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-'<Abstract

One method of generating an electromagnetic pulse involves radiating =
pulse from an antenna to a somewhat distant observer., In this note we discuss
some of the low-frequency limitations placed on the radiated waveform under tne
assumption that the late-time antenna currents go to zero. We find that tne
complete time integral of the radiated wavelorm must be zero and that if che
antenna is designed to have a long-time electric dipole moment the radiatec
waveform may have only one zero crossing, while if the antenna does not have
a long-time dipole moment the radiated waveform must have at least two zero
crossings.
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I. Introduction

In designing simulators for the nuclear electromagnetic pulse there are
many cases to consider, depending on both the geometry of the nuclear burst
being simulated and the type and location of the system on which the simulation
is desired. Fox some cases of interest one is interested in producing a fast-
rising pulse in a form which approximates a free-space plane wave over a rather
large volume. One approach to this problem consists in radiating a pulse from
an antenna.

Figure 1 illustrates this concept. The antenna is contained in a volume,
LA We use the position vector, r', for currents, charges, etc., on the antenna,
while r is the position vector of the observer at which the fields are to be
calculated. The origin of both sets of coordinates is taken at some common
convenient point inside V'. Our interest will center on the case for which
Irj >> Ir'[ for all ¥' in V' so that we can use limiting expressions for the
fields far away. If the overall dimensions of the system under test are also
much less than [rl then the incident fields at the system approximate a uniform
plane wave.

At the present time one such pulser with antenna is being built for AFWL
by Physics International. It is designed to be operated while supported off
the ground by some means such as a helicopter. We have decided to designate
this general type of portable simulator with the acronym RES (for Radiating
EMP Simulator). The above-mentioned pulser and others like it are designated
RES I. The RES type of simulator has promise of being a rather flexible one.
For ground-based systems the simulator can be brought to the system to be -
tested without disturbing the system's operational configuration.

In this note we consider some limitations on the low-frequency character-
istics of such simulators and the corresponding implications for the radiated
waveforms. The antenna is assumed to be placed in free space with no other
media, scatferers, etc., present. The results then apply in the sense of an
incident waveform at the observer. Using the formalism of the wvector and
scalar potentials we first develop the well-known antenna radiation in terms
>f the antenna currents. Tfhis is then applied to the low-frequency and late-
-ime behavior of the pulsed antenna. The results are then specialized to
the simpler case of a dipole type of antenna with axial and lengthwise symmetry.
Finally we consider some illustrative examples of simple waveforms consistent
~with the low-frequency properties of such an antenna.

21, Radiation from Antenna

To begin our consideration of the pulse-radiating antenna we first
formulate the fields in cterms of the vector and scalar potentials using the
source currents and charges and find the limiting expressions for large |r
A more complete discussion can be found in many tests.

1. C. H. Papas, Theory of Electromagnetic Wave Propagation, McGraw Hill,
1965, chapters 1 and 2.
2. J. Van Bladel, Electromagnetic Fields, McGraw Hill, 1964, chapter 7.
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Fig. | GEOMETRY FOR RADIATING ANTENNA



Consider Maxwell's equations in free space3
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together with the gonstitutive relations
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and the equation of continuity
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The fields can be derived from a vector potential, K, and a scalar potential,
¢, as
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where the potentials have the explicit solutions in terms of the currents

and charges as .
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where ¢ = 1/\/Eouo is the speed of light in+vacuum. Note that ¥ is the posi-
tion at which X and ¢ are calculated while r' contains the variables of
integration over the antenna volume, V'. In this formulatiom the potentials
are related by the Lorentz gauge as

A+eu —= =20 . (6)

3, All units are rationalized MKSA.
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_ For many purposes we use the Laplace transform (with respect to. time) o
~the various quantities. This is denoted by the addition of a tilde, W,vabove ' .
" the quantities. Since we are considering a pulse radiated from the antenna:

we can assume all electromagnetic quantities as initially zero (before ﬁ 0
thereby making the initial conditions for the Laplace transform zero., THawn. ' |
Laplace transform varisble, s, can be set equal to jw, giving the Fourier
transform. This will also be convenient for some purposes. For these trans-
forms we have a propagation constant

