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Abstract

Associated with a distributed-source surface transmission line there are
fields above the source and associated currents in the source. The source must
then deliver charge and energy associated with these currents. The purpose of
this note is to develop an approximate two-dimensional model for these fields,
currents, and charges. Certain idealizations of the geometry are made and a
step-function time dependence of the source (propagating at the speed of light
with no loss in amplitude) is used.
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1. Introduction

.
In a previous note~ we proposed a type of simulator which, in its general

class, can be termed a distributed-source surface transmission line. The
general concept for such a simulator involves distributing an array of energy

sources (e.g., charged capacitors) above the ground surface and then triggering
the sources in a sequence so as to produce an electromagnetic wave propagating
at approximately the speed of light over the ground surface. As illustrated

in figure 1 this array of sources is approximated as a continuous sheet in
order to simplify the calculations. The medium “below the sources might be
made conducting in order to allow a late-time vertical current density at
the ground surface. Other sources and impedances might be included at each
end (x=O and x=d) to try to minimize the distortions due to these discontinuities
in the structure.

In reference 1 we considered the fields below the distributed source for
the uniform, planar geometry illustrated in figure 1. This was a two-dimensional
calculation in that the width of the sheet source, w, was assumed infinite and
the source was assumed independent of y. The sheet source is represented by
specifying the tangential electric field, Es, along the sheet at z=h as having
only an x component and varying only with x. With this tangential electric
field being, in general, not identically zero there are then electromagnetic
fields above the distributed source. Associated with the magnetic field just
below the source there is a current in the source whereby the source delivers
energy to the fields below the source. There is similarly a current in the
source associated with the magnetic field just above the source. In this note
we develop an approximate model for the fields above the source and the
associated current in the source.

The model developed in this note is approximate because of some simplifi-
cations introduced in the geometry. The width, w, of the source in the y
direction is assumed infinite in order to make the problem a two-dimensional
one. The height, h, of the source above the ground is assumed small compared
to the length, d. Thus , for this model for calculating the fields above the
source, the source is assumed at the ground level. Finally, the exposed
ground (for xs O and for x>d) is assumed perfectly conducting. This leaves
us with the idealized geometry illustrated in figure 2. The purpose of these
idealizations is , of course, to simplify the calculations somewhat. These
idealizations also introduce inaccuracies into the model but some of the
important features are preserved. In particular we can observe the buildup
in the initial source currents as the source wave propagates at the speed of

light in the +x direction. This phenomenon is associated with the fact chat
the source wave is propagating at the same speed as the propagation speed of
the electromagnetic fields above the sheet source, i.e. , the speed of light
in vacuum, c. For the present note we take E as a step function wave propa-
gating at speed, c, in the +x direction with ~onstant amplitude, independent
of x for O<x<d. Other time histories of Es can be considered, as long as Es
is still a function only of retarded time, t–x/c, by using convolution techni-
ques with the present results. Other forms of E can also be considered by
introducing them at the appropriate point in thescalculational procedure.

1. Capt Carl E. Baum, Sensor and Simulation Note 48, The Planar, Uniform
Surface Transmission Line Driven from a Sheet Source, August 1967.
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In this note we first consider the electromagnetic fields associated with
a specified tangential electric field distribution on a plane and then specialize
this to the case that the tangential electric field has only an x component and
is independent of y. Besides the present application of these results to the
fields above the distributed source, they have other possible applications t:o
the fields below the distributed source including s~ch things as the field clis-
tortion at the ends of the distributed-source and the effect of the discrete-
ness of the source on the field uniformity, provided that the medium below t:he
distributed source is a single homogeneous, isotropic medium.

