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Abstract

The time history of voltage and current on a buried transmission-

line simulator is obtained for the case of multiple capacitor sources

combined with an inductive energy source. Both infinite and finite-length

lines are considered. Capacitor parameters are chosen to give less than a

ten-percent ripple in the waveforms. The results of calculations are

graphically presented to show how the inductance affects the current wave-

form.
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1. Introduction

Buried transmission-line simulators driven by capacitors have been

considered’in two previous notes. The first note~ considered the use of a

series

in the

may be

in the

resistor, which may be chosen large enough to damp out oscillations

driving current. The second note2 explains how several capacitors

switched into the circuit in sequence in order to shape the waveform

simulator. The multiple capacitor technique achieves considerable

flexibility in shaping the waveforms without inserting series resistors,

which absorb energy. A special technique, shorting out the capacitors at

the time the voltage across them becomes zero, prevents oscillation in the

driving current.

Inductive energy sources were recently studied3 in connection with

the problem of shaping the current and voltage waveforms for buried trans-

mission-line simulators. The authors of this investigation were quick to

point out that the over-all shape of the current pulse for long times after

the initial surge are preferable to those of a single capacitor source.

However, the initial surge is not desirable but is unavoidable when the

inductive source is used alone.

The present note reveals that added flexibility can be achieved by

using capacitive energy sources to initiate the pulse and an inductive

source to sustain the pulse. Wave shapes are given for terminal current

(or magnetic field) and terminal voltage (or electric field) impressed on

the buried transmission line for the cases of: 1) the infinite line and

2) the finite line. The fields as a function of position in the simulator

may be determined from the normalized terminal voltage and current by using

techniques which were detailed in two previous notes.
4.5

We have assumed

the electrical parameters of the ground to be constant over the space in

and around the transmission line. Furthermore, in this note, we assume for

all frequencies of interest that ~ >> UE ●

The equivalent circuit impedance developed in a previous note is used

to relate the voltage and current at the simulator terminals. Figure 1

illustrates the connection between the N-2 capacitors, the shorting switch

and the inductor. Each capacitor
Ck

is charged initially to a voltage
‘k “

The inductor has an initial current
lL “

The k-th switch is closed at
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FIGURE 1 EQUIVALENT CIRCUIT FOR THE BURIED-TRANSMISSION-
LINE SIMULATOR DRIVEN BY MULTIPLE CAPACITIVE AND
SINGLE INDUCTOR SOURCES
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time
‘k ‘

where
‘k

~ tk+l .

which happens to reside on the

.. 9
The voltage, Vn_l , is defined as that voltage

parallel capacitors at the time the inductor

switch is opened.

In theory, the switches could be actuated at any time and in any

sequence. However, there are definite advantages in choosing carefully

the times and sequence of switching. The advantage in choosing the cap-

acitor source first lies in its ability to get a large current flowing in

the simulator in a short time. The closing of the first capacitor-source

switch under high voltage has been successfully demonstrated by various

spark-gap or ionization enhanced switches. The closing of successive

capacitor switches occur with no voltage across them and therefore may be

mechanical in nature. The closing of each switch corresponding to

k = 1,2,....2N-2 is assumed to be instantaneous and the switches are

assumed to have no resistance when closed.

During the period when energy is being released from the multiple

capacitors, the inductor is out of the circuit and the simulator current

reaches maximum shortly after the time a capacitor is connected to the

simulator. TO open the (N-l)th switch without having the current in the

simulator line equal to that in the inductor would give an instantaneous

voltage spike across the switch similar to that when the inductive source

alone energizes the line. The calculations in this note apply for the

particular kind of switch where one desires the current to be zero while

the switch is opened. The initial inductor current is chosen to be equal to

the simulator current at the time when the (N-l)th switch is opened.

Furthermore, in order to simplify the problem of timing the switch actuation,

the time derivatives of both simulator and inductor current should be equal.

For these combined reasons, the inductor switching time is chosen to be the

precise time when the simulator current reaches the last peak due to the

capacitor sources.

The parameters of the first capacitor,
‘1

and Cl , may be chosen

to give a certain rise-time and peak current into the load. The values

of
‘k ‘ ‘k ‘ and Ck ‘or 1 < ‘< N

- 1 are normalized for convenience.

