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Parameters for Electrically-Small Loops and Dipoles
Expressed in Terms of Current and Charge Distributions

Capt Carl E. Baum
Air Force Weapons Laboratory

Abstract

-~ This note formulates the basic low-frequency parameters of loop and dipole
sensors in terms of appropriate current and charge distributions in space. The
parameters include equivalent areas, equivalent lengths (or heights), and equiva-

lent volumes. This formulation can be used to optimize the current and charge
distributions for various applications.
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I. Introduction » 7 ¢

In a previous notel we discussed some of the basic parameters of loops P
and dipoles with the restriction that the frequencies of interest are low :
enough that radian wavelengths (or skin depths, as appropriate) in the medium
of interest are much larger than the sensor dimensions. This allows one to
use quasi-static techniques to calculate the low-frequency parameters of the
sensor. For loops and dipoles we have equivalent areas and lengths ‘and
inductance or capacitance, as appropriate for the various Thevenin and
Norton equivalent circuits., These parameters can be combined to give an
equivalent volume which, when divided by an appropriate geometric volume
containing the sensor, defines a figure of merit which can be used as a :
guantitative measure of the efficiency of a sensor design for a particular
application. )

In the present note we formulate these low-frequency loop and dipole
parameters 1in terms of current and charge distributions, respectively. We
assume static currents and charges in space with distributions appropriate
to those for loops and dipoles and calculate the sensor parameters as
appropriate integrals over these distributions. This formulation has the
advantage of aiding one in looking for current and charge distributions
which optimize various of these quasi-static sensor parameters. If one
knows something about optimum current and charge distributions one can
then consider sensor designs from the viewpoint of approximating these
distributions.

IT. Loop Parameters

The open circuit voltage (quasi-static) of a simple lcop sensor is
proportional to the time rate of change of some component of the incident
field.? If the loop is designed such that this particular component

of the magnetic field through the loop (open clrcuited) is undistorted
by the loop conductors, then we can calculate the open circuit voltage as

o b

cC J
CO

=+ ;
*ds = B - dS @h)

i

provided the line and surface integrals are defined such as to include
the possibility of multiple-turn or fractiomal-turn loops. This equation
suggests that we define an equivalent area Aeq for loops in general as

-— . +
Voo T OBy A (2).

N
where Bjyn. is the incident static magnetic field. The equivalent area

1. Capt Carl E. Baum, Sensor and Simulation Note 38, Parameters for Some
Electrically~-Small Electromagnetic Sensors, March 1967. —
2. All units are rationalized MKSA.
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where u is the permeability of the medium and L is the loop inductance.

" component of B ne in the direction parallel to Keq. From reference 1 we
" also have an equivalent length as _ S Em e
R o : S e e -
Yeq T 1 Beq . (3)

can be considered a vector to indicate the sensitivity of the loop to the . ek

This equivalent . length is defined such that we have a relation between the ,
short-circult current and the incident field Hinc as ERIsS LR

- —)- . ‘-).
I Hipne " feq (4)

There is an equivalent volume given by

V e e - -> , ’
eq T T A Aeq feq " Peq @«:

=t

Defining some reference geometric volume Vg inside of which the sensor ig LM
contained we have a corresponding figure of merit given by

v
n == 6) -,
g -
For convenience we also define
. .
heq * [Begl b 24 % ligql ™)
Now consider a static current distribution j(?') in V_. We have

two position vectors, ¥' and *. The corresponding volume i%tegrals use

dV' and dV to indicate integration over the primed and unprimed coordinates,
respectively. With some static current density'?(?‘) which 1s required tc
be divergenceless, i.e.,

veI(EYY =0 (8)
we can define a turns density”(ﬁﬁité‘meter_z) as
>
RGED = LI (9)

where I is some convenient current used for the definition. For typical
cases where there is one pair of sensor terminals we choose I to be the
current into one of the tergigalS'and out the other. In some cases it
may be desirable to define n(r') differently but we use equation 9 for
our present purposes.