= £
Y (o

which in the frequency domain becomes

where
¢

In the transform notation we have the potentials

- [ o o
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' t-r'| ,
\Y : » (10)
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the fields
2 ~ T o
B=vxda , E=-v3-sA (11)

and the equation of continuity

>
v:Y +sy=0 | (12)

" Now consider the limiting expressions for the far fields. Make some
definitions as

7 = , =r' . (13)



and let y be the angle between ¥ and ' so that

Tt 3r'f )
COS(IIJ) = —r-r—'— = N (14)

i

where Er is the unit vector in the direction of ¥. Then as r+c we have

|E-t'] = ¢ - Er'?' + 0™y = recos(p)r' + 0D

] et oad ) J
From equation 10 as x>« the vector potential is then

§(f) = é;IF ;%- j; ngr;?' §(f')dv' +0(r %) (16)

V|

The first term is associated with the far fields and from it the radiation
vector 1s defined as

\ u -+ .")'l I
nE = 2 | T Ey@Ehav (17)

i

vl
so that for large r we have

.
R e YE -2 -
A='—£_— N+ 0(r ) (18)

In the time domain the radiation vector is
- u -> - 3 ‘—I)‘.'
=\ 3, e E—av! (19)
b ¢
V!

and the vector potential for large r is then

A(¥,t) =

Sl

N - L) w0 | (20)

Note in equation 19 that we assume that N is zero before t = § for all
directions, e,. Thus we assume that for the source currents 3 is zero at

a particular r' before t = r'/e. This gives no problem in that the defini-
tion of t = 0 can be arbitrarily chosen for ocur convenience. In turn this
implies that the potentials and fields are zero before t = r/c.
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f*fff*~Fbr large r the fields also go to limiting forms which are called the

far fields or radiation fields. Denoting these quantities with a subscripty.

,f _we have after some manipulation , RS

: -Yr -
Bp = 8 (N X'e ) x er
+ -Yr - (21)
ﬁf - %— T @ = Zr)
0

where Z, is the impedance of free space given by

Mo

% ' » (22)
(o] .
In the time domain the e far fields are ‘ Y

sN (T, t-% ) N :

'Ef(r,t) = Y ___EE—_-_' X 3r> X e,
N(r,e-L ) ' | (23)

r.t—-—
Tot) = — e 2 \
I.I*f(r’t) —VZOr ( 3t x er)

Note that Ef and ﬁf are mutually orthogonal and are each orthogonal to gr'
giving an outward propagating wave. In a spherical coordinate system

(r,8,¢) centered on the antenna the far fields have only € and ¢ components.
The © component of ﬁf has the same waveform as the ¢ component of ﬁf, and the
remaining components are similarly related. Thus, we need to consider the
waveforms for one of the far fields. ‘

III. Low-Frequency Behavior of Far Fields

Having the far fields expressed in terms of the antenna currents we
now consider some of the low-frequency characteristics of the far fields.
These low-frequency characteristics are reflected in certain features of
the radiated waveform and the repeated integrals of the radiated waveform
with respect to time. As a matter of notation we denote the nth repeated
integral with respect to time as

l
1"E, (6) = S S E,(cy)de, s dey (24)
Also, for conveniehce, we sometimes use the retarded time

t*

r
t-< (25)

The potentials and fields are zero before t* = 0,

e e e e B e = E




AS a first éimple result consider the full time integral ofﬂff. From
the first of equations 23 we-have

o (-]

-

iiﬁf(m) - j‘ E (0)de = 2 (N(E,e- Dx &) x A (26)
o (o]

Now ﬁ(;,— EJ = § and assumi&g+that 3 goes to zero at large times for a pulsed
antenna, then we also have N(r,») = §. Thus we have

11 (=) = § (27)

Stated in another way the radiated waveform has zero net "area". If any
component is initially strictly positive (for some t* > 0) then it must go
negative at some later time. The waveform, if not identically zeroc, must
have both polarities.

