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Abstract

This note formulates the basic low-frequency parameters of loop and dipole
sensors in terms of appropriate”current and charge distributions in space. The
parameters include equivalent areas, equivalent lengths (or heights), and equiva-
lent volumes. This formulation can be used to optimize the current and charge
distributions for various applications.
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I. Introduction
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In a previous notel we discussed some of the basic parameters of loops
and dipoles wtth the restriction that the frequencies of interest are low
enough that radian wavelengths (or skin depths, as appropriate) in the medium
of interest are much larger than the sensor dimensions. This allows one to
use quasi-static techniques to calculate the low-frequency parameters of the
sensor. For loops and dipoles we have equivalent areas and lengths ‘and
inductance or capacitance, as appropriate for the various Thevenin and
Norton equivalent circuits. These parameters can be combined to give an
equivalent volume which,when divided by an appropriate geometric volume
containing the sensor, defines a figure of merit which can be used as a I
quantitative measure of the efficiency of a sensor design for a particular
application.

.,

In the present note we formulate these low-frequency loop and dipole
parameters in terms of current and charge distributions, respectively. We
assume static currents and charges in space with distributions appropriate
to those for loops and dipoles and calculate the sensor parameters as
appropriate integrals over tilesedistributions, This formulation has the
advantage of aiding one in looking for current. and charge distributions
which optimize various of these quasi-static sensor parameters. If one
knows something about optimum current and charge distributions one can
then consider sensor desigas from the viewpoint of approximating these
distributions .

11. Loop Parameters

The open circuit voltage (quasi-static) of a simple loop sensor is
proportional to the time rate ~f change of some component of the incident
~ field.2 If the loop is designed such that this particular component
of the magnetic field through the loop (open circuited) is undistorted
by the loop conductors, then we can calculate the open circuit voltage as

co so

(1)

provided the line and surface integrals are defined such as to include
the possibility of multiple-turn or fractional-turn loops. This equation
suggests that we define an equivalent area ~eq for loops in general as

+

v z inc” IeqOc (2)

where ~inc is the incident static magnetic field. The equivalent area

1. Capt Carl E. Baum, Sensor and Simulation Note 38; Parameters for Some
Electrically-Small Electromagnetic Sensors, March 1967.
2. All units are rationalized MKSA.
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~:k% ? ~:lj+’can be considered a vector to indicate the sensitivity Of the loop to the. G.-f;*”+“.

component of zinc in the.direction parallel to ~eq, :L.l!jf’4From reference 1 we ; ~:~~;::;!;..t~

also have’an equivalent”length as ;.-:,g.%:$.,*P’.:~Lj*@i
,.-.4.:.! ,.

req
=22.

‘“4.34*
L eq (3) ::Yi:’.+q,,.:+~,...:+’4ti~

a, ...;
where u is the permeability of the me”diumand L is the loop inductance, ‘—!—..-.+._.

I This equivalent
a

length is defined such that ye have a relation between the ,-j+[,.,~’$’$

short-circuit current and the incident field Hint as yq,Cgu;$:.& ,@

I =
Sc - ~inc “ zeq

There is an equivalent volume given by

Defining some reference geometric
contained we have a corresponding

v
yc~

g

~eq

volume Vg
figure of

For convenience we also define

inside of which the sensor is

merit given by

(6)

(7)

. :,.l&/ ,,:

.“. .

.
.’$,...

.-—__—-.

Now consider a static c:rrent distribution ~(;’) in V . We have
two position vectors, ;’ and r. ‘BThe corresponding volume I tegrals use
dV’ and dV to indicate integration over the-primed and unprimed coordinates,
respectively. With some static current density ~(;’) which is required tcI
be divergenceless, i.e.,

V’ .3(:’)= o (8)

we can define a turns density ”(units–meter‘2) as

(9)

where I is some convenient current’ used for the definition. For typical
cases where there is one pair of sensor terminals we choose I to be the
current into one of the ter~i~als and out the other. In some cases it
may be desirable to define n(r’) differently but we use equation 9 for
our present purposes.
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The magnetic dipole moment ~ of the current distribution is defined by -..

+= 1
m- JTV

3+~x (;!)dv!

8

In terms of the turns density this becomes

+ I
m“ T 1 ;’x;(;’)dV’

%

(10)

(11)

If I is the current in one particular closed turn of wire (one turn being
defined consistent with equation 9) the corresponding magnetic dipole moment
can be written as a line iricegralin the form

(12)

where Cl is the contour of the wire in space.

