrzéro (9). Sepéfately equating real and

imaginary parts gives ¢ and n as functions of p and =z . Then
we have
cosh(n) = N1, .2 + P_—Z 5 (T.54)
p°+ (z-a) p°+ (z-a)

and
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——

32—02—22

(@3- 02 22124 152521172

2 -1
cos(¥) = #[1 + tanZ(4)]7H/2 = (7.55)
These can be substituted in equation 7.51 to find € and u as func-
tions of p and z for az given value of wo . Note from equation T7.51
that since 0 £ ¢ £ wo <7 the maximum € and u for any fixed n
oceur at ¢ = 0 . Since cos(wo) <1 +then varying n for ¢ =0 we

see that the maximum ¢ and u occur at the minimum of cosh(n) .

Assuming n = 0 is in the region of interest, the minimum occurs there

and we have

&

- - 1
= — (7.56)

€
Q 'max uO

The minimum € and u are, by previous cheices Eo and uo which
cccur on Y = wo , the meximum ¢ for the region of interest.
Referring to Figures 3 through 5 one can better appreciate thé
approximation involved in placing a2 boundary on the lens at ¢ = wo .
In these figﬁres we have used a strip line to illustrate a typical
cylindrical transmission line. For such 2 transmission line the fields
for the TEM mode extend over the entire cross-section surface, a plane
of constant 2z, or more generally a surface of constant u3 . However,
these fields fall off in amplitude with distance from the conductors,
for large distances. Thus we require that wo be chosen large enough
that the fields in the TEM mode for ¢ = wo are ingignificant compared

to the fields near the conductors. For certain types of cylindrical

transmission lines, such as coaxial lines, the fields are zerc outside
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gsome closed outer perfectly condudtiﬁé boundary. For such cases the

lens material is not needed outside the outer conducting boundary and

stopping the lens at some external ¢ =2 wo creates no disturbance in

~the fields. -

This lens, based on a bispherical coordinate system, can be

classified as a converging lens. Referring to Figure 5, a spherical

TEM wave launched near the apex of the conical transmission line is

converted into a plane TEM wave on the cylindrical transmission line.

C. Modified Toroidal Coordinates

For an example of an inhomogeneous diverging lens define the
rotational system vl,da,v3 a3 toroidal coordinates wv,¢,% as

illustrated in Figure 6 and defined by (6)

<z 2 sinh{v) cos() (7.57)
cosh(v) + cos(z)
y a ginh(v) sin(4) (7.58)
cosh(v) + cos(z)
; = —28in(z) | (7.59)
cosh(v) + cos(g)
with =T <z €71 and 0 € V<o Surfaces of constant vy =t
are spheres; surfaces of constant vy= Y are toroids. The scale
—factors are - -
- - s sinh{v) - (7.60)

7H¢
B cosh{v) + cos(z)
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Rotate ¢ from 0 to 27

to give surfaces of constant
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Toroidal Coordinates
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a P

-2V 7T % 7 cos(V) * cos(2) | simR(v) (7.62)

To construct the u, system first calculate A from equation

6.34 as
A v
ar' av' -
J Ul J sinn(v') (7.62)
a =]
o)
which gives
A : v .
m(;;) = tn[tanh(3)] (7.63)
o _ _C
} o . . .
A= s tam(d) (7.6%)
so that
u, = aotanh(gﬁ cos(o) , u, = aotanh(§0 sin(¢) (7.65)

wherer éo >0 mis arconséaht which is chosen later. We obtain h from

equation 6.41 as

0 .
_ _ sinh(v) 1 _a_ _cosh(v) +1
ht: 79': ?&: ta:h(gﬁ cosh(v) + cos(z) ~ 8, cosh(v) + cos(z) (7.66)

o

From equation 6.37 we have

3

- dg = a az 6
By h; du3 cosh{v) + cos(z) du, (7.67)
' o= ' 3 2
As before we set ' = Eor M T My and restrict ¢ ey s H Mo
which together require h_, € 1 . Observe that for v 2 0 and for
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fixed ¢ with -7v < g <7, h3 is a monetonically decreasing function

of v . Thus for fixed 7 , h is a maximum for v = 0 , the 2z axis.

3
Then to minimize the required ¢ and u set h3 =1 on v=20_0.
This gives
h = 1l + COS(C) <T 68)
3 7 cosh(v} + cos(z) )
and we choose
%5—-= L1 + cos(z)] (7.69)
u3 a .