The normalized values are chosen to give the proper degree of ripple in

the waveform. The N-th switch is closed at the precise tim~ when the

4



-.

original energy in the capacitors has been completely released. This

procedure prevents energy from transferring back into the capacitors from

the inductor and simulator. The value of L may be chosen to give the

proper decay time and width to the pulse,

The energy stored in the inductor, given by $ L12 , may account for

a large portion of the total energy. When high energy content is desired

in each pulse, it is more economical to supply energy to the simulator

sources over a relatively long period of time. So long as conventional

energy sources are used, the energy build-up wil,l take more time than the

energy release into the simulator. The rate at which the initial capacitor

voltage and initial inductor current are built up may be determined by the

requirements set down on pulse-length and repetition-rate.
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II. Problem Solution

The general solution of the circuit equations for transient/pulse

generators are normally carried out using Laplace transform techniques.

The solution to these equations becomes difficult when the load impedance

is a function containing the square-root of frequency. Furthermore, the

problem becomes increasingly complicated when a number of different generator

sources are switched sequentially onto the load.

This problem is formulated such that a numerical evaluation of integrals

will avoid the difficulties experienced by one attempting to obtain a closed

form solution. The following solution advances along the lines developed

in reference 2.

The voltage and current are complicated functions of time when a

pulse generator, containing elements such as those shown in Figure 1, is

used for a source. In this case, the load impedance is a function of

frequency; the generator internal impedances are functions of frequency;

and in addition, the generator impedance changes each time a switch is

actuated. The relation between the terminal voltage and current in terms

of the line load is

V(s) =2L(S)?(S) ,

where the tilde signifies the Laplace transform of the quantity. The same

voltage and current may be expressed in teqs of the generator driving

voltage and generator internal impedance as,

:(s) = ;g(s) - ;(s);g(s) 9 (2)

from which one obtains the solution for the current in the frequency domain

as



%
% v (s)
I(s) = ~ .

ZL(S) + ;g(s)
(3)

For simple circuit impedance functions, the inverse transform of equation

(3) may be readily obtained by applying the usual inverse Laplace integral

transform.

Great difficulty is experienced in obtaining the.inverse transform

when the denominator of equation (3) contains odd higher powers of the
1/2 3/2 5/2

variable s , such as s , s ,... etc. To avoid this difficulty,

the solution to the simultaneous equations (1) and (2) may be written in

the implicit form

[
:(s) = ;g(s)

]
- ;(s)}g(s) 8(s)

(4)

= $(s):(s)

[1where G(s) = ZL(S) ‘1 is the Laplace transform of the impulse response

of the load admittance.

The convolution theorem6 may be used to obtain the inverse transform

of equation (4). Thus ,

t

I(t) = i V(t’)G(t - t’)dt’ . (5)
)
o

In order to perform the integration one must know

admittance, G(t) , of the load, and the previous

at the common generator-load terminals. For most

both the impulse-response

voltage history, v(t) ,

cases, the admittance

function may be found in closed form by taking the inverse Laplace transform

of the load admittance. For complicated functions, the time response may be
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tabulated without creating a problem in the numerical evaluation of the

integral in equation (5).

The previous voltage history may be obtained by taking the inverse

transform of equation (2). Of course the previous voltage history may be

remembered or stored in an array and recalled when needed. Remembering this

voltage over an interva~ facilitates a solution for different generator

circuits. When the voltage i.s known over an interval, for example the interval

between0 and ‘1’
equation (5) may be expressed as

‘1 t
I(t) = 1V(t’)G(t - t’)dt’ + J V(t’)G(t - t’)dt’ . (6)

o
‘1

This technique may be extended over as many new intervals as one may

have the desire to do so, or the capacity to remember data. It should be

pointed out that each new current involves the recalculation of each integrand

since the admittance function is convoluted.

The complete solution involves the simultaneous solution of equation

(6) and the generator circuit equation.

The generator circuit is complicated

the various energy sources into the line.

equation for a given period may be written

.
L

‘k
v(t) = vk-~

~
I(t’)dt’

I&
‘k

by the sequential switching of

The straightforward circuit

as

Y for k=l
.

