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Abstract

This note considers some loop designs for measuring the mag-
netic field perpendicular to the axis of a circular cylinder which
contains the sensor. The length of the cylinder is assumed much
larger than its radius and the sensor geometry is assumed constant
along the cylinder axis so that two-dimensional approximations can
be used to calculate the electrical parameters of the sensor. We
first consider a surface current density on the surface of the
cylinder and find the maximum figure of merit such a sheet current
can have. Then we.consider various distributions of discrete
sensor conductors which approximate such a current sheet and cal-
culate the resulting electrical parameters.
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In designing loops to measure the_m-agnetic field one needs
to consider the volume in which the sensor must fit. One common
shape for this volume is a circular cylinder. As one example
consider a circular hole drilled into the earth into which one
wishes to place a sensor to measure the magnetic field at various
distances into the hole. As a second example consider an instru-
mentation rocket on which one wishes to mount some loops within
a circular cylinder of about the same radius as the rocket body.
In both of these cases one would like to design the sensors to
utilize the available geometric volume as efficiently as possible
in terms of the parameters of sensor performance.

For the present calculations we assume that our sensor must
fit inside some circular cylinder of radius a and length i as il-
lustrated in figure 1. In the present note we consider sensor
designs for measuring the magnetic field perpendicular to the
axis of the cylinder. In order to simplify the problem somewhat
we assume L >> a so that we can treat the problem as a two-
dimensional one with fields, currents, etc., independent of Z.
Frequencies of interest are assumed low enough that the sensors
can be considered electrically small and analyzed with quasi-
static approximations.

In previous notesl’2 we have considered the parameters of
electrically-small loops. In this note we apply the concepts of
equivalent volume and figure of merit to the problem of optimizing
the distribution of conductors on a cylindrical surface. We first
consider the optimum surface current distribution for measuring a
component of the magnetic field perpendicular to the cylinder
axis. This distribution is then approximated by discrete currents
of various magnitudes on circular wires in various positions ad-
jacent to the surface of the circular cylinder.

For the cylindrical loop designs considered the equivalent
area and inductance are calculated. From these the equivalent
volume is calculated. The circular cylinder of radius a and
length L in which the sensor is contained has a geometric volume
given by

v = ra2R
9

(1)

1. Capt Carl E. Baum, Sensor and Simulation Note 38, Parameters
for Some Electrically-Small Electromagnetic Sensors, March 1967.

2. Capt Carl E. Baum, Sensor and Simulation Note 74, Parameters
for Electrically-Small Loops and Dipoles Expressed in Terms of
Current and Charge Distributions, January 1969.
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FIGURE 1. GEOMETRY OF SENSOR VOLUME
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The ratio of the equivalent volume to this geometric volume de-
fines the figure & merit used in this note.

——.

II. Optimum Distribution of Loop Current on the Cylindrical
Surface

Now assume scunestatic current dens>ty ~ in the cylindrical
volume defined by Y < a and assume that J is independent of z so
that the problem is ~ two-dimensional one. Assume that the medium
both inside and outside the cylinder has+the same permeability M.
Further assume that the equivalent area Aeq is parallel to ex~
the unit vector in the x direction, so that the loop is sensitive
to only the x component of the magnetic field. In reference 2
(equation 23) we show that the figure of merit of+a loop can be
written using integrals over the current density J as

[f I p +,
“ X ~(~’)dV’ “r r X ~(:’)dV’

v
9

v I

dV ‘dv

(2)

where ~‘ and ~ are position vectors with corresponding volume in-
tegrals denoted by dV’ and dV respectively. The integrals in the
numerator come frcanthe equivalent area given by

(3)

which we constrain to have only an x component. The cgrrent at
the sensor terminals is denoted by I. Note that with J indepen-
dent of z certain of the volume integrals in equations 2 and 3
must be limited in z by -L/2 < z ~ R/2 so that the integrals can
be finite. Certain of the pa~ame~ers such as the equivalent area
can also be considered on a per-unit-length basis. Also currents
have to be included at z = ~k/2 in order to close the loop turns
at the end of the sensor and maintain a divergenceless current
density.