The magnetic dipole moment m of the current distribution is defined by

m o= % g xJ (@) av! ' (10)
VS
In terms of the turns density this becomes
> }_ S -y .
m o= 7 r'xn(r')dv (11)
VS

If I 1is the current in one particular closed turn of wire (one turn being
defined consistent with equation 9) the corresponding magnetic dipole moment
can be written as a line integral in the form

a, o= L % *' x da’ (12)
1 2
C1

where Cl is the contour of the wire in space.
Referring to figure 1 consider a contour C; in the y'z' plane; let
X

this be the projection of C, on the y'z' plane. The equivalent area of
this wire turn has a componént in the x direction given by

Ay -§£Z ©(r'xds') e 'éé T ox ds' (13)
x c. 2 x x Z2 ¢
X X

Note that (1/2)];' P d;” is just thg incremental area covered by the radius
vector r' in moving an incremental ds' along the curve. If Cixis a simple
closed contour as in figure 1 then A; 1is just the geometric area enclosed
by the curve. The cquivalent area of*the Joop turn on contour C, is then

Just
£, = 26D 7' x ds (14)
1 7 X

¢4

Thus, the magnetic dipole moment and equivalent area of this loop turn
are related by

;1;
.
Al- 1

= (15)
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Since thls relation holds for all the loop turns which go to make up the
divergenceless current-density distribution we can calculate the equivalent
area of this distribution by adding up all the magnetic dipoles giving

eq ° 7 : (167
which can be written &s
~
o= IV I ey vt = 2] Yk A dve (17)
eg 21 - 2 ;
Vv %
g g

Thus, we have the equivalent area in terms of an integral over the current
density or turns density.

Note the relation between the equivalent area and the magnetic dipele
moment., This is similar to the relation between the equivalent height and
electric dipole moment for a dipole antennas if curreént is replaced by
charge. The result of equation 16 could also be derived from reciprocity
in a manner very similar to the derivation in reference 3 (section IV)
using loops instead of electric dipoles,

The veccor potential associated with the static current distribution
is given by

. ! j ) .
A(r}) = L S —TL%T% dv? (18)
: r-r

The magnetic energy is given by

2

;oo Lo Lo ;
Up =72 LI7 =57\ 8B dV “H dv , (19)

I
P e
o

(-

- - s EONE ] 1 . 4 «
where the volume of integration i35 ail space. As shown in Smythe® this
magnetic energy can be written as

U= A(r)-J(r) dv (20)
\Y
g

=
Do

3. Capt Carl E. Baum, Sensor and Simuiation Note 09, Design of a Pulse-
radiating Dipole Antenna as Related to High-Freguency and Low-Fregquency
Limits, January 1969.

4, W. R, Smythe, Static and Dynamic Electricity, 2nd ed., McGraw zill,

1950, p.315.
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iThe inductance of the sensor is then

[ Ao 1 - - - >
P L = = A(r) « J(r) dv

; )
v
g
JGED - 3@
U J(r J(r
= 2 > - dv'av
471 vy |z-7'| R X
| g 'g _ .
> > > > . . o HL,
b a(e!) * n(r
3 e w 5
v v E
g g

Having the equivalent area and inductance of the loop sensor we can calculate |

an equivalent length as
' -> > e
r' x J(r') dv'

L - - g
.’ &4 . &d ik > > > >
J » !
| ‘ S S
Vng
‘j' ' ox R(E") av!
VS
= am . (22)
- >
1
SS nm_*'_*n(r ) qyrav
vV |z-r'| .
g 8

The figure of merit comes from the equivalent volume as

9



ly TUx J(Fav b e T ox J(EHav!

-t
<}
)

Ly -

v ,
_.eq _ 7 3 =L _£ g
nEy VL eq eq V
e 8 ¢ STCIDIMINCY
J(x L) gqv'av
|>—->I
v v |r-r‘
g g
Y [ . -
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v
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g > > :
r
S n(r+)¢ In( L 4yrav
vV er!
g g r-r

Note that these expressions for the figure of merit (and the cogresponding
expressions for the equivalent volume) are homogeneous in J or n as appropriate;
the equivalent volume is only a function of the relative distribution of

the current density (or turns density) in space. Knowing the relative

current distribution for some loop design one caun calculate the figure of

merit (and other parameters) from appropriate intagrals in this section.

For some types of loops the current distribution may be known by inspec-

tion because of the special interconnection of the loop turns, symmetry —
considerations, etc. However, for other types of loops, finding the

current distribution may require more elaborate calcuiations such as the
solution of boundary valiue problems.

III. 'Dipole Parametars

For an electric dipole the open circuit voltage (quasi static) is
proportional to some compcnent uf ine incident electric fisid. If E
is the resultant static electric :leld (including the presence of the

sensor) then the open circuit veoltage is given by
Voo =~ g E - ds (24)

where the line integral is along the curve CO extending between two
positions on appropriate separate condugtors. Equation 24 suggests
the definition of an equivalent height heq as

(25)

=2

t1d

VQC =7 inc eqg
= g . . . - . . - .