Again %ff- could have many other forms. Then u3 is calculated as
3

g
d 1
u3 = a I 1—+CLO_SW= e ta.n(%) (7.70)
0]

We now have all the u, coordinates and call them modified torocidal
coordinates.

Having the Uy and hi for this toroidal lens we now join
cylindrical and conical transmission lines to the lens. One boundary
surface for the lens is taken as the plane z =0 on which 7 =0,
ug = 0 . Combining equations 7.57, 7.58, and T7.65 and defining

a
s}

a gives for z =0,
u, = x . u, =y (1.71)

Let the lens material be present only for u. > O {corresponding to

3

z >0, z >0). Let the medium for z < 0 be free space with consti-
1 1 é i

tutive parameters €5oH, and let al,ug,u3 for z 0 be simply

X,¥,Z. The transmission line conductors are constrained by equation



7.1 for all u considered, Thus, for z £ 0 we have a cylindrical

3

transmission line, while in the lens the conductors are curved to

satisfy equations 7.1 and T7.65 with a, = a . Note that there is a

singularityw;nithgr u, at p==2a, 2z =0 corresponding to Vv = 4w

Thus for the toroidal coordinates we confine our interest to v satis-

fying 0 € v £ Vg <t We let v = Vo be a boundary for the lens

magérial;

The U h, and the transmission line conductors are continuous
through the plane 2z = 0. We have a TEM wave, as before, of the form

e ué
B =2t - o) vl (u,uy)

- u3

H = £(t - c—,) V'¢h(ul,u2) (7.72)

Since h is continuous through z = 0 , tangential E and B are
continuous through 2z = 0 as required. Note, however, that h3= h=1

for z < 0 and that h., has a step discontinuity at z = 0 .

3

Introduce another lens surface at 7 = ;o with 0 < ;o < T .

This surface is a sphere described by

=)

(7.73)

x4+ y° 4+ (z+a cot(co))2 —
sin”(z )
This sphere is centered on the 2z axis at 2z = -a cot(co) and has a
radius a|sin(;o)l-l v Figure T illustrates a lens cross section in
the zx plane and Figure 8 gives a perspective view with the transmis-
sion line conductors. The region ocutside the sphere described above is

essumed to be free space and contains a conical transmission line with
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Z=eg cot(;o) o

—
—'P“’-"’ a
—"”'5¥ r - EIETE:T

v
\r.””””—_,,,— free space

Mg. 7. Toroidal Lens

lens

free space
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Fig. 8. Toroidal Lens with Cylindrical and Conical
L . Transmission Lines
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conductors matched to those in the lemns.

Now we match the Uy coordinates at ¢ = Co using the meodified
spherical coordinates of Section VIIA to describe the continuation of
the uy coordinates past ¢ = Ty Center the apex of the conical
line at the center of the sphere corresponding tc ¢ = CO by choosing

z, in equation T.4 as

z, = -a cot(;o) (7.74)

For the conical line we have, from equations T.11l

u, = 2z° tan(gd cos(¢) u, 2zo tan(gﬁ sin{¢) (7T.75)

and for the lens

W =a t_a::h(-‘éi cos(d) u, = a tanh(%’-) sinf¢) (7.76)
Thus cn ¢ = co we need

a tanh(3) = 2z_ tan(3) (7.77)

Then considering o on [ = ;0 we have for the conical line

a .
p = EEETE;T sin(@) (7.78)
and for the lens
2 sinh(v) (7.79)

P = Zasn(v) + cos(co)
The' 8 and Vv coordinates are then related on this surface by

sinh(v) sin(co)

sin(6) = cosh(v) + cos(;°7' (7.80)
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This has the same form as equatipﬁ'77ﬁ2 if we replace no by Vv and

¥ by -z, - Then from equation 7.46 we have the result

¢
1] v o)
tan(g) = tanh(g) tan(2) (7.81)
Therefore we define for this case
- e L ”;o 8
) 7777'21—0 = ta.n(—2-) (7. 2)

~ meking equations 7.81 and T.77 equivalent. Then u, and u, are con-

L -he sdRadtons Lok gme Ll eds : M 2

. tinuous across the spherical surface g = Gy *

From equation 7.7 we have, on § = ;o )

2
u3 = W = ry (7.83)
while from equation 7.70 we have

o L -G
W= tan(??) (7.8%)

" These results give, as a definition of r_  for this case,

(o]

Yo Ber 1 —
- = ta.n("2—) - W= - cot(Co) (7.85)

Now Uy and u, are continuous across ¢ = Co so that h 1is

also continuous there. However, h3 has a step discontinuity there.