Now we have assumed that ~ is independent of z to give a two-
dimensional problem. The divergence equation for the current den-
sity becomes

(4)
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Thus we can s$t Jx = JY = O and satisfy the requirement of a di-
vergenceless J. Now since Jx and Jy satisfy equation 4 then Jx
and Jy are solenoidal in a plane perpendicular to the z axis, and
since currents are confined to Y 7“ a then such a current distri-
bution corresponds to loop turns ~ith equivalent areas (or magnetic
dipole+moments) with only z components. Thus only Jz contributes
to an Aeq with only an x component. Jx and Jy are not needed.
Note that this argument does not include the ends of the sensor
where Jz must stop.

The sensor inductance gives the double volume integral in the
denominator on the right side of equation 2. The inductance is
given by

= Lx + Ly + Lz

where

H
Jx(?’)Jx(~)

Lx~~ dV ‘dV
4Tr12 V V. 1; - :11

9

(5)

(6)

and similarly for Ly and Lz. Note that one of the volume integrals
is taken over the volume Y < a (called Vrn)to give the two-
dimensional vector potentiai, independent of z, assuming the cur-
rents independent of z. The other volume integral is only over Vg
to give a finite inductance for the portion of the current distri-
bution limited to -k/2 < z < 2/2. Note that LX + Ly is the in-
ductance of the current–distribution with components Jx and Jy
satisfying equation 4. The magnetic energy (1/2)(Lx + LY)12 asso-
ciated with this current distribution is strictly positive unless
Jx = Jy = 0, in which case this energy is zero. Thus we minimize
L for a fixed Jz distribution by setting Jx = Jy = 0.

Since Jx and Jy do not contribute to Aeq and can only add to
the inductance we set Jx = Jy = O because these two current den-
sity components can then only decrease the figure of merit n. Of
course, at the ends of a real sensor at z = k!/2 there must be cur-
rents with other than a z component in order to close the loop
turns. However, for the Present calculations we ignore these end
effects and only consider-the two-dimensional problem.

We now turn our attention to a+particular form of
consider a surface current density Js on the surface Y

Jz. we
= a. There
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is only the one component JsZ and this component is independent
of z. Make a Fourier expansion of Jsz in @ as

.—..

Js = Js
I
b. + E [ak sin (k@) + bk cos (k+)]

z o k=l I (7)

where Jso is some convenient constant with units amperes/meter.
For reference consider figure 2 for the coordinates for this two-
dimensional model. We want no net current in the z direction so
that this current distribution can be constructed from closed
loop turns (which connect at z = ~!\2). Thus we require

J
2’rr

Js ad$ = O
0 z

which requires

bo=O

(8)

(9)

Note that since Jsz is a real function of @ then all the ak and
bk are real.

Now consider the equivalent area of the loop. We can use
equation 3 provided we include currents on the surfaces z = L-L/2
so as to close the loop turns at the ends of the sensor. (In the
formulation of equation 3 it turns out that the contribution from
the currents on z = &L/2 equals that from the currents on Y = a.)
As an alternate and simpler approach for our special case first
define a surface turns density on Y = a.as

Each complete loop turn has two “wires” on the surface y = a,
each wire at some particular $. Since we are interested in the x
component of the equivalent area we can consider the contribution
from each loop turn as !?times the difference in the values of y
for each wire. For each wire we then have a contribution of Iy to
the x component of
face turns density

the equivalent area, Integrating over the sur-
then gives
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(11)

Substitute for Jsz in this equation its Fourier expansion Erom
equation 7. Due to the orthogonality of the trigonometric func-
tions over the interval O < $-< 2T the only term-in the expansion
which contributes to the i.~teg~al is the term containing sin (0).
Thus we have

A = na2fi
eqx —JsaI 01

(12)

Note that al is the only coefficient which contributes to Aeqx.
Similarly for the y component of ~eq we have

J
2T 2’IT

A
eq = k ns($)[-x($)lad$ = #

!
Js COS (@)d$

Y o 0 z

(13)

Since we constrain ~eq to have only an x component we then must
have

bl=o (14)

In order to calculate the loop inductance first consider the
vector potential. One way to calculate the vector potential is
to use

(15)

where the surface integral is OVeK the surface Sm defined bY Y = a=
In the present note we calculate the vector potential by a solution
of the Lapl.ace equation

V2X = -rr (16)
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which for our single z component of the current density reduces
to

—.