Next we extend the above results by considering the low fregquency
behavior of the currents and charges and then applying the final-value
theorem of the Laplace transform. Manipulate the radiation vector from
equation 17 as

- - ‘
~ Y ~ H N : B!
M =2 J. JGEnav + 2 j.r(r') [e*gr i -1]dv' (28)
b4n
V! V!
The first of these integrals can be integrated by parts giving4
- > -
j&'(r'mv' = - j;'(v"J(;’))dV' - sj FEED v (29)
v! V! V!
>
where the last integral is the electric dipole moment, p. Thus we have
- - - a-)-
- -
YEhav' = sp JED@ = 3 (30)
A A

For the second integral in equation 28 we have for small ls]

J” I >
Yy le® T C1gy = ¥@') 0(s)av' as s> O (31)
v! !

4, J.D. Jackson, Classical Electrodynamics, Wiley, 1962, p.271,



" Now ﬁéréxpeét,jxto go to.;erb for large times for our pulsed antenna. Ti
the. final-value theorem of the Laplace transform implies o

Ly ) . % ' o
j(¥:“) = () = 1lim sJ (32)
. g-+0 . » : -}L—.‘u:; )
‘ ~
so that J must be less singular than 1/s or
3 1
J = o) as s”0 @
s EEALT

et

Appifingveqﬁﬁfibn 32 to equation 31 we then have

f\': 5 Z - S-) ‘;' Lo "
Lim| J()0(s)dV' = 0 = 1im| J(z') [e€r'F _1| av* (34)
s>0 s>0

v V!

Returning to equation 28 we then have for gmall ls!

> Lli _'C —{ -> S_> ';'
1im N(Z) =|lim -2 sp |+ {1lim J(r')[ete’“' -1} dv'
§*0 s+Q T 80

V!

= “o ") uo >
lim .Zb—'n'- Sp = —4—; p(w) ) (35) )
s>0 -

Thus, the late-time behavior of the electric dipole moment is brought
to our attention. Depending on the design of the pulser and antenna, p(») can
be made to be either zero or nonzerc. Even though the currents on the antenna
go to zero at large t the antenna can remain in a state with charge separation
at large times. A simple example is two pieces of metal with a generator to
transfer charge from one to the dther in such a manner as to produce a static
electric dipole. One may wish to eventually discharge the antenna to prepare
for another pulse, etc., but the discharge time can be made to be much larger
than times of interest for the waveform. For purposes of our model then we

> -

can allow p(«) to be nonzero. Note that we have assumed p(0) = 5, consistent
with our other initial conditions. '

The utility of ;(w) comes in the consideration of the time integral of
tgg radiated fields., From equation 35 we have for the long-time limit of
1<N(t)

Y ->

2"}
ilﬁ(w) = lim s(g) = lim N = -—% ;(eo) (36)
s-+0 s-+0 -

D - —u o




Then from the first of equations 23 the second time.integral of the radiated
fields is given by . o

2 _1 1> - - U >
i Ef(m) =< ((L"N(=)) x er) xe = Z%r (;(m) b4 er) X ;r (37)

Thus, if ;(w) = 3+then izﬁ () = 6, while'if ;(w) ¥ 0 then isz(m) #¥ 0 except
in the case ghat e, (the direction vector to the observer) is parallel or anti-
parallel to p(=).

Figure 2 illustrates the effect of E(m) on the radiated waveform.
Denote some particular component of Ef with the subscript, 1. First consider
the case of p(w) = 0 as illustrated in figure 2A. From equation 37 we have
i Efl(w) = 0. Thus, izEfl as a function of t* begins and ends at zero, and

assuming that it is not identically zero then it cap have a single polarity
which we take as positive, as illustrated. Thus, i ‘fl must increase and

then decrease, implying that ilEf is first positive and then negative.

Thus , ilE must have at least one zero crossing, as illustrated. Since

£
ilEf mustlthen increase, decrease, and increase again, then Efl iz first
1

positive, then negative, and finally again positive. Thus, Ef must have

at least two zero crossings. Certainly Ec could have more than two zero

1 -
crossings, but it must have a minimum of two if ;(m) = 0.

Second consider the case of E(w) #* G with the directign of e. and
choice of component 1 such that from equation 37, we have i Efl(w) # 0.

Then taking izEf {(®) > 0 we have one possible behavior of iZEfl ag illustra-

ted in figure ZB, i.e., i2Ef can increase from zero to its final value

without ever having a negative derivative. Thus, ilEfl can have a single

polarity, as lllustrated. Since'ilEf must then increase from zeroc and

1
decrease back to zero, then Efl is first poesitive and then negative.