where Einc is the incident electric field. The sensor is then sensitive

to the component of the incident electric field parallel to hig. We also

have (from reference 1) an equivalent area given by 4

> C = .
Aeq - e heq (26)
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, . .na wwhere €'is:the permittivity of the medium-and C'is the dipole capacitanc )
% ¥ For' the present discussion we assume the medium is nonconducting, although
‘. as discussed in reference l' the equivalent height 'and’ area can be extended
© < - to the case of a conducting medium-as'well, with certain limitations..jiThe . i

' gquivalent 'area is defined so that the incident displacement current density

Dj,c and the short circuit current are related by [

T

-+ -
ISC = = Dine Aeq (27

The equivalent volume is' given by

- ~=-}§3g, —_
C = > - - S
€

B Ay @8

Veqg T T Beq T Beg

eq

=

alo

<
d

With the sensor contained in some’ reference volume Vg we have a filgure |
of merit given by

\

S (29)
\Y
. ,

We also define
7 T A = !Z ' 3
Raq * Begl eq  eq 0
i' 1 * Next consider a static charge distribution p(X') in Vg with
é‘ D(;') av' =0 (31) -

g

- -
We use"the two position vectors r' and r as in the previous section. The
electric dipole moment is

P = g T (F) av (32)

v
g

'Let"p(;‘)“be;che'chargeddensity on: the sensor when we. have put some charge Q
‘into~ona of the sensor terminals: and oot the other (in .the absence of an
incident ‘electric field). The mean charge separation distance is then

given by

(33)

joy
1l
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In reference 3 we have shown that- the mean chargelseparaéion distance is’ the ,

ex,- X v f . ‘,1: KN

LEE T e

same as the equivalent height. “Thus, we have

=g S

. | A :
S r' p(r') dv' N (34)

v
g

O

eq

Bt
Cosah

The equivalent height is' thus ‘given by an- integral over the static charge
distribution. . : .

e

—_
> 1 p(r') -
(I)(r) = 4LTTE - > (35)
|z~ r'l
v
g . ‘ :
The electric energy is given by A S ;;L;w._ i
1 2 _ 1 > - L= -+

Ug = E—C v 5 € E E dV =73 D * E dv (36)

v T

35 - jri L LA
where V is the voltage at the antenna terminals and the volume of integration L

B e )
: R

is all space. Next we use B S

f = -~V s ¥ —ﬁ = p - :':"“,-;-., : ,yv i ‘;Ii‘.'&'.,!’- i - (37)

U, = -5

so that we have
e 5

Veo Voo . LD (38)

=%—S ¢pdv - j v+ (8D) av ) o I

The last of theée integrals - can “be written as a surface integral over a
surface Se which we take as a surface of comstant r = || with r + =, Thus,.

we write

.
Sv © (D) av = lim g op * dS (39)

Yo
Ve Sew
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where dg points away from the origin. Now in another note we show with

« - the restriction given by equation~3%1- ;gat d O(r"z) as r +- «®, The area

of S, is 0(x“) as r > e, Then_ sigceVIDl + 0 ag r > ® we have

S i b

zgivwﬁ*) w=0 : L (40)
v

[=<]

and thus we have

e

=
i
TN

S () p(r) dv (41)

s

This result is the analog of equation 20 in the previOus section., The

»

LimmIeT T - e PRt : ,";3{;{?"
=
) o(r )o(r) AV v (42)
4wsV2 |r r
v v -
g 8
Now the antenna voltage is given by
V=g _ (43)
which, when substituted into equation 42 gives
V-1
4naQ (rg) @ gy ray | (44)
r- r

so that the capacitance is expressed in terms of the charge distribution,

Note that Q (the antenna charge) is just an integral of p (') over some
appropriate part of the sensor.

5., Capt Qarl E. Baum, Sensor and Simulation Note 72, An Equivalent-Charge
Method for Defining Geometries of Dipole Antennas, January 1969.
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The equivalent area is given in terms of ‘the- equivalenﬁ height and
capacitance as

- - ’ :
S r' o(r') 4v! - B

(45}

eq eq S S‘ > + .
p(rp(r) : o ’
'—T_T_—- dV'dV. . Geese ool .
Vo V - . E

r-x'
g g

_Veg __C__-> +
n_v _V€b.eq'h
g g (+,) (—>
2 )o(x) 4yigy

T-r'|

Note that the figure of merit and equivalent -volume are homogeneous in ¢.
Knowing p(r') one can then calculate the various sensor parameters as
integrals over this distribution. However, for a particular sensor design,
one may need to solve the Laplace equation in ¢ to determine this distribu-
tion, making the problem scmewhat more difficult. On the other hand, the
formulation of the figure of merit in equation 46 (as also in equation 23)
may be used to look for optimum charge (or. current) distributions for
varicus sensor design applications. Then one might try to design electri-
cally-small sensors which approximate these distributions.

12

-t