11. Fields Associated with a Two-Dimensional Distribution of the TangentiQ
Electric Field on a Plane

We first consider a tangential electric field distribution on the z=O
plane withcomponents E’ and E$, both of which may be functions of x’ and y“,
the coordinates for thexgiven tangential electric field distribution. Figure 3A
illustrates the coordinates of the observation point or the position at which
we wish to calculate the fields. The distance from a source point (x’, y’ , O)
on the z=O plane to the observation point is given by

. , ,,
R ~ [(X.X’)2 + (~-y’)2 + Z2]4’L (1)

There are the three unit vectors ax, 3VJ ~z for the Chree coorciir.atedirections .
The unit vector in the direction iron the source point to the obs~rvation point
is

(2;1

The permiitivity, permeahiiity, and conductivi~y (C)P, and o, respectively)
of the medium. for z>O are assumed to be scaZars and to be indzpz?dent of
:he coordinates. The results are formulated fiorthe fields for z>u, bu~
by use S$ appra~riate symmetry relationships :hey can b? zp?lisd C3 t:-ie
fields ;.eiow t:le z = O plane -.ith t-hesame restrictions oi. :he .zedium thzre .
We first.formuiz?e the Laplace transform of the fields aad for this case ~,

U, and G Can be functio~s of the Laplace transform variable, s (or ju for
frequency domain corisiderations). Then we consider the time domain case ~ith
E=& ,~=~,u = O for which case the medium corresponds to free SFaCe.

o 0

As our s;zrci;g poin= we use an equation in Smyttie3yhich giv~s :he

vector potentiai as an integral over
plane as

2. Ali units are rationalized MLSA.
3: W. R. Smythe, S~a~ic antiDynamic Electricity, 2ntiea., 1Y50, ?.436? =<~.
14.19(i).
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m [(~z x~’(x’,y ’))x~R]e-yRdx’dy’
217s

R2
.Cn-m

(3)

The tilde, “, is used to denote the Laplace transform of the quantity with

respect to time. Zero initial conditions are assumed and/or this transform
can be interpreted as a two-sided Laplace transform. The propagation constant,

Y, is given by

Y +-) : jk (4)

where k is also termed the propagation constant and is useful for frequency--
domain considerations as

k =y~~(~=-j~)

The result of equation
field on the z=O plane
netic dipoles and then

(5)

3 is reached by considering the tangential electric
to be produced by an appropriate distribution of mag--
finding the vector potential as an integral over thi:]

magnetic-dipole distribution. Note that we have allowed a nonzero ~ in the

above formulation thereby allowing conduction currents in the medium of interest.
In this type of formulation the vector potential is an integral over onlY the
source currents . This is equivalent to allowing the permittivity to be a
complex function of frequency. Equation 3 is an exact result, matching the

tangential electric field on the z=O plane and having the proper behavior in
the limit of large z.

The scalar potential (for z>O) from the magnetic dipole distribution
(on the z=O plane) is zero so that the electric field for z>O is related
to the

giving

vector potential as

+
i=-.~yi= -s1 (6)

(7)

,,

hZ=& ‘ ~ [(~z x ~’) x ~R]e-yR dx’dy’

R..~ -m

The magnetic field (for Z>O) is related to the vector potential as
+ + +

giving ~ mm

*
jh-~vx;=.~

J2TS ~vx i X2

)‘= [(:2 X;’) X:R] dx’dy’ , (9)
s

)
-m .m
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Expanding the integrand in vector components we nave

+ +
ez x iiv =

Using equaeion 2 for ZR we have
3X Zv z

J z

(Zzxh X3R = ~ Ii’ o-i f
x

I

(10)

{

x-x r 1E;+z+ ;! gz (11)
R Y

Note that only the tangential components of the electric field on the z=O
plane appear in the integrands in equations 7 and 9. For the x and y compon-

ents of the electric fie~d we then have

mm

* 1HYR+l Z -yR ~~—.
‘xFy = ~ R2 Re

dxTdyl (12)
X,y

-m -m

where the subscript x, Y is used to indicate that either the x or Y comPonent. .
can 3e used as long as it
z component is given by

cow

[j

‘I’R+li=-$ —
z 2

JR

is used consistently throughout the equation. The

--m —,s

Nexe consider the mametic field which we calcuiate from
+ + +
e
x ‘Y ‘z

ix i iz
Y
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Thus onecan obtain ; from equations 12 and 13. In taking the required
derivatives we have the intermediate results