Thus Ef must have at least one zero crossing. The radiated waveform

could have more than one zerc crossing, but it must have a minimum of cne.

Suppose that one would like a single polarity (say nonnegative)
radiated waveform. The above results show this to be impossible. There
must be at least one zero crossing in the waveform and the time integral
of the waveform must go to zero for large time. However, there need not
be more,than one zero crossing, but this requires, at a minimum, that
3
p(®) # 0. From the point of view of designing such an antenna one can
then see the advantage of making the antenna have a charge separation
with a net electric dipole moment at late times which are still of
interest for the waveform.
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Another interesting result is the dependence of the low-frequency
behavior of the antenna on the late~time dipole moment. From equation 35 we
see that as s»0

p - 22 | (38)

provided that B(=) # 8. Then from equations 28 and 35 we have as s-{0

>

. i v - -
g o
Eg f“tsr (p(=)x e.) x e, | (39)

4y

Thus for low frequencies the radiated waveform is propgrtional to the frequency.

If the late-time dipole moment is zero, however, then E is pfop&rticnai to
some higher power of s for small |s|, thereby rolling ogf more rapidly for low
frequencies.

Remenber that the above results for the shape of the radiated waveform
and for its low-frequency behavior depend on certain assumptions regarding
the late-time behavior of the currents on the antenna. Specifically we have
assumed that the currents go to zero at late times and have allowed the
possibllity of a charge separation at late times with a net electric dipole
moment, p(®). One might think of trying to design an antenna for which the
currents do not go to zero at late times of interest for the waveform.

For example, one might try to set up a steady current flow at late times
which gave a net magnetic dipole moment. This could possibly be used to
improve the waveform in some manner. However, such a design with steady
currents at late times may be somewhat harder to achieve practically. In
section V we consider some examples of radiated waveforms which are consist-
ent with the above low-frequency limitations based on the late-time antenna
currents going to zero, but with a net late~time electric dipole moment
included.

1v. Axially and Lengthwise Symmetric Pulsed Dipole Antenna

We now consider the special case of an antenna which is axially
symmetric and symmetric lengthwise. For reference consider the cylindrical
(R,¢,z) and spherical (r,8,$) cocordinate systems illustrated in figure 3A.
Now constrain axial symmetry on the antenna by assuming that its geometry
and sources are independent of ¢. Also assume that sources only generate
currents in the R and z directions. Then there are the remaining electro-
magnetic quantities referred to cylindrical coordinates: Jg, J_, P, E_, E ,
H¢. These are all independent of ¢. The far flelds are more convenientl
related to spherical coordinates, having Eg and Hg as components. Next

constrain lengthwise symmetry by making the currents and charges have a
certain symmetry with respect to the plane, z = 0. Specifically we require
that Jz be an even function of z and that J, and p be odd functions of z.
This makes E, and Hy be even functions of z and Ep be an odd function of

z. The far~field components, Efeand Hf¢, are ncwaoth even functions of
g-n/2.

12



- A. COORDINATE SYSTEMS

GENERATOR TRANSFERS CHARGE
BETWEEN THE TWO HALVES OF
THE ANTENNA AT THIS POINT.

B EXAMPLE: ONE CONFIGURATION OF RES I
FIG.3 AXIALLY AND LENGTHWISE SYMMETRIC PULSED DIPOLE ANTENNA
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These symmetry conditions simplify the expressions for the radiated
fields and define a class of antennas of practical importance. A common
example of such an antenna is a cylindrical rod which is divided in the
center of its length and driven there with an electrical energy source which
transfers charge between the two halves of the rod. The first model of
RES I uses an antenna with the above symmetry restrictions as illlustrated
in figure 3B. The resistive impedances in the antenna are not shown. The
generator (located inside one of the antenna halves) includes a capacitor
which discharges into the antenna at the midpoint, transferring charge between
the two antenna halves.