Then the TEM wave deécrigédﬁy equations 7.72 passes through this surface

without reflection. In summary, for z <€ 0 we have 'ul,u2 3 equal

to x%,¥,2 and the constitutive parameters are eo and “o . In the

u

lens, bounded by =0, ¢ = Co , and v = Vo s the u; are given by
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equations T7.T70 and 7.76; the constitutive DParameters are given by equa-

tions T7.2h and 7.68 with €' = ¢ , u"' =u , For u

a (=
o o 3@ ta.m2 ) the

u; are given by equations 7.7 end T.ll with constitutive parameters

r—:o,uo . The transmission line conductors are described by equation 7.1

for all values of Ug of interest.
The constitutive parameters for the lens are given by

€ u 1 cosh{v) + cos(tg)
€ mn h 1 + cos(Zg) (7.86)

To express this result in terms of ¢ and 2z , as in Section VIIB, we

form a complex variable

z + ip _ sin(r) + i sinh(v) _ r + iv
a  cos(g) + cosh(v) = tan( 2""') (7.87}

go that, just as in equations T7.52 and T7.53

_C_+_l\)_= arctm(u)
2 a
. 2 2
+( o+
= —-k; + %’-arctan[———'———e 8z 2]+i— Q,n[—-——z2 (ptz) 2] (7.88)
a™- z°-p z°+ (p~z)

with k =an integer or zerc. From this we obtain

1/2 -1/2

2 2 2 2
z + (9'*‘8-) - [: +(p+a) } (7.89)
[ze+ (p-a)> 2+(p-a)2J

cosh{v) = é—{

and

P (7.90)
+ uazz?]l/z

)17H/2 =

nj®
3] B

cos(z) =*—il+tan2(c > ;
[(a"= 27 p7)
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2 1/2

Wz p = (%% +y°) - (7.93)

ug ¥ p ¢, tam ¢ = y/% (T.94)

with 0€p <o, 0€ ¢ <21 where p, > 0 1is a constant and ¢ =0

correspends to y =0, x > 0 ., Note that the intermediate rotational
A coordinate system is not used for this example. Surfeces of con-

stant u3 are planes. The scale factors are

hEh =h,= 1 (7.95)
By = hy L. -Z—- (7.96)
3 o)

Since hl and h2 are egual we have an acceptable coordinate system
satisfying equation 6.15. The resulting lens and transmission lines
are illustrated in Figure 9. We call the u, modified cylindrical

coordinates.

The constitutive parameters are given from equatiocns 6.16 with

v = [
€ €5 + H M, as
p
£ - 1:_=}ll_=p_° (7.97)
fo! O 3
Consider p = po one surface of the lens and constrain ¢ = Py for
the lens to make ¢ 2 Eo , U2 uo . Fix other lens surfaces as
P = 0q with 0 < Pl < 0 $ =0, ¢ = ¢O with 0 < ¢o <2m 4, 2 = izz
with zZ, >0 . The maximum & and W then occur for ¢ = pl giving
0!
= - H =5£ (7.98)
o 'max 0 mex 1
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Fig. 9. Cylindrical Lens with Cylindrical Transmission Lines
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Including the cylindrical *transmission lines in the uy coordi-
nate system, we define, for u3 £ 0, Uy Uy u3 as z,X,y . For

0 < u, £ P 9, the u, are defined by equations 7.92 through 7.94. For

u, 25 ¢ the u; are defined (frem a rotation in the xy plane) by

u, = z , u2 sz x cos(¢o) +y Sin(¢o),
ug = -x sin(¢o)-+y cos(¢o) *o 9, (7.99)

With these definitions the us are all continuous across the surfaces

=0 and ¢ = ¢o . For u3 outside the lens we have h = h3 =1 so

that h is continuous across these latter two lens surfaces while h3
has step discontinuities there. The transmission line conductors are
described by equation 7.1 for all u3 of interest. The TEM wave in all

three regions of u. is described by equations 6.9. Note that if

3
¢o > % then one or both cylindrical transmission lines may need to be
cut short to prevent their intersecting each other.