.
k = N-2

s t
N-2

=v-—
w 1 \

I(t’)dt’ - L& , k = N-1
c1

‘N-2

(7)

L dI(t)=.—
dt

8

Y k=N ,



u

8
-.

[+.!,c1

-1
where Sk = .

n

Numerical techniques may be used to closely approximate the combined

expressions (6) and (7) such that the current at time t may be solved

for in terms of the values at time t - At and earlier times.

In some cases a numerical instability may exist between the discrete

time representation of the circuit equations and the discrete time approx-

imation to the convolution integral. In such cases, the solution may be

enacted by first integrating equation (6) by parts to get

t~=t t

I(t) = V(t’)F(t - t’) -
1
V’(t’)F(t - t’)dt’

t’=o o

where F(t - t’) and V’(t’) are defined by

t’

F(t- t’) = J G(t - t“)dt”

o

and

V’(t’)
dV(t’)=—

dt’ “

(8)

(9)

(lo)

Equation (8) may be combined with the generator circuit equations

(7) to complete a numerical evaluation of the current. For most problems

this later formulation involves more numerical work than the straightforward

convolution integral.
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111. Infinite-1ength Transmission Line

Consider the buried transmission line whose length is great enough

for the diffusion time to be much longer than the times of interest. If

one ignores the end effects at the connection to the transmission line,

the impedance of the infinite line is

ZL = fgdy Y

where f is a dimensionless factor which correlates the impedance of the
g

line with the wave impedance, and u and a are the permeability and

conductivity respectively of the soil.

A list of normalizing equations have been worked out which give the

circuit equations and the convolution equation in simplified form. They

are:

JC
-r
Ck ‘C

_ ‘k
‘k=~

-t
T=—
c t

c

s = St
c c

V(TC)
ec(~c) = —

‘1

I(TC)
hc(~c) =~

c

r 1

‘L
q=

(12)

1/2

10
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The normalized Laplace transforms of the current, voltage and line admittance

are related by

ic(sc) = :C(sckc(sc) (13)

1
where gc(sc) =—

<“

In the normalized time domain, the admittance function is

gc(Tc) =-J--- (14)
~

L

where the region of interest is OST The convolution integral becomes
c“

o

or alternatively,

T

~

cdec(~’)
hc(Tc) = - ec(o)F(~c) -

dTc
F(TC - ~Jd~;

o

where

(15b)

(15C)

The generator voltage equations after normalization are,

11
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T
c

ec(Tc) = Vk - Sk
\

hc(~~)dT;

‘r
Ck

? for k=l

T
c

I
t: dhc(~c)

ec(Tc) = v
N-1 - ‘N-2

hc(T:)d~: -—
~2 dT

T
c

c
CN-1

ec(Tc)

.

.

.

.

k = N-2

k = N-1 (17)

k=N . (18)

The voltage expression in the frequency domain is complicated and the use

of this convolution technique facilitates the solution without using it.

To obtain a numerical evaluation of (15) through (18], define a

set of variables, E1 , H
I’

and G
I

which correspond to the voltage

current and admittance for discrete times. Discrete time being defined by

‘I s (1- l)AT ,

(16)

where I is a positive integer and AT is a positive time increment.

The time corresponding to I = 1 is t = O . The values given by

El = 1 , Hl= O

(19)

(20)

are the initial conditions.

By using the simple trapezoidal approximation, the convolution integral,

equation (15a), may be approximated by

12
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(21)

J.-1

where the last term is an approximation for the interval..near the singularity

of the admittance function used in convolution. Equation (21) reduces to

H
z

I-= ‘I-1
+v’-E

Tr I

where

_ AT

[ 1

I-2
B +AT ~

E
- — ‘lGI + ‘1-1G21-1 - 2 J_2 ‘JGI-J+l

+ d’— E1_l
n

(22)

(23)

contains the contribution to
‘I

due to the previous voltage on the simulator

terminals. For I= 2 and I= 3 , the appropriate terms must be removed

from B1 ~ .