.+ Considering the single component of the far electric field the first
of equations 21 gives

‘ =YTr -
s o “y el
Ef: s er &y [(N xe.) x Zr] (40)

Using the scalar triple product relations gives

...’Yrﬂ- u -+
"-=_e P-+=.._° e (\"‘*r.‘>Yrr '
Efe 8 — 3 eg e 8 - j J(t") eqe dv (41)
v!
or
> >
5 Voo g > r-e_r'
E IR, S S J tm —————— V.o '
fér,t) AT BT (', = ) e, dav (42)
V!

For convenience in analysis of such pulsed antennas we define a normalized
waveform as

"\J .
rE
. f - I d b
1 _ s Yr u o + Yeper'
£(8,5) = 7 e = _4_‘;.%-. j J(r‘)'eee T oav! (43)
. o o v

wheréiv is a scaling voltage, such as the voltage on a capacitor before
it is dgscharged into the antenna. The corresponding expression in the
time domain is

.
rEfe(r,t)

‘ 1
E(B,t%) = — o _ 2 =
! v, : 4V,

)-+ t
p eedV {44)

Note that we consider & as a function of t* to explicitly show the dependence,
of the normalized waveform on t*, independent of r. ' Then as we have defined €s
it is the Laplace transform of § with respect to t*. Also note that & is
dimensionless and can be used as one indication of the efficiency of a
particular design of antenna with generator(s) if V, is appropriately chosen.
Another point to note is that £ is zero for 6 = 0 and for 8 = 7 because of
the symmetry in the antenna currents.
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. 1f one. dg i,es he can perform part of the 1ntegral over V' in equation 41 "
by integrating over ¢' and using the ¢' independence of the components of 3 as
expressed in cylindrical coordinates. An approximation that is often used: to
calculate the radiation from antennas of. the present type, if they are longszand
thin is to take some estimate of the current and consider it lumped on the. z

axis for [z'! < zpgx where 2 z .. is the length of the antenna. In such a

case we have

JELE =10 &) G0 &, (45)
which gives |
. (max .
n . u . e
£(8,8) =.dog(6) Z% %_ %<z')eYz cos(8) dg!
' )
Zmax
(46)
Znax

51 u !
£(9,t*) = <08 (6) -%- Lo I(z',t*+ E_E%ELQl ) dz!

For the special case of § = =z (and applying the second of equations 30)
the second of equations 46 becomes

4
max I

2
n o 1 9 T 37p_(t*)
(@ TR | e = g —oe 47)
° 3t

“Znax

Thus, at this observation angle we need only know the dipole moment for the thin-
wire approximation. While the thin-wire results are only approximate they

may be useful in pointing out some qualitative features of various designs
of antennas with pulsers.

Note that while the results of the present section apply to an antenna
in free space, they can also be applied to the case that the plane, z = 0,
is taken as a perfectly conducting sheet and only that part of the antenna
for z 2. 0 remains. Standard image theory applies here with appropriate
factors of 2 introduced. For experimental purposes one can use the free-
space antenna design, except cut at the z = 0 plane where a conducting
ground plane (much larger than the antenna) is placed. With appropriate
coerrections on any sources placed at the z = 0 plane to account for the
imaging, the normalized waveform can be convenlently measured at low source
levels.

15



V. Examples of Simple'Waveforms

Suppose that ocur desired radiated waveform has a relatively fast rise
and a much longer decay time which approximates an exponential decay. Thus,
we might define an ideal normalized waveform something like

g, (t%) = & BEY (k) | (48)

where 8 > 0. We could include another exponential term to give a nonzero
rise time but this would not significantly affect the low-frequency behavior
of £ and 1is not of interest to the discussion in this section. Note that
the complete time integral of &o is given by

175 (™) =% #0 (49)

However, as shown in section III, this result is impossible for a radiated
waveform with the present restrictions on the antenna currents. Taking the
Laplace transform of equation 48 gives

v
go = ;'_{"E (50)

With the restriction of section III that the late~time antenna currents go
to zero we found in equation 39 that for low frequencies the waveform is
proportional to s, provided the late-time electric dipole moment is nonzero,
except for two particular directions to the observer. If p(«) = 0 then the
waveform is proportional to some higher power of s for small |s|. Assume
then for low frequencies we have a normalized waveform, 2, proportional to
s. For our present examples we multiply 20 by s/(sty} with y > O, thereby
achieving the required low frequency behavior. Thus, we have

v .
T GER (o (51)

S%tting 8 = jw we see in figure 4A the effect of this additional factor on
|&] for Yy < B. The high frequency rolloff occurs at w/B 1 and the low
frequency rolloff occurs at w/B ~ Y/B. The ratio of Y/B is then an indica-
tion of the distortion introduced into the ideal waveform, %0. This distor-
tion 1s minimized by making y/B as small as possible.