72AZ = -vJZ

Making Az continuous at Y = a we have an expansion for Y < a
given by

Az = jj (:~[aksin (k@) + @k cos (k$)]
k=l

(17)

(18)

and for Y : a given by

.Z = ~ (yk [ak Sin (k@) + ~k COS (k$)] (19)
k=l

where we have included those terms in the expansion needed to
match the expansion of Jsz with b. = O and with proper behavior
for small and large Y.

Now ~ is only present at Y = a where it has the form of a
surface current density. The boundary condition at Y = a is
given by

(20)

This gives relations between the coefficients as

(21)

which give

ak
= ~ PJsoak , (22)



..

The loop inductance (as discussed in reference 2) is given
by

which can be written

—.

* ~(;)dV

for our case as

J
2?T

L=~
12 0 ‘z[Y=a “zad+

Substituting for Az and Jsz gives

The equivalent volume

v
.J-J

eq L eq
“z

eq

The figure of merit is then

2
bk

‘r 1
is

(23)

(24)

(25)

(26)

(27)

Since we wish to maximize rIthen clearly we must have al # O.
Since we can choose one of the non zero coefficients arbitrarily
(thereby fixing Jso in equation 7) we choose

al =1 (28)

giving

(29)
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forNow we have a~\k > 0
then, ~ is maximized

for k > 2 and b~/k
by set~ing

—.
<>2—

<>1

>0— k>l. Clearly,—

o for

o for

ak =

bk =

(30)

—

The maximum figure of merit for this type of current dis-
Y

(31)

given

tribution, in the two-dimensional given b:approximation, is

n = 2
max

corresponding surfaceThe
by

current distribution on Y (

(32)

sinusoidal distribution of the current with respect tThis
also
loop

@ can
or
dis-

:0
be considered as a uniform distribution of the &rrent

with respect to x. The equivalent for this

equation

turns area

from

tribution, using equation 12, is jus;

ra2LJs
o

I
+
exAeq = (33)

25 byThe

III.

inductance for this distribution is given

(34)

Distribution of Loop Turns at Discrete Positions
Adjacent to the Cylindrical Surface

Having found the optimum surface current distribution on
Y = a and the corresponding maximum fiqure of merit, we next con-
sider distributions ~f cur~ents on a finite number of conductors
which approximate this surface current distribution. These con-
ductors-are assumed to have circular
circular wires, coaxial cables, etc.
ro; let these conductors be arranged

cross sections and might be
Let the conductor radius be

parallel to the z axis and
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be centered on a circular cylinder with radius given by Y = b
with the relation

—-

b+ r. = a (35)

so that the conductors just fit inside a circular cylinder given
by Y = a as considered in the previous section. For convenience
we define a parameter

Two pairs of these conductors are illustrated in figure 3.
Note that each pair can be characterized by a certain value of @,
say @m; the two wires in this pair are centered on @ = L$m so that
the conductor distribution is symmetric in y. We also assume that
in this typical conductor pair the current is Im in the upper con-
ductor(s) (positive y) and -Im in the lower conductor(s) where the
positive current convention is in the +Z direction. Each conductor
pair can be considered as one or more loop turns where we let Nm
be the effective number of loop turns with then a current of Im\Nm
per turn. Note that in the case of coaxial cables the center con-
ductor can be used as additional conductors to increase the ef-
fective number of loop turns. An example of this type of loop is
the moebius strip loop.3~4 The cartesian coordinates of the cen-
ter of the conductors for the typical conductor pair are (xm, ym)
and (xm, -ym) . Define some normalized coordinates as

(37)

The length of the sensor in the z direction is just 1 as was
the case in the previous section. Each conductor pair or turn
group with Nm turns is assumed to have the conductors or turns
connected as required at each end of the sensor. The equivalent
area for each turn group is in the x direction and has the magni-
tude

A = 2kymNm =
eqm

3. Lt Carl E. Baum,
of the Moebius Strip

4. Lt Carl E. Baum.

2LbNmYm (38)

Sensor and Simulation Note 7, Characteristics
Loop, December 1964.