Referring to figure 1 consider a contour Cl in the Y’Z’ plane; let
x

this be the projection of Cl on the y’zr plane. The equivalent area of
this wire turn has a component in the x direction given by

Note th$t (1/2)/1’ x d;y[ is just th~ incremental area covered by the radius
vector r! in moving an incremental ds’ along the curve. If Cki9 a simple

closed contour as in figure 1 then Al is -justthe geometric area enclosed
by the curve. The equivalent area ofxthe IOOP turn on contour c1 iS then

(14)

Thus , the magnetic dipole moment and equivalent area of this loop turn
are related by

.-%

(15)
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A, COORDINATES
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B.CONTOUR IN YIz1 PLANE WITH POSITIVECONVENTION

FIGURE 1.COORDINATES AND CONTOUR ILLUSTRATION
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Since thfs relation holds for all tile~.oopturns which go to make up the
divergenceiess current-density distribution we can calculate the equivalent
area of Chis distribution by adding up all.the rnagne~ic dipoles giving <

which can be written as

(16)

(17)

ThLls, we have the equivalent area in terms of an integral over the current
density or turns density.

i<ote the relation between the equivalent area and the magnetic dipole
r,omen~, TJJisis similar to Lllerelation between t!~eequ~valt?nt height and
electric dipole moment fur a dipo~e antenna3 it csrrent is replaced by
chargz. The result of equation _16co(ildalso be derived from reciprocity
in a manner very simiiar to the tierivarion in reference 3 (section IV)
using loops instead cf eiectrir dipoles.

The vec:or potential assori:lted with the static current distribution

is given by

.A ‘s .i(;’)
i(r) = +& ,;_; ,, (Iv’

v
F3

.

(18)

where the volume o.fintegration is 011 space, As snown in Smyt’ne4 &his
magnetic energy can be writtea as

(20)

3. Capt Carl F. Baum, Sensor and Siwui.atipn Xote ti9,Desi~n of a PuLse-
raciiatiagDipole Antenza as Rela~ed Lo Hig’h-Fre~ue~cy and Lo’~-Frequency
Limits , .Jzauary 1969.
4. W. R. Smythz, Static. and Dynamic E1.ectric.ity,~nd ede , 14cGraw ;;il1,
1950, p.315.
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;The’inductance of the sensor is then,. ..._— —
1-

.—.... —

dV’dV

U
++

IJ n(r’) “ ;(;)
‘c dVfdV

Vv
I;-q

gg

Having the equivalent area and inductance of the
an equivalent length as

z IJ ~+

eq ‘Yeq

4

= 2TTI

r

J+
r’ x ~(j’) dV’

1?

loop sensor we can

[ <’ X it{;’)dV’

H ++ ++
n(r) . n(r’)

dV’dV
Vv ];-3 I

gg

The figure of merit comes from the equivalent volume as

‘7
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(22)
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Note that these expressions for the figure of merit (and t~e co~responding

expressions for the equivalent volume) are homogeneous in J or n as appropriate;

the equivalent volume is only a Iunccion of tl~erelative distribution of

the current density (or turns dens<ty) in space. Knowing rhz relative

current distribution for some loop design one cau calculate the figure of

merit (and other parameters) from appropriate integrals in this section.

For some types of loops Ehe currenr di.stribucion may be ‘kno:.mby inspec-

tion because of t:lespecial interconnection of the loop turns, syniietry
considerations, etc. ‘dowever, ior other types of loops, fLnding the

current distributi~n may requirz more elaborate. calculations such as the
solution of boundary va;ue problems.

111. Dipole Parameters

For an electric dipole the apen circll~tl“ol:age (quasi szacic~ is
proportional to some compcnent ui the incident electric fie-Ld. If ‘J

is z’neresultant static elec~ric !“Leld <includi.zg :he Fresence of the
ser.sor) thea the open circuit voltage is given by

1.++
v oc=- E“GS

c 0

where the line ir.tegrai is along the curve C extending between two

positions on appropria~e separate condu$tors~ Equatioa 24 suggests
the definition of an equivalent height h ase!q

V=-iinc” :eQ
Oc

(24)

(25)

where Iinc is che inci.dent electric field. The sensor is th$n sensit;ve

to the component of the incident electric field parallel to h ‘iJealsoeq -
have (from ref2rence 1) an equ~valent area given by

,

,-

C+iieq=~kl
eq

(26)
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.; ~,, .? .:iIwheraq“is~the permittivity“of’”th~ medium”and ‘C’”is the dipole capaci,t~n,c,e’,-_.._+,.:-CL*?‘:.?$%::
,

..>~Forth@ present discussion-we”assume the medium is non~onducting, al}h:ugh-~a~,~~..