~R X-X’.=— X=* =.2
ax R ‘ ay ‘azR

and

[1

~-yR
a YR+I ~-YR . _ _

E ~3 R’
[(YR)2 + 3YR + 3]

(15)

(16)

-?-
The components of B are then

Com

u{’ix=~ “- (x-x’)(y-y’) ~-yR ~,

2’lrs
!22

[(YR)2+3YR+ 3] — x
R3

-m -m

[

(y-y ‘ ) 2+Z2

])

~-YR ‘

+ 2YR+2-
,:

[(YR)2 + 3YR+ 3] — -R3 E;
dx ‘dy ‘

(17)

m

1

H{

““(x-x’)(y-y’) -yR
i =—
Y 27rs R2

[(YR)2 + 3YR + 3]= i’y
R3

-m -m

-[

2+Z2 ~-YR
2yR + 2 .-M_

1)

[(YR)2 + 3YP.+ 3] —
~1

R2
dx’dy’

x
R3

mm (18)

My
~-YR

iz=J- (Y- ‘)Z [(YR)2+ 3YR+ 3] — 5X
2TS -

R2 R3

—m --m

-)
+ (X-x’)z ~-’I’R .

[(YR)2+3YR+ 3] — -.!~

/

dx’dy’ (19)

R2
Y

R3 -

nave the transform of the six field components for specified
and E~, of the tangential components of tke-electric field on,
Alternatively one can calculate the six field components in

Thus, we
transforms , ~~
the z=O plane.
tiletime domain, if E; and E$ are specified, by performing a convolution
integral of each of these quantities with the inverse transforms of the

—

appropriate Laplace--domain coefficients as they appear in the above equa-
tions. For the special case that the medium for z>O corresponds to free
space (with & = co, P = P , 0 = O) the forms of the inverse transforms
simplify since Y = s/c wh~re we also have

9



(20)

Then e’-yxintroduces a time delay so that we have

Laplace domain time domain

e-YR i;(s) E; (t- :)

-YR -
e E;(s) E; (t-:)

The polynomials in YR become derivatives in the time domain, Op@rating on

the retarded tangential fields in the following forms

Laplace domain time domain

(YR)2 HR 2a2
c g

In the case that a ~ O the forms of the inverse transforms of the inte-
grands in equations 12, 13, 17, 181 and 19 are somewhat more complicated.

III. Fields Associated with a One-Dimensional Distribution of a Particular
Single-Component Tangential Electric Field on a Plane

We now specialize the results of the previous section to a case of
present interest to us. Specifically, we set E7~0 and constrain E; to be
independent of y’ . Then because of the symmetr$ thereby introduced three
of the field components are zero, specifically

EO,
Y=

Bx= O , B = O
z

(21)

The remaining field components then have the forms

h
r
YR+l X–X’ e-yR-

EZ=-J- ——z-ii
E: Qx’dy’

P
._cc_m R2 “

(22)

(23}
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w ‘xl
.

~ J[(X--X’)2+Z2
~-YR

$=2
2Trs

1

[(YR)2 + 3YR+ 3] -2YR .2 — i; dxtdy’

R2 R3
--w -w (24)

Since ~~ is independent of y’ we can perform the integration over y’ before
further specifying k;. For our present considerations we introduce two cylindri-

cal coordinate systems as illustrated in figure 3B. There is the (P$$,-y)
system where

P = [X2 + 22]1’2 , tan($) = 3
x

(25)

and there is the (P’,@’,-y) system where

P’ ~ [(x-x’)2+ 22]1/2 , tan(+’) ~~ (26)
x-x f

Note that --yis used in both cases to make the systems right handed. The first-

system is centered on the axis (x,z) = (0,0) while the second is centered on
(X,2) = (x’,O). Introducing a change of variable

v~y-y’ (27) .-

we then have

R= [P’2
+ ~211/2 (28)

.- .