The alternative discrete time expression for the convolution integral

after integration by parts is

HI = D1 ~ - F2E1

where

1-1

‘I-1 : “EI-l
- ~F1(El + E2) - ~ (EJ - EJ_l)F1 J+2

J=3

(24)

(25)

13



contains the contribution to

the simulator. The integral

in discrete time by

where values are taken

In

terms of

(18), SO

explicit

be found

the following

due to che previous history of voltage on
‘I
of the line admittance, equation (9), is given

(26)

from equation (15c}.

paragraphs we will develop an expression for E. in

‘I and the generator parameters used in equations (16), (17; and

that substitution into either equation (22) or (24) will yield an

equation for
‘I “

Knowing HI , the value of E1 may immediately

from the generator circuit relations. Each value of E. and H.
1. L

may be stored or recorded for use in subsequent calculations of
‘I-1 and

‘I-1 “

Capacitor Drivers t<t
N-1

At the beginning, the energy sources in the circuit are only capacitors

which are individually switched into the line. The inductance is zero during

this period (k s N-2) ; so equation (16) is pertinent.

Using the trapezoidal approximation for the integral, the discrete time

approximation of the generator circuit equation yields a recurrence relation

‘I-1 + ‘I AT
‘1 = ‘I-1 - ‘k 2

.

Grouping all the terms containing the previous values of
‘I

and
‘I

into

one term,

(27)

.. e

‘I-1 = ‘I-1
- ~ SkAT H1_l Y (28)

14
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the recurrence relation becomes

‘I
‘SATH1 ,

‘AI-l-2k

Substitution of equation (29) into equation (22) provides an

expression for
‘I “

J~A1l+B1l

H
Tr-

1—”
.

S;*T @
l+—

IT

By making AT small, this equation may be used to solve for successive

values of the current up to the time the inductor is switched into the

circuit. When improved accuracy is desired, AT may be decreased.

After each calculation of current, the voltage must be found for use

in calculating the next value of current. The voltage is easily found

from the recurrence relation

‘I ‘ ‘I-1 - +skAT(HI + ‘1-,) o

(29)

(30)

(31)

Capacitor-Inductor Drivers
‘N-1

<t<t
N

In the introduction we pointed out certain switching times and relative

current amplitudes which give the least difficulty in performing the appropriate

switching of idealized circuit components. These times and amplitudes also

give good results in our attempt to generate a current waveform with low ripple.

For this reason, we will proceed in this analysis under the assumption that the

inductor is switched into the circuit at a time when all the capacitors are

already in the circuit. During the time interval when k = N-1 , the generator

voltage equation, (17) may be approximated in discrete time as

15
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HJ+HJI

- i - AT ‘“$ “ ;TH1-’E1=E1, -SN2
J=I‘+1

2
c

where E
1’

is the capacitor voltage at time
t = ‘N-1

relation may be obtained by writing the (1-l)th term

from equation (32) in order to eliminate E1, .

The recurrence relation is

. The recurrence

and subtracting it

where

(32)

(33)

The simultaneous solution of equation (33) and (22) provide an algebraic

expression for HI .

(34)

It is important to note that in the development of this equation, the

current in the Inductor at two previous discrete times contributes to the

voltage. During the two intervals of time before the inductor switch opened,

the inductor current in equation (32) was assumed to be equal to ehe simulator

16



current, i.e. the inductor current and its first derivative are equal to
..

the simulator current and its first derivative at the time the switch is

opened.

If the conditions are not matched in this way, for the first two time

intervals prior to the switching time, the inductor current is different

from the simulator current. Equation (34) becomes invalid for evaluating

the simulator current for the first two intervals of time after the switch

is opened. A separate expression must be developed for each interval.

By designating the switching time as TT, the generator voltage at time

T
1’+1

may be expressed as

E
1’+1

= A&, -

where

L

2
AT+ ‘L

‘N-2 2
1tzAT ‘1’+1 ‘

c

(35)

.2

M’ ~E~, ~! ‘H +—
- ‘N-2 2 I’

t;T ‘i’
c

and H; is the normalized value of inductor current before the switch is

opened. In the limit as AT approaches zero, the right side of equation

(35) becomes infinite. If the inductor current is greater than the simulator

current, there is a positive voltage spike at the time the inductor is placed

in the circuit. If the inductor current is less than the simulator current,

there is a negative voltage spike at the time the inductor is placed in the

circuit. However, if finite time differences are used, the voltage remains

finite so that the voltage may be substituted into equation (22) to yield

the relation.