Referring to Figure 9 we require for this cylindrical lens that
the fields in the TEM mode for p £ Py for p 2 P, s and for lz| 2 Z,
(separately) be negligible compared to the fields near the transmission

line conductors. This lens is neither a converging nor a diverging lens

but might be better termed a prism or a redirecting lens.
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VIII. TWO-DIMENSIONAL TEM WAVES
Now consider a restricted form of the u, coordinates by defining

u, = z (8.1)
which implies

h, = 1 (8.2)

_while Uy and u, are taken independent of 2z . Also let either the

formal electric field or formal magnetic field have only a u3 com-

- ponent and let the remaining formal field have only a wu, component.

2

Let the formal field components be only functions of ug and let the
wave propagate in the +u, direction. In terms of the u; and the
formal field comfonenté this fepfésehts aluhiform TEM wave.

Again we assume, for the constitutive parameters, that

() = elsgy) o (ugy) = ulsyy) (8.3)

with the conductivity zero. Thus the medium is isotrovic but, in

general, inhomogeneous. The formal constitutive parameters are assumed

ai 0 0 ui 0 0
(eij) =| 0 e, O , (“ij) =10 w, 0 (8.4)
0 0 eé 0 0 ué
We also have
(e!,) = e(v,,) (uf,) = uly,,) (8.5)

1
®13 i) ALY i3
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where, because of equation 8.2, —

h2/hl Q 0
(Yij) = 0 hy/h, 0 (8.6)
0] Q hlh2
Note in equations 8.4 that the diagonal components of (Eij) and (uij)

may be all unequal. However, since the formal electric and magnetic
fields are each assumed to have only one component, then only one of

the ei and one of the ui will be significant. These significant

e{ and ui will be assumed independent of the coordinates so that
in terms of the uy coordinates and formal fields the medium is effec-
tively homogeneocus.

We have two cases to consider. Call the case with the electric
field parallel tc the z axis Case 13 call the case with the magnetic
field parallel to the z axis Case 2.

For Case 1 we assume a wave of the form

u
+I_+ t __E—l- +'=+ ! --]-'-
E eq E3 f(t c,) . H e, H2 £t = (8.7)
C Q
with -
Yo 1
Eé = - - Hé s et = : (8.8)
o €3 o] u e'
2 3

where Eé and Hé are independent of the cocordinates. Then for
o
Case 1 we assume that ué >0 and eé > 0 are independent of the u, .

Then from equations 8.4 through 8.6 we have



- 2
u=ul — (8.9)
- ] 2ny

h
1
Note for Case 1

@hq@rgipggwrfriis parallel to the z axis, perfectly

conducting planar sheets can bte placed perpendicular to the z axis and
used as boundaries for this TEM wave.

~For Case 2 we assume a wave of the form
TR . _ 1
E e, E2 (%

- , g = 33 HY £(t - i,) (8.10)
Q
with
— - - — u'
B, = —?Hé , ¢t = —— (8.11)
ol €5 o) ul el
Vi3 &2
1 1
where E2 and H3
Q Q

are independent of the
then assume that ul > 0 and

U For this case we
sé > 0 are independent of the u . We
also have - ' - o '
N 3
e = £ . R

.Y (8.12)
e e

For'Casé 2 éince E 1is perpendicular to surfaces of constant u
perfectly conducting sheets can te placed along these generally curved

2 3
surfaces and used as boundaries for this TEM wave.

and h

There are many possible ways to choose ul(x,y) and u2(x,y) and
form an orfhogonéihcﬁfQiliﬁ;a; coérdinate system. Then célculating h
2

one can find

e and

L
u  from equations 8.9 or 8.12. For the
examples in the next section we consider coordinate systems with

(8.13)
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Define the complex variables

p = x + iy

1 5 (8.1h)
Then we have for the line element

lap |2 = (ax)?

/

+ (@)% = n¥(aw)? + n3(au,)?

= 2 (au )2 + (au,)?] = n%]aq|?