(0 as discussed in reference 1“”the’equivalent height’and’area can be extended
.,, ,.. to the casq,.ofa conducting medium’’as”well, with cer~ain.limitationq,.-$~T~e~.i~..,‘,.

+quivalent area is defined”so’that the incident displacement current density

‘inc and the short circuit current are related by .*Tr- t

ISc = - Zinc “ Ieq (27)

The equivalent volume is’given by

.:.

With the sensor contained in some reference volume V we have a figure
of merit given by

g

(29)

kealso define

(30)

Next consider a static charge distribution P(;’) in Vg with
n
I

J P(y’) dV’ = O (31) “
v

g

We use’’the two position vectors ~“ and ~ as in”the previous section, The
electric dipole moment is

+ s+
P= r’ p(~’) dV’ (32)

v. . .
g

‘Let’p(;”’)’beLthe charge’”.density.on:the sensor when we.have put some charge Q
into’”one of””the-sensor”terminals: afid”oat the other (in.the absence of an
incident eleccric field), The mean charge separation distance is then

given by

(33)
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(34)
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height isthus given by an”integral”over the static charge,-;-.1”,The equivalent
distribution. ~..

.,

The scalar potentiaS.

dV‘
.,’

The electric energy iS given by ,.,.’: .-.:,,? ,, .,...... 9.7..... [
t.’ ,,.. .

.,
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.,t.,.:. , :~(37)
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(38)
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Vm Vm

1=—
2 s @pdV - ; J V“(@b) Civ

‘6
V-

The last of the e integrals can be written as a surface integral”
surface Sm which we take as a surface of constant ”r’=’\?l with r
we write

.“ I
over a I
+C4

I

● Thus,. ;.; j.

(39)
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where d$ points away from the origin. Now in another note5 we show with . ‘
,[the restriction given’by eq~~tion”3~’t~at @ ““=0(r-2) aS r + ‘~ ~h~ =ea -:.: ‘

,, Of S@ is 0(r2) as r ~ ‘.-, Then-since IDI ~ O as r ~’~ we have
,.’, _,,.,..,,,’.... .L ,, %
...
.?

J
V*(O3) dV=O : ‘(40)- ~

v co

and thus we have

Ue=+
I

@ @ dV (41)

I -Vg ““-”-- ‘“” ‘-””
. . ,7I .-”-.+z., ‘%,”:.;; ‘..’,

This result is the analog of equation 20 in the previous section. The ‘:‘4
capacitance of the sensor is ~hen .._ . .= .,.; ~ ..,.~.,..:..-. --—-==.---—----.-~..--—------- .-,-

, .%...,.Q+ *zQ!z-
,. .,

c=+
1

@(;) j)(;)dV

Vg

1 H p(;’)o(:)
dV ‘dV

= 4TrEv2 1:-;’l

Vv
gg

(42)

Now the antenna voltage is given by

which, when substituted into ”equation 42 gives

(43)

(44)

so that the
Note that Q
appropriate

capacitance is expvessed in terms of the charge distribution.
(the antenna charge) is just an integral of P(?’) over some
part of the sensor.

5, Capt Qarl E. Baum, Sensor and Simulation Note 72, An Equivalent-Charge

Method for Defining Geometries of Dipole Antennas, January 1969.
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The equivalent
capacitance as

c+x
eq ‘Zh=

eq

The figure of merit comes

.-.
- i..-- -. .-

1, “i -.

)

Note that the figure of merit and equivalent:volumeare homogeneous in p.
Knowing P(;’) one can then calculate the various sensor parameters as

integrals over this distribution. However, for a particular sensor design,
one may need to solve the Liaplaceequation in @ to determine this distribu-
tion, making the problem somewhat more difficult, On the other hand, the
formulation of the figure of merit in equation 46 (as also in equation 23)
may be used to look for optimum charge (or.current) distributions for
various sensor design applications, Then one might try to design electri-
cally-small sensors which approximate these distributions.
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