E
‘I’

+J~AA;,
H=~t~l 7.” (36)

s
N-2

17
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At the conclusion of the second discrete time interval after

‘N-1 ‘
the current is expressed by

H
1’+2

B
E

I‘+1
+4—AA’

IT I+1
.-

where

2
‘L S

1

—- N z AT H1,+I
t;AT -

(37)

The first two intervals adequately express the transient condition,

so equation (32) may be used for 12 I’ + 3 . Of course the effect of the

transient voltage is always present to some degree in the waveform of current

since the
‘x-L

term of equation (32) contains a summation that includes

E
1’+1 ‘

After each calculation of current, the corresponding voltage must be

found and used in calculating all succeedtig values of current. The voltage

could be found directly from the recurrence relation shown in equation (33)

except for the fact that this numerical expression is sensitive to the size

of AT . In the limit as AT approaches zero,

By solving equation (24) for the voltage,

overcome and the voltage may be calculated using

D
1-1 - ‘I

‘I = F2

%
approaches minus infinity.

‘I ‘
this difficulty is

the equation

.

In order to determine when to close the N-ah switch, the time at

which no energy remains in the capacitors must be determined. This may be

done by finding the time the voltage on the capacitors goes to zero. The

18
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sum of the first two terms of equation (32) gives the capacitor voltage E
c’

E E
AT. ~f i- ‘N-2 ~J=1,+l

(HJ + HJ_l)
CI

(39)

When this voltage becomes zero, the N-th switch should be closed in

order to prevent oscillations. From that time on, the inductor remains in

the circuit alone.

Inductor Driver
‘N<t

After the N-th switch is closed, the capacitor sources are removed

from the circuit and equation (18) is valid. Since the current flowing at

‘k
is not zero, and furthermore, since the voltage drop across the inductor

is not zero, it is preferable to use the following alternative relationship

between the generator voltage and current:

t

I(t) =-~
\

V(t)dt + IL(tN) . (40)

‘N

In the normalized discrete time approximation, the current may be expressed

in terms of the voltage and current HI,, that flows in the simulator at

time
%’

Using the trapezoidal approximation for the integral, the current

after time
‘N

may be expressed as

t2

E HI,,- ~ i
‘J + ‘J-1 AT

‘I 2
.

tL J=I”+l

Thus, the following relation may be found for
‘I :

(41)

(42)

19



where

,
s.

,

4

. . 0
L

[1 ‘L
AAA1l: $-H

~2 I-1 - ‘I-1 “
c

Substituting equation (42) into (22) yields an expression for the normalized

current:

E
‘I-1

+4—AAA
u. Ti 1-1,

~2 “
.. —

T

As in the previous case, the voltage may

the current into equation (38}, If the switch

is actuated at a time other than that when the

zero, appropriate changes must

line voltage E1_l , not being

is thrown.

Numerical Results

Three case examples were

be found by substituting

shorting out the capacitors

energy in the capacitors is

be made in equation (41) to account for the

the inductor voltage at the time the switch

computed in order to show what effect that a

(43)

change in inductance has on the current pulse decay time. The cases presen~ed

are one capacitor, two capacitor, and three capacitor cases; each is followed

by an inductive source. The inductive source is fnitially charged with a

continuous current equal to that flowing in the transmission line at the time

the inductor switch is opened. In all cases, a shorting switch removes the

capacitor/capacitors from the circuit once their energy is spent.

Figures 2, 3 and 4 present the voltage current in normalized time,

T , with seven different normalized inductance values ~/tc . They are

O: 1, 2, 4, 9, 16 and 36. The data for t=ltc = O agrees quite closely to

that presented in Note 49 with no inductor.2 The capacitor values and volt-

ages were chosen to give approximately 10% ripple in the current waveform up

to the time the inductor is switched into the circuit. Table 1 is a summary

of the important characteristics of the curves. The initial peak of hc in all

cases is 0,722. The normalized time increment AT = 0.025 was selected for use

in all calculations on the basis that a 100% increase in AT causes less than

1% change in hmax .