(8.15)
Thus if we are given a conformal transformation of the form q(p) or
its inverse, we can calculate an h as
d ag|™
b= ldq - [dp (8.16)
Then from q(p) we can also obtain u, and Uy e
With the restriction of equation 8.13, loock again at Case 1.
Equations 8.9 become
t
.3 .
€ = — N H = U (8017)
_ 2 2
h
so that p 1is homogeneous for Case 1. Similarly for Case 2, equaticns
8.12 become
]
. . 3 8.18
g = 52 [ u - -5 ( .l )
h
so that ¢

is homegeneous for Case 2.

1

For convenience we choose | =

1 =
33 €6 2 Ho uo for Case 1, and
eé ey s ué =ug for Case 2. Then for each case one of the consti-
tutive parameters is the same as for free space.

Requiring ¢ 2 £y 3
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u = uo , then for both cases we require h € 1 . In the next section

we choose examples of two-dimensional lenses which might be appropriate

for launching TEM waves between wide perfectly conducting parallel

sheets. After defining the conformal transformation, giving ul and

u2, regions with h > 1 are excluded from consideration.



—66-

I¥. TWO-DIMENSIONAL TEM LENSES

As g first example of a coordinate system for a two-dimensional

lens consider the conformal transformation defined by

B 3
9.-1‘. ng E:l’.g[“a )
~ == tnle — - 1] , == 7 fnle "+ 1] (9.1

This is illustrated in Figure 10. This transformation alsc describes
the potential distribution around a uniformly charged wire grid (in a
‘homogeneous medium) terminating 2 uniform electric field for x >> 0 .

Prom equations 9.1 we have, for Uy and u,

21X X
m, = 2-gnfe ® - 20 2 cos(EXJ + 1] (9.2)
1 an a
Ix
[ e ¥ sin(—=) }
u, = — arctan + ak (9.3)
2 s ewx/a cos(Ez ) -1
where k = 0,1l . Note that a 1is Jjust a2 parameter which can be used

to scale the dimensions.

The scale factor h given by equation 8.16 is
-ng/a L -mn/a
h=11l+e = |1 -e" 7% (9.4)
In terms of x and y this is
nl =1 - Ee-wx/a cos(EEJ + e—2HX/a (9.5)

Since only regions with h £ 1 are of interest we find the contour for

h=1 given by



> x/a

Fig. 10. Coordinates for First Example
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2 cos() = o TX72 (9.6)

whiecr is indicated in Figure 10. In terms of vy and Uy the scale

factor has the form

- /a T =271 /a.

L. 1+ 2e cos(—g—) + e 1

2

(9.7)

=3

Concentrating our attention on the region near the positive x axis, we

see from this last equation that if we restrict [uz/af € 1/2 , then N
this will assure heving h € 1 . For Case 2 (magnetic field parallel to

the z axis) one might place perfectly conducting boundaries on surfaces

of constant u, within this restriction. From equations 8.1T or 8.18

the meximum ¢ or @ , as appropriate, is related to the maximum of .

h-2 in the region of interest. Consider some w =u as the minimum

[s]

ul of interest. Note that the meximum of h-2 for fixed u, occurs

on u, = Q¢ for which y = 0 . Then varying w,  ve find that the
maximum of h‘2 occurs at u1 so that
o]
1 -mJ.l/a2
'TSLH = |1l +e © (9.8}
h
ax

Also note that as x -+ « we have
h+ 1, W o> X, u, > ¥ (9.9)

One of the constitutive parameters of the lens is the same as free space;
the other tends to the free-space value as x > < ., Then for suffi-

ciently large x the lens material can be stopped without significantly
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distorting the TEM wave. —

As a second example, consider the conformal transformation

defined by

2
T

® g

Zn[sinh(% S-E %arcsinh[eWQ/ea] (9..10)

o g

This is illustrated in Figure 11L. This transformation also describes

the potential distribution around a uﬁiformly charged wire grid (in a

homogeneous medium) terminating uniform, equal but opposite, electric

fields for x »>> 0 and x << 0 . OCbtaining Uy and U, from equa-

tions 9.10, we have

o2 iane (L & 2 L 21Xy g3p°( L L :
U =3 gn[sinh (3 a) cos” (3 a) + cosh®(3 a) sin® (3 a)] (9.11)
=22 . en(L X T YN 4 oak ' |
u, = 7= arctan[coth(z T) tan(3 a)] + 2ak (9.12)
wvhere k = 0,*1 ,
The scale factor h is given by
- -1/2
h=|1l+e wq/a| = |tanh(g'§0| (9.13)

In terms of x and y this is

- 1l - 2e-ﬂx/a cos(Ex) + e-2ﬂx/a
h = 2 (9.].11»)
2e-ﬂx/a cos(%%) + e—2ﬂx/a

The contour for h =1 1is

Yy - . % '
L =3 o (9.15)
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L
* s,
1 1
=1 .5
u, =0 1 1.5
‘2,
.._5 a =
et e wwy e — —— -'S
h=1
-1
-1 s 1
0 X 1 2
a
u .+ iu

1

a

Fig. 11.