Equations 22 through 24 can now be rewritten as

(29) ‘“

(30)

In appenaix A the first integral with respect to ~ is solved. Using

equation A5 the electric field components are then
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)
(32)

m

(33)

Ir.equation 31 the integral over n can a~o be+evaluated? but a simpler
approach is to use the relation between B and E in equati.or,14 which gives

m

-63

where we have used the derivative and recurrence relationships for the
Bessel functions. For convenience in frequency domai~ analysis one can

use Y = jk and other forms of the Bessel functions as

;YP’ Kl(yp’) = - j$ H~2)(kP’)

+YP’ ‘o(YP’) = ~ H(2) (kp~)o

4. See KMS 55,
Standards, 1964

Handbook of Mathematical Functions, National Bureau of
for the various Bessel function relationships.

(34)

(35)
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Equations 32, 33, and 35 express the results far
field cmponents for the assumed form of El independent
These same results can be reached by considerin~ a line

the transforms of the three
of y? with E’ = O,
magnetic dip~le at

a particular Xt giving an E; (independentof y’~ andassociated fieids in
the form of an expanding cylindrical wave described
as above. Integrating over Xt then gives the above

Our interest now centers on the case that the
to free space for which we have y = s/c. The three
be written

m

ix = ! [sEr sin($’) ~ ~
x

(SP’ )
‘1 y 1dx 1

P’ ‘rrC
-m

by the Bessel functions
results .

medium for Z>CJcorresponds
field components can then

(36)

(37)

(38)

The functions in the square brackets have inverse transforms given by5

Laplace domain time domain

2 .,-1/2
1

[(}J

Ct
FF -1 u(t- $

2

[011Ct Ct _l
-1/2 t

—— 7 U(t- : )
~P’P

For convenience we give names to these two functions as

(39)

5. See reference 3 and use equation 29,3,119 and use a time derivative and
delay in equation 29.3.121.
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Then we can write the three field components in the time domain as

m

(40)

(41)

(42)dx ‘

(43)

where * is used to indicate the convolution integral with respect to time.
With E: specified as a function of x’ and t one can use these last equations
to calculate the fields directly in the time domain.

IV, Fields Above the Distributed Source

With the results of the last section we now calculate the fields

above the distributed source with the approximations as discussed in the
introduction, As was illustrated in figure 2 we specify the tangential
electric field on the z=O plane for O<x<d. Outside this range the tangential
electric field is constrained to be zero, For the calculations in this note
we first specify the tangential electric

E; ~ E. u(t- ~’) U(X’)

c

field to be of the form

(44)

starting at x=O and propagatingThus we consider the field at the source

to the right at the speed of light with a constant amplitude, Eo, Later
we shall stop the source at x!=d. While a step-function time dependence
is used here, other time dependence can be considered by using convolution
integral techniques.

For convenience we define normalized waveforms for the three field
components as

(45)

14
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Note that we are using the cylindrical coordinate .system, (P,$, y), which is
centered on the beginning of the source. Considering first h from equation 43
we have

o

u?

1=— JHct”-x’)z-p’v”z U(t X’+P’ ) dx’ (4b)
IT c
o

Introducing a change of variable

P2i’1= (Ct-x’)z -z’ -(x-x’)’

(47)
p2d~ = -’(et-x) ax(

and defining a normalized time

(48) -,

we then have for T>l

o

ho=- P
J

-1/2
‘T(ct-x) n dq

T2-1

while ho=O for T<l. Thex we have

. . /-!

which is a

Next
evaluating

(49)

(’ii-))
n T-coS($) \--,

rather simple closed-form result.

consider the normalized electric field components. Instead of
equations 41 and 42 with the assumed source dependence we can

take advantage of tilefact that ho is a function of P and t in the combina-
tion ctlp or r. Starting from one of Maxwell’s equations

Vxii.c ai
o=

(51) :

15



we have in cylindrical coordinates (P,$,-y)

aEp l%—=. -
‘o at p ap

a~b
=>

‘o G

which in terms of the normalized field components are

ae
‘P ~ ah.