20
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Table 1: Infinite Line Data Summary

\

T
Larger

Inducto

I

[

No

Inducto

Number of
Capacitors

iy tc

36

16

9

4

2

1

0

(sll= 1)

‘3 ~c3
Fixed
Values

.34 1.55’

.34 1.55

.34 1.55

.32 1.55

.28 1.58

.19 1.58

‘2
= .55

T = .80
C2

‘2 ~c2
Fixed
Values

o 1.68 --

0

(S2 =2.038)

Additional
‘4 ‘C4 Fixed

Values

13 12.18)

13 12.18
‘2

= .30

13 12.20 ~c2
= 1.1

)
12 12.23 ‘3

= .19

T = 5.3
09 12.38 C3

05 12.68j

.- Additiona
‘3 ‘C3 Fixed

Values

I‘2
= .30

0 13.10 ‘c = 1.1
C2

3
(s3 = .002)

Additional
‘5 ‘C5 Fixed

Values

.010 84.83’

.010 84.88

.010 85.03

.009 85.78

.008 87.55

.006 89.65<

‘3
= .11

T = 8.23
C3

‘4
= .07

“i- = 36.4[
C4

Additional
‘4 ‘C4 Fixed

Values

I‘3
= .11

0 91.15 T = 8.23
C3

.

:

.0 . ,.
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‘Iv. Finite-1ength Open-end Transmission Line

An analysis of interest in practical transmission-line simulator work

is the one containing no approximation in the input impedance based on the

diffusion time being long with respect to the times of interest. This section

will consider the

length, L, which

terminal current and voltage in a simulator of finite

has a diffusion time

(44)

The reflections from the bottom end of–the transmission line are significant

for the times and depths of interest. The input impedance of the open-end
5

transmission line is

-4/stk

z
LO =

2Ro~ 1 + e
-44sto

(45)

l-e”

where R. z fg/(ko) is the resistance of the open-circuited line at zero

frequency.

The generator circuit is identical with that used to drive the infinite-

length line. Equation (2) may be irritten f-orthe finite line and then

normalized to become

(46)

where the following normalizing parameters apply:
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line

more

The normalized line admittance in the frequency domain is

, .

The inverse Eransform of the input admittance of the open-circuited

has been used previously in two equivalent forms. The first form,5

convenient for small times To s 1, is

(49)

(47)

(48)

3
and an equivalent expression, useful for > l? is

‘k
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-T2r#6

[

-n(n+l)n2~l/4
g(Tk) = e

2
l+~e

~=1
1°

The convolution integral becomes,

or alternatively

. f(TL)

where

o

f(TL T;)dT;

2
-IT‘r

-n(n+l)n2~
L

k
— ~ 4

f(T1) ~ -l+~e16~e
T n=o (2n + 1)2 “

-.

(50)

(51)

(52)

(53)

Normalization when applied to the generator circuit equations gives,

eJTJ = Vk- s’
k J

h(T~)dT~ 9 for k=l (54)

‘t
k

.

.

.

.
k = N-2

T–
!2
r

ek(~i) = v
N-1

- s’
N-2 1

k=N . (56)



.
l..

.

-- e
The discrete time form for the admittance is

GL1 ~ g(T1) . (57)

The corresponding normalized voltage and current for the finite line are ELI

and HL1 respectively. The convolution integral may be written in the

discrete approximation as

(58)

where we define

Equation (58) may be solved simultaneous~j with one of the generator voltage-

current expressions (54) through (56) to obtain the value of HL
I“

The

inverse relationship analogous to equation (22) may be solved to give EL
I

in terms of the known current and past voltage.

(60)

These relations in discrete time differ very little from those of the finite

line (see equations 22 and 23).

By defining the fntegral of the line admittance in discrete time as

(61)

o
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9
the alternative form of the convolution integral may be approximated by

equations (24) and (25), which were developed to approximate the infinite

line convolution integral. These equations may be used for the finite line

by replacing E1 by ELI and HI by HL .
,1

The discrete time approximation of the circuit equations are exactly

like those of the finite line (equations 27, 33 and 42) except that
‘k

and (tL/tc)2 are replaced by S; and t;ltt respectively. Solving these

equations over their respective time intervals yields the current and voltage

expressions that follow,

Capacitor Sources
‘<t< tN-l

From the straight-forward convolution integral

where

and

The alternate form of the convolution integral, after integration by parts,

becomes

D
HL1 =

I-1 - ‘LI-1F2

1 -~S~F2

(62)

(63)

(64)
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.. e
and

ELI = ‘l-lF- ‘L’
.