2 2 . T X+iy
= ~n [sinh(z ==5) ]

Coordinates for Second Example

® |
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which is indicated in Figure 11. In terms of. wu, and u2 we have

1
-Tu, /a ™Y -2mu, /a
LN 1+ 2e cos(——a) + e . (9.16)
" a, .

Considering the region near the positive x axis, note that by restrict-.

ing (u2/a( € 1/2 +this will assure having h € 1 . For this second

example consider u, as the minimum u

1

of interest and note that the
= 0 (for which y = 0) and at u

- -5 _ —

minimum h occurs on u2 | = ulo, SO
that
-mu; /a
3 miee O (9.17)
~ h |max

The maximum € or u can then be found from equations 8.17 or 8.18.

Also as X - ® we have

h>1, worx-22m2), u -y (9.18)

Then, as in the first example, the lens material can be stopped at suf-
ficiently large x without sigﬁifiéaﬁtly:distor%ing the TEM wave.
Figure 12 illustrates the present types of two-dimensional lenses

together with appropriate parallel-plate transmission lines for both

cases of field pbiarizaﬁiogréiécﬁsséd iﬁ éeEtion7§III. 7ﬁoférthat the
conduéfor;,and thé inhdmdgeneoué:mediumxére étopped before reaching the
singg%a{ity SF,E?? z ax?;; igg;ceirﬁprlaupc? Ege TEM wave mightfbe placed
zrgere. Tberperfectly ¢onductingisheets an@ thg inﬁomogeneoq; medium are
also stopggd on surfaces of constagﬁfru2 . This distorts the TEM wave,

particularly near the edges of ﬁhersheéts. ﬁéwe&er, the sheets are
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transmission-line conductors

A. Case 1: E parallel to =z axXis

X

transmission-line
conductors

B. Case 2: 1 parellel to z axis

Flg. 12. Two-Dimensional Lenses with Transmission Lines
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assumed to be much wider than the sheet separation to minimize the

influence of this distortion.
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X. CONCLUSION

In summary there appear tc be many ways of specifying inhomogen-
eous media such that simple electromagnetic waves, such as the TEM waves
used here, can propagate in the medium. These types of inhomogeneous
media can be used to define lenses for transitioning TEM waves, without
'reflection or distortion, between conical and/or cylindrical transmis-
sion lines. Of course, there are practical limitastions in the
realization of such lenses. For example, in scme cases the lens should
ideally be infinite in extent; limiting the extent of the lens can
introduce perturbations into the desired pure TEM wave, and care will
have to be taken to insure that these perturbations are small. Another
limitation lles in the characteristics of practical materials used to
realize the desired permittivity and permeability of the inhomogeneous
medium. The available range of these parameters will be limited and
their frequency dependence imperfect. Of course, perfect characteristics
are not really necessary. Elsewhere we have proposed a lens based on
geometrical opties for transitioning TEM waves between conical and
cylindrical transmission lines (10)}). The lenses discussed in the
present report, however, have the advantage that, within the limitations
mentioned above, the TEM wave passes through the lens undistorted,
based on a solution of Maxwell's equations.

In this report we only consider isotropic inhomogeneous media for
the lenses. Within this area we consider a few examples each of three-
dimensional and two-dimensional lenses. To extend the present work

one might consider several other such examples in order to have
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evailable other types of geometries and inhomogeneities. For a wider
extension one might allow the medium to be anisoctropic as well as
inhomogeﬁéous. fﬁisrwouldr;emove some §f tﬁe resfrictions on the coor-
dinate systems which could be used. However, such an anisotropic

inhomogeneous medium might be more difficult to realize. ;
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APPENDIX A: CHARACTERISTICS OF COORDINATE SYSTEMS FOR FIELD
COMPONENTS IN ALL THREE COCORDINATE DIRECTIONS

In Section V, when considering the case of formsl field com-
ponents in all three cocrdinate directions, we require that (eij) and
(uij) reduce to constant scalars times the identity matrix. Combining
this with the earlier requirement that (sij) and (uij} reduce to

scalars times the identity matrix leads to the result of egquation 5.6,

namely
h=zh =h.,=h (A.1)

This very restrictive form of the hi leads to the natural question of
what forms of h{x,y,z) or h(ul,uz,u3) are possible.