—=- .—
at p a~

aeo ah.
+_

“c apat

Now consider T and @ as the only independent variables so that we use

Substituting these operators into equations 53 gives

We use
result

these equations
of equation 50.

(52)

(53)

(54)

(55)

(56)

to calculate the electric field components from the

For e_ we then have
Op

-r

(57)



This integral

e. =
P

is considered in appendix A; from equation A1O we have

U(’r-1)

{ [----

-sin($)
[T2#/2

IT
)

arccosh(~) +cos($)arccos
T-coS($) -

[ lj1-TCOS(+)
WIs (+)

(58)

For e we have, by integrating equation 56 by parts,
‘$

[

‘c

_ U(T-l) T[T2-1]1/2

f
1

[+1/2 dv’
-—

Tr T-cos(+) ‘“ . V-cos($)

1

(59)

The remaining integral is considered in appendix A; from equation A13 we have,
combining terms,

‘)

Equations 50, 58, and 60 give the results
produced by the assumed step function source as
field components have simpler forms at selected
at @n

1--1
~ ~ 1/2

= U(T–l) -

‘o+ ~ i+1 -arccosn(T)

1

-J J
(60)

for the three field components
in equation 44, These three
values of $? e.g., we have

(61)

.

[1
/12

{[ 1

1/2
u(T-i) ~ _ &ho=— e

U(T-1) ~ 1
T2 1

=.—

Tr ‘P n - 72 -arccosh(~)

1

u(T-1) [11‘h=-=- arccos T (62)

and finally at $ = O

[1
1/2

h
U(T-1) T+l=—0 n 7zi- > ‘op

= U(T-l)

r ~+1 1/2

/[-1

‘1

e
U(T–1) {=-—

‘o Tr +-~ -arccosh(T)

)

(63)
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The three field components are plotted as functions of T for various values
of @ in figures 4 through 6. Note that ho and eoAhave large magnitudes just

after ~ = 1 for $ near zero and that their behavigrs are singular at T = 1
for $ = O. This behavior near @ = O can be thought of as being due to the
fact that the source is propagating to the right a~ c, which is the same
propagation speed as the wave above the distributed source. Since the dis-
tributed source is “phased” in this way there is a strong constructive inter-
ference near $ = O of the waves produced by each small element of the distri-
buted source. As the wave propagates to the right it picks up more and more
energy, For another view of this wave look at the contour plots in figures 7
through 10 where we have defined

‘2 H+ev’z (64)

as the normalized magnitude of the electric field. Note that for the contour
plots the radial coordinate is l/T so that the cartesian axes are COS(4) and

‘r

sin($) , or equivalently x/et and y/et, respectively. Since T = et/p the
T

contour plots of figures 7 through 10 can be considered as displaying
the dependence of the various quantities on p and $ for a particular t.
On the other hand figures 4 through 6 can be considered as displaying the
dependence of these quantities on t for particular values of p and $.

Associated with the magnetic field at $ = O there is an equal surface
current density in the source in the +x direction, For our assumed step-
function source this surface current density then has a singularity at T = 1

as in the first of equations 63. This singularity can be avoided by having
the source rise slower and in a smooth manner while still maintaining the
propagation to the right at speed c, Another way to look at this problem
of the current which the source has to supply because of the fields above
the source is to consider the charge which the source must supply out to
any given time. If the source is, for example, an array of capacitors
this charge can be compared to the charge stored on the capacitors which
provides the current associated with the magnetic field below the distributed
source. Some allowance can then be made for this additional charge associated
with the fields above the source,

The charge associated with the fields above the source is given by
t

Qlq= VY(t’) dt’
o

(65)

This is a charge per unit width (coulombs/meter) for the distributed source.
Defining a corresponding normalized charge per unit width as

(66)