Inductor and Capacitor Sources <t<t
‘N-1 N

The straightforward integral becomes,

where

and

Again, the alternative form for the convolution integral may be

approximated using the discrete-time formulation as,

D
HL1 z

I-1 - ‘LI-l ‘2

I-F
(

‘i
—+s’Lq

2 CLAT k 2,

(65)

(66)

(67)

(68)

(69)
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,

with

‘I-1
- HL1

ELI =
‘2

Inductor Alone tN<t

The approximation of the straight-forward integral is

HL~ — (71)

and

(72)

The alternative form for which is,

D
HL1 =

I-1 - ‘LI-I ‘2
2t;

l-F—
2 ATt~

and

D
1-1

- HL1
ELI =

F.

. (73)

(74)

(75)
L

31



*

.

.. 9
By taking AT small enough, ELI and HL1 closely approximate

e(~~) and h(~l). As in the case of the infinite-length line, the initial

inductor current used in these expressions is matched to the line current

at
‘N-1“

Expressions which take into account the possibility of the

inductor current not being matched to the line current would be similar

to those in Section III.

Numerical Results

Results have been worked out for four separate ratios of initial

capacitor discharge time to line diffusion time, i.e. toltt. In each of

these cases, the amount of inductance was varied from zero upward through

six values to include t;/tg equal to 900. Graphical data is presented

for both voltage and current versus time in figures 5 through 15. These

graphs indicate tha~ a high ratio of inductance will broaden the pulse.

The capacitor discharge time is equal to the diffusion time in figures

5 and 6 where to/tL = 1.0. As to/tt ratio gets smaller, the relative

pulse width gets broader (compare figures 5a, 7a, l.Oaand 13a). These

curves also indicate that the current pulse broadens at a rate approximately

linearly with the increase in inductance ratio t~/tL so long as this ratio

is larger than 16. For smaller ratios, the variation in pulse width is

less than linear and reaches a limit of zero when t;/tE equal zero.

When two or three capacitors are used, the time that the inductor is

brought into the circuit may be large compared to the diffusion time, as

in figures 6, 8, 9 and 12. The transmission line at this point in time

appears more like a resistive load. In these cases, the pulse width is

primarily controlled by the amount of energy stored in the second or third

capacitor. If one tries to achieve a relatively flat-topped current pulse

using the capacitors, one finds that when these sources are switched into

the circuit at a sufficiently long relative time, the source will no longer

effect a current increase. (Unless, of course the capacitive source is

originally at a voltage exceeding the voltage on the line.) To extend the

width of the pulse, one must use either an extremely large capacitive source

or a very large inductive source.

In the data presented, the capacitor switching times were chosen to

32

,



.

be those which would approximately give a 10% ripple in the current waveform.
--

When the capacitive sources failed to give sufficient current rise, the ripple

was decreased in order to achieve successive current peaks at or near the

initial current peak. All current peaks were maintained to within a few

percent of their initial peaks. These peak magnitudes are listed along

with their respective times in Table 2, Table 2 also indicates the initial

normalized time increment which was used in the calculations. After all

switching had taken place,

for large–normalized time.

line, the AT listed below

percent.

AT xas increased so that data could be obtained

On the basis of data obtained from the finite

gives the initial hmax to an accuracy of a few

Table 2: Values of normalized current and normalized time for
first peak in current waveform on the finite line