Now the Uy form an orthogonal curvilinear coordinate system by
hypothesis. It is then necessary and sufficient that the hi satisfy

the Lamé equations, namely

——3 32:]._ _%?lﬁ_%.ﬁ%ﬁ: 0 (A,g)
bt e S W e’ B il
and
o 1 By, oo M1 By Ry
mEhE )t e e - O (a.3)
A B R B h.kukuk

vhere 1i,j,k 1s a. permutation of 1,2,3 yielding six independent equa-~

tions (11). Substituting from equation A.1 gives

azh _gah 3h - (a.4)
aujauk h E)uJ auk




and
. = 3-—--,1 dh 3 1 %h 1 dh .2
(= )+ (= )+ = (77— = 0 (A.5)
aui h Bui BuJ h BuJ h2 Buk

‘Introduce a change of variable defined by

v s’%- (A.6)

are excluded from our consideration.

~ where any points with v = 0,=

Equations A.4 and A.5 then become, respectively

) AV
e = 0 (A.7)
BuJ uk
and
_1_92§+_1_(8v)2 ;ﬁ+L(iL)é+}_(3l_)2- 0 (A.8)
v ,2 2 ‘3u,’ T v .2 2 ‘du 23uk_ :
Bui v i 3’\1J v J v
Rewrite equation A.s as
- LR Y- 3 ‘
v 3y _ 1 3v_y2
5 = Z 2 " v Z (au ) (4.9)
,Bui =1 Buz =1 L

Since this holds for 1i=1,2,3 we deduce

v L, (A.11)



-78-

Now from equation 4.11 3v/3ui 3 at most a function of u
But then azv/auf is at most a function of u . From equation A.10

we have a functicn of uy equal to a function of uj and thus both

l.8.

are a resl constant, say s

32v 32v
—_= e, = — (A.12)
auz L 3u2
i J
Integrating we obtain
_av =c.u. + 4 (A 13)
du, 174 i !

1

where di is a real constant, since 8v/3ui is at most a function of
Uy . Integrating agein gives

clug
Vo= diui + ei(uj,uk) (A.14)

where, as indicated, e is at most a function of wu, and W for

J

i,J,k distinct. Summing over i (from 1 to 3) on both sides of egua-

tion A.9 gives

o 7 B3] (22 (8.15)
g=1 . 2 V=1 %y '
3119’

Substituting in this last equation from equations A.12 and A.13 gives

- N o
_ 2
2c1v = lzl (cluz + dQ) (A.26)

We now consider two cases.
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For the first case assume that ; = 0. Then from equation A.16

we have
3 2
0= ) ¢ (A.17)
=1

which implies for i=1,2,3,

4 = 0 (A-le')

Thus equation A.ll becomes

~ v = ei(uj,uk) (A.19)

so that v 1is independent of u, for 1i=1,2,3. This implies that v

is a constant, and thus h as well, i.e.

- 12 : .
Sl L _h = - % (A.20)

where c2 # 0 1is a reel constant. Then for this first case the ui
are jusfia cartesian coordinate éystem. 'This is the trivial case of a

homogeneous medium in which € and u are independent of the coor-

dinates.

 For the second case assume that 'cl # 0 . Then from equation

A.16 we have

1

' 2
3 (equ, +4,)
v= ) 1 ch 2 (A.21)
B B aT =l 1
Note that ¢, > 0 since v > 0 . Defining new real constants a and

b2 , the general form for h 1is



3 u -1
] (F+o )2} (A.22)

where a # 0 since ey # 0 . Now by a simple linear shift of the u,

coordinates we make b 0 giving the simple symmetrical result

52
h = (A.23)

From equation 2.5 we can write the line element as

(a5)% = (&) + (a7)% + (a2)® = n°[(au )%+ (au,) (du3)2]

(A.24)