..+.=—

we then have

t

H)q.; ho y’=-
0

T

‘T.
dt’ =

J

ho(v) dv
$=() $=()

o

7/?-,-
= U(T:l) J[–]“ V+l

Tr v-1 (Iv

1

U(’r-1)

[[ 1
1/2 7

=— ~z-1 + arccosh(~)
IT J

(67)

This normalized charge per unit width is plotted in figure 11. Note that

even though ho for $ = O is singular at~= 1, the singularity is integrable>

giving a continuous qoo Also note for a given ~that Qw is proportional to

P as is seen from the normalization defined by equation 66, Xowever ~ in

equation 67 also contains p so that for a given retarded time? t - P/c~ the
dependence of Qw on p is somewhat more complicated.

Up till now we have considered a form for the distributed source given
by equation 44 for which El is a step function in retarded time starting at x’=o

and propagating to the right indefinitely. This can be modified with a new

definition for E; as
—-

E: ~ Eou(t - ~’) [u(xt) - u(x’-d)] (68)
c

so that the source is now stopped ar x’ = d. Note, however, that the
additional term, -Eou(t - 2S’) U(x}-d)? is just like the original term
except for a change in sig~ and a shift in the starting point (and
corresponding time) to x’ = d, By a similar. change in sign and shift of
origin we can use the previous results for the field components to obtain
the fields associated with this term. Then adding the fields associated

with the two terms we have the fields associated with the source as given
in equation 68. The results of equations 50, 58, and 60 for the fields

then apply for times before the stopping of the source at x! = d can
propagate to the observer.

Using the source of equation 68 the chargeper unit width associated
with the fields above the distributed source can be calculated from equation 65.
The new magnetic field, which for OZx<d and z = O (just above the plane), is

{ ~~~

[(q ]1/2E. ~ -1
r[~)2-1]”2 Ct-d

HY=~; Ct U(X -1) -’
I ))

u—
d-x ‘1

(69;1
— -1 Ct-d ~-~
x d-x

where the first term uses ho for $ = O and the second term uses -h. for $ = n
with a shift of origin and a corresponding time delay. For the present form

of source we define a normalized retarded time as

19



Ct-x=—
‘d d

(70]

from which the magnetic field can be written in the form

$Hfl~[-]u(Td)-[-~2u(Td+
For the present case we define a normalized charge per unit width as

(71)

(72)

Then from equation 69, making appropriate substitutions for et/x in
the first term and (et-d)/(d-x)in the second term we have

./
“[:u(ct-x)f[~r’dv-eu(cqd=dv

[[

‘d +1

1 x U(Td) [v*-l]
1/2

+arccosh(v)1- ]x/d
=—

T x
1

-( ) [

1/2
~ _~

d :-2) [v’-l] -l_; ui-7+2

1

arccosh(v) I-:

1

u(Td)

[

[T&+’f) 1 (- )]1/2 ~ X ~rccosh ‘d + ~.— .
‘n d x/d

U(rd+’: -2)

[

1/2

(1 )]

‘d _l
[Td(Td+2~ -2)] - l-~ arccosh — (73)

‘IT
1$

ln figure 12 qd is plotted aa a function of T
Note that including the end of the distribute i
~d somewhat at large Td. Actually qd is still
only logarithmically.

for various values of ./d.
source at x = d levels off
increasing at large Td but
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v. Summary

With the results of this note we have estimates of the fields radiated
above the distributed source and the associated currents in the distributed
source, With these currents the distributed source delivers charge and
energy which should be allowed for in the design of this type of a simulator.
One should note that the initial surface current density (associated with
the fields above the source) can be fairly large due to the fact that the
propagation speed of the source is set equal to the propagation speed of the
fields above the source, For the present calculations we have given the

source a step-function time dependence; these results illustrate the behavic)r
of the fields, current, and charge. For some particular design of a distribu-
ted-source simulator the time dependence of the source will differ somewhat,,
e.g., by having a nonzero rise time and a final decay to zero; the present
results can still be applied using convolution-integral techniques. One
feature not included in the present calculations is amplitude variation of
the source along the z’ coordinate; including such a variation of the source
would alter the results to some extent, but not greatly if the relative
amplitude variation is small,