tolt
L

h
‘E

AT
peak

peak

1 .451 1.18 .025

.1 .211 0.28 .010

.01 .0981 0.060 ,005

.001 .0457 0.013 ,005

Table 3 summarizes the important voltages and switching times for the

curves with no inductor. They agree quite well with the data obtained by

C, Baum,
2

The data having various inductor ratio values are summarized in ‘

Table 4. This table lists the line voltage and actuation time of the last

switch for the various inductor ratios. The last switch short–circuits the

cap-acitorswhen they have no voltage. The fixed values give the line voltage

and corresponding time of all previous switch actuations.
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Figure 5b. Voltage versus Time; Finite Line, to/t = 1.(),One capacitor. -
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Figure 6a. Current versus Time; Finite Line, to/tl = 1.0, Two Capacitors.
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Figure 8a. Current versus Time; Finite Line, to/tL = 0.1, Two Capacitors.
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Figure 8b. Voltage versus Time; Finite Line, to/tL = 0.1, Two Capacitors.
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Figure 9b. Voltage versus Time; Finite Line, to/tL = 0.1, Three Capacitors.
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Figure 10b, Voltage versus Time; Finite Line, tO/t = 0.01, One Capacitor.
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Table 3: Data Summary for Finite Line Driven by Capacitors and no Inductor

* Computation terminated before data point.



$-
m

Number of

\

Capacitors
toltt

1

.1

.01

001

t It
L9.

1
4

16
100
900

1
4
16
100
900

1
4
16
100
900

1
4
16
100
900

1

‘3 ‘L3
Fixed
Values

131 2.63

I

Sl=l
332 2.53
404 2.50 ‘2

= .577

4r42

1

2.48 T = 1.20
449 2.48 ‘2

,199 .540

I

Sl=l
263 .540
,305 .540

V2 = .550

,319
I

.540 TL = .280
,322 .540 2

,233 .116
,299
.321
,328 1

,329 .116

‘1=1
‘2

= .55

’12
= .060

.285 .025

.323
‘1=1

.334
II

‘2
= .55

.337 ‘L = .013

.337 .025 2

2

‘4 ‘L4
Fixed
Values

s. = 10
-4

L

<0.424 > 150 ‘2
= .44

~0.424
<0.424

II
‘L2

= 1.52

~0.427 V3 = .430
<0.429 ~ 150

Tfl = 7.52
“3

‘2 = .03

.034 6.42 “2 = .31

.112 5.63

.178 5.32 TL2 = .39

.225 5.22 .230

.230 5.21 ‘3 =

‘L3 = 1.60

.065 1.092

.103 1.072

.122 1.064

.128 1.062

.130 1.062

S2 = .03

‘2
= .30

‘L2
= .086

“3 = .176
1

‘L3 = .472

‘2
= .034

.075 .211 “2 = .30

.101

.104

.113 .208

.114 .208
I

b3 = .091

3

.*
Additional

‘5 ‘Lc Fixed
“J Values

. . -—. ---
-— --- ---
-- --- ---
-. --- ---
-- --- ---

‘3
= .001

.116 >12.0 ‘3 = ,.212

I II

‘k3
= 1.89

.116 > 12.0 ‘4
= .210

T. = 2.73
‘4

s. = .001

).097> 12.0 VJ = .115

[ q

3

‘k3 = .678

*097 > 12.13 “4 = .101
/
T. = 2.11

‘4

S3 = .002
)

.020 1.39
‘3

= .11
.037 1.36
.045
.048 1.35
.048 1.35

’14 = ,578

Table 4: Data Summary for Finite Line Driven by Capacitors and an Inductor
I
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v. Conclusion

The use of capacitive energy sources followed by an inductive energy

source significantly broadens the pulse-width of the input current-of a

buried transmission line. The addition of a switch used to short-circuit

the capacitive sources prevents oscillations without the need of inserting

series resistance, which would absorb-energy,

The number of capacitive energy sources chosen to initiate the current

pulse depends fundamentally upon the opening speed and timing accuracy of

the available inductor-shorting switch. When very rapidly acting switches

are available, only one capacitive source need be used.

The calculations have been directed toward achieving a roughly flat-

topped waveform for the current (magnetic field) with no more than 10%

ripple after the initial rise. The choice of the waveform is somewhat

arbitrary and used here only for illustration. Other waveforms may be

calculated using the same techniques. One such possibility is that of

opening the capacitor shorting switch at some time after the inductor has

released most of the stored energy. This would truncate the waveform and

allow damped oscillations at a low level.

For the infinite line, the energy released by the inductor is approxi-

mately (1+t;/t;times the initial energy stored in the first capacitor.

For the finite line, the inductive energy required varies with the diffusion

time constant, but is proportional to t~/tt times the initial energy

stored in the first capacitor so long as the line parameters are held constant.
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