In the time domain the normalized waveform for y ¥ B is given by

£(tx) = —% {e—st* X e“Yt*l a(t*)
1-2 g

(52)

while for ¥ = 8 we have

E(Ex) = [1 - Btxle™ BE* y(tx) (53)
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These waveforms are plotted in figure 4B. Note that in the time domain also,.
small v/B minimizes the waveform distortion, The initial fast rise and
smooth late-time behavior are maintained in going, from €y to E. Cne of the
effects of the distortion is to decrease the slope after the initial rise.
The derivative of the waveform for t*> 0 is

3t 1. X B
)

Then the slope after the initial rise is

g O S I

Here again y/B is a measure of the waveform distortion. Another effect of
the distortion is the undershoct of the resulting waveform. The minimum
of & occurs at a retarded time, t*min’ found by setting the right side of
equation 54 to zero, thereby giving

| 2
8 o1 [_sgﬁt* s X e"Yt*] (54)

8
St"". = 2 In ("‘ (56)
min " Y
8
From this we find the minimum of & (for v # B) as
-_2 ~ 2v/8
c .l 8| 1-v/8 y g} 1-¥/8B
min gy Y B "Y')
- 2 2
== | = 1-=|e_-2 [
1- Y Y] vy
1+y/B
- Y }1-Y/B
R (57)
For small Y/B this becomes
*min = % (58)

so that Y/B is here also a measure of the waveform distortion.

For the present waveform examples we have chosen £ in a way that
approximately preserves some of the features of & This choice of §
satisfies the requirement that 1 E(w) = 0 and it takes advantage of the
assumption that p(®) # O by having only one zero crossing. Of course

18




:i_hér rewﬁany.other ways one could choose £ and still retain these properties.
‘The actual £,:of: course; depends on the detailed design of the antenna and-

Vi}asaociated pulsers. A practical antenna and pulser design may give a radiated

“waveform that looks roughly of the form given in equation 52. Assuring that

we have a given desired 8 one would like to make y/B as small as pussible ‘o et
the best waveform. However, this means increasing the low-frequency output: of
the antenna for a given h_gn—frequency output. This implies an increase in
lp(w)l which may place more stringent requirements eon the antenna, e.g., one.

may decide to increase its size,

VI. Summary

There are many possible designs  for a pulse-radiating ant.¢...2a:. These:
involve various spatial distributions of conductors, dielectrics, magnetic
materials, electrical energy sources, etc., Different designs may be used
to try to optimize the radiated waveform in terms of rise time, peak amplitude,
and/or various other parameters. However, as long as we restrict the antenna
current to a volume of space with limited dimensions, require the antenna
currents to go to zero for long times of interest, and consider a distant
observer so that a far field can be defined as the radiated waveform, then
the complete time integral of the far fleld must go to zero. If we design
the antenna to have no late-time electric dipole moment then the radiated
waveform must have at least two zero crossings. But if we design the
antenna to have a significant late-time electric dipole moment the radiated
waveform may have as few as one zero crossing, depending on other features
of the antenna and pulser desiyn.

The calculation of radiated waveforms for some realistic antenna
geometry may be rather complicated. However, certain features of the wave-
forms may be obtained somewhat more easily, especially in the high-frequency
and low-frequency limits. The results of the present note are based on
the low-frequency limit and point out the importance of the late~time electric
dipole moment. This is given by things like the low-frequency limits of
the capacitance and mean charge separation distance of the antenna and by
the generator voltage and capacitance (assuming a generator which is basically
a charged capacitor). Parameters such as these can be used to characterize
the low-frequency properties of a pulse-radiating antenna, thereby character-
izing some of the long-time features of the waveform.

We would like to thank ALC Henry J. McDermott, Jr.,, for the graphs
in this note.
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