Rewrite this =as

)2 + (du

(du -

2+ (auy)? = 35 [(@0)® (4% (a2)7]

1 2

=

(A.25)

So momentarily regarding the wu, as cartesian coordinates, x,y,z
es the orthogonal curvilinear coordinates, and 1/h as the scale fac-
tor, we can repeat the foregoing derivation from the Lamé equations and,

by interchanging the gquantities in equation A.22, obtain the result

LR )2 (s 5 )24 (B s )R]
where a' and b! are real constants and a' # 0 . Make a linear

shift in the x,y,z coordinates so that b! = 0 giving

A

h = =2 [P+ 3o 20 (a.27)
a'
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This type of h 1in equations A.23 and A.27 corresponds to 6-

sphere coordinates or the inversion of cartesian coordinates, given

in one of its forms by (6)

X = - (A.28)

' ui + u2 + ug (A.29)

z = - 2 | (A.30)

We have included minus signs in these equations to make the u, coor-
dinate system right handed. The scaling constant a2 is required for
_these equations to be consistent with equations A.23 and 2.4. We also

have

(A.31)

which comes from equating the right sides of equations A.23 and A.27 and

using equétions A.28 thréﬁgh A.30 to relate x,y,z2 and Uy 5Uy5Ug -
Thus for this special h given by equation A.l there are two
types of solutions. The u, form either cartesian or 6-sphere type

of coordinate systems.
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APPENDIX B: CHARACTERISTICS OF COORDINATE SYSTEMS FOR FIELD
COMPONENTS IN TWO COORDINATE DIRECTIONS

In Section VI we consider the case of formal field components in
only the uy and u, coordinate directions. Imposing appropriate
requirements on the constitutive parameters and on the formal consti-

tutive parameters (equations 6.10 and 6.1, respectively) leads to the
result of equation 6.15, namely
h=h =h (B.1)
In this appendix we consider a restriction which this imposes on the
orthogonal curvilinear coordinate systems.
Eisenhart (12} defines the second fundamental form of a surface

(which we take as defined by any particular u3) as the quadratic dif-

ferential form

. _ 2 " 2
3 = D3(du1) + 2Dédu1du2 + D3(du2) (B.2)

which for an orthogonal curvilinear system reduces to

- 2 tr 2
p = D3(dul) + D3(du2) (B.3)
with
hy 3hy ] By 3hy
Dy=-imm P3 = -1, 5w, (8.4)
3973 373

The first fundamental form of a u_, surface is just the line element

3

given by
2

S(du,)® (2.5)

(ds)2 = hi(dul)2 + h
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However, substituting h hl = h_ into equafions B.4 gives

- "no_ a4 ol
Dy = Dy=- == (B.6)

The first and second fundamental coefficients are then in proportion,

i.e.

1"
E.?l= D_=__l_a_h_. (B.7)
h2 h2 hh3 3u3 '

1 2

We then apply & result of Eisenhart (12) that these coefficients are

in

3

in proportion if and only if the surface (given by constant u
this case) is a plénéwsf é<§pﬂére; 7Thﬁ§?%or Ehgs>res£riction on the

coordinate system, given by equation B.1l, surfaces of constant u; can

nate system).
~Also in Section VI another orthogonal curvilinear coordinate

system with coordinates Via$sV

3 is introduced. This system is rota-

tional with

pEe. veale) = L, n =oz(+yR (B.8)

from equations 6.18 through 6.20 and equation 6.32.  Note that the

scale factors for the A system are designated by hv . Because of
i
equation 6.23 relating ug and V3o surfaces of constant vy are also

. planes or spheres. Since surfaces of constant vy are planes or spheres,
we again invoke the result of Eisenhart that the first and second

fundamental coefficients for a v3 surface must be in proportion,
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which we express as

D D"
3 . 3
2 2
h h
Vl ¢
Fheve hv ahv h gh
b =Ll _1 I T
v h av ! v h av
3 v 3 3 v 3
3 3
Combining egquations B.9 and B.10 gives
A
3 n(hv ) 32n(h¢)
1 =
av3 3v3
But this implies
Bviy 5 galn. ) 3 ga(n)
azn(hé) vy ¢
v = v - v =0
3 3 3

or, in other words, h_ /h
vl ¢
used in constructing the g from the v

is independent of vy o

(B.9)

(B.10)

(B.11}

(B.12)

Thig result is
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