One should note some of the limitations imposed on the results by the
initial assumptions. The ground is rather finitely conducting beyond the
ends of the distributed source (unless one purposely places conductors there).
The distributed source also has only finite width, In the time domain,
however, the presence of the finite width is not initially noticeable on the
source (away from the sides) due to the propagation time required for the
presence of the side to be noticed at the position of interest. Eventually,
however, the presence of the sides will affect the currents in the source.

We would like to thank AIC Henry J, McDermott, Jr., and Amn Richard T.
Clark for the numerical calculations and resulting graphs in this note.
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Appendix A: Evaluation of Some Integrals

In this appendix we evaluate some of the integrals which appear in
previous sections of the note,

From equations 29 and 30 we have the integral

Substitute

giving

m F

(Al)

(A2)

1. J-

(A3)

where the second part of the integral has been integrated by parts. The

center term is zero by letting the real part of y have a small positive part.
Combining the two remaining integrals we have

where we ‘nave
The r~maining

(.44:)

again integrated by parts and the first term goes to zero.
integral is tabulatedla giving

7P’ K1(YP’) (A5)

2a
or in terms of ‘k= -jY we have

la. AMS 55, Hanabook of Mathematical .Functionsa ~~ational Bureau of Standardsl

1964, equation 9.6.23.
2a. Reference lz, equation 9.6,4,
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(A6)

where K1 and H~2) are well-known tYPes ‘f ‘essel ‘unctions’

From equation 57 we have the integral (for T> 1)

1

T @@2 ~v

‘2 =
~ [v-cos($l)12

Substitute

n = V-cos(+)

giving
T-cos(I+)

J 1/2
~-2[n2+2cos(+)n -sin2($)l dnA2 .

I-coS($)

-r-cos($)
P

T-cos(@) T-cos(fjl)

r

J+ {q2+2cos($)-sin2($) l-1’2d~

I-coS(@) 1-COS(4)

where we have

A2.-

+

=-

=-

(A8)

(A9)

3a
used Dwight , equation 380.321. This further reduces to

1/2
T-COS(l)

~ + ln12[~2+2cos($)n l/2+2n+2cos(o)-sin2($)l

1-COS($)

Cos($)

[ ““‘“- “
2cos(+)rl

II

-2sin2(@)
~ arcsin

2n

I-coS($)

(A7)

\
-1/2dq

+ COS(I$) ~-1[~2+2c*s ($)-sin”2($)l

* + in [T+(~2-1)1/2]+*[-arcsin~,j~s~$~)
[T2_+l/2
T-coS(@)

+ arccosh(T) + cot($) arccos
[=$)] ‘AIO’

for which we have used Dwight, equations 380.001 and 380.111.

3a. H. B. Dwight, Tables of Integrals and Other Mathematical Data, 4th cd,,
MacMillan, 1961.
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From equation 59 we
L

J[v’-,]I/’
‘3 = V-cos($)

1

where we
equation

have the integral (for T > 1)

T-cos(l#l)

dv =

J

rl-1[v2+2cos($)n -sin2($)11’2 dn (All)

1-COS(+)

have used the substitution given by equation A8. Then using Dwight$
380.311, we have

‘3 = [n2+2cos(@)Tl -sin2(~)]1/2

T-coS(@) ‘T-COSC($)

-t-Cos (+)
[

[T12+2COS($)TI -sin2(4)T1’2dn

I-coS(@) I-coS($)

T–c(xi((#))

-sin2(0)
[

TI-l[rI’+’COS($)ri -sin2($)]-1’2dfi

I:cos ($)
These latter two integrals were

(A12)

evaluated in equation A1O. Thus we have

‘3
= [T2-@’ + cos($)arccosh(~-)- sin(+) arccos

[:~:::::f’1 ‘A13)

..
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