Sensor and Simulation Note 25, The Multiple
Moebius Strip Loop, August 1966.
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The equivalent area of the sensor will depend on how the various
turn groups are interconnected. The reader should note that Nm is
defined for the individual turn group; depending on the manner of
interconnecting the turn groups this d~~inition may or may riotbe
directly relatable to the definition of turns density for the
sensor as a whole as, for example, given by equation 10.

Next consider the self inductance of each turn group and the
mutual inductance between turn groups. Ignore the presence of khe
other conductors and assume that the mth turn group can be repre-
sented as two perfectly conducting circular wires. Further assume
that we can approximate the magnetic field distribution as a two-
dimensional distribution, independent of Z. Then for the field
due to the current in the mth turn group we can use the conformal
transformations

H

‘5-x
‘+-j

Ym
w= in

<-xm (39)

—-jYn

where

C=x+jy, w= u + jv (40)

Since we assume that we have r. << b (or y << 1) we have located

the singularities in equation 39 on the conductor centers as a
good approximation. Expanding equation 39 gives

(41)

5. Lt Carl E. Baum, Sensor and Simulation Note 27, Impedances
and Field Distributions for Symmetrical ‘TwoWire and Four Wire
Transmission Line Simulators, October 1966.
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x-x m2—
Ym

v= arc tan (42)

J

impedance factor forFrom reference 5 we have the geometric
symmetrical two wire transmission; line asa

()Ym 1

cosh =—
~ ‘Jr ()Ycosh N

Y

1= ; arcf
9

(43)

group.

arc

where we use the dimensions appropriate the mthto i turn

is

For

The

For

say

Ym >> r. (which we assume) we have

()2ymf= *.in ~
9 0 ()2Ym= *ln—

Y
(44)

just

(45)

inductance of length 1 of this mth then

as

turn group

()2YmN2~ln—
mn Y

define a normalized self inductanceconvenience we

()2Ymin —
Y

‘G (46)
‘9

.Now consider the interaction between two of the turn groups,
the mth and the kth with m # k. Assume that the spacing be-

tween the conductors in adjacent turn groups is much larger than
r.. The change in the potential function u between the two posi-
tions of the kth turn group, i.e. (Xkr Yk) and (Xk, ‘yk) , is giVen

rki‘mr+(1+H
(Xki‘mr+(’-2s

Au = in

15



= In
(Xk ~- Xm)2 + (Yk + Ym)

2’

. (47)
.1(Xk - Xm)‘ + (Yk - Ym) ‘

The chanqe in v in a path around one of the conductors in the mth
turn gro~p (around Im”only) is just

Av = 2T [48]
..—.

Including the length of the turn groups and the number of turns
in each turn group the mutual inductance between the kth and mth
turn groups (for k # m) is just

Au
‘kFm = ‘m,k = ‘kNmB~ ~

[

(Xk - Xm)z -1-(Yk + Y*)
2

!& In
= ‘kNm 2T (Xk - Xm)2 + (Yk - Ym)21 (49)

Define a normalized mutual inductance for k # m as

‘k,m

[

(Xk - Xm)2 + (Yk + Ym)2

%,xn= M&k’ P!lNkNms&n (X _X )2+ (y 1(50)

km k
- Ym) 2

As earlier defined the bulk current in the group of conduc-
tors forming the mth turn group is Im and the current per turn is
Im/Nm. Now let Vm be the voltage per turn so that VmNm is the
voltage for the mth turn group. Then for frequencies sufficiently
low that we can use the quasi static inductances we can write the
voltage for the mth turn group (in the absence of an incident mag-
netic field) as

()
I M

()

lk
VmNm=Lm~~+~ Mm,k&- (51)

In k=l k
k#m

where we assume that there are M turn groups and for convenience
we assume that their relative positions are ordered as

(52)



i.e., the turn groups are numbered in order of increasing +. Us-
ing the normalized inductances equation 51 can be rewritten as

.—

(53)

Now assume all currents have the same time history, except
perhaps for different amplitudes. This makes all the voltages
have the same time histories, except again for possible differ-
ent amplitudes. Alternatively one can constrain the voltages to
have the same time history (except for amplitude) and infer the
same for the currents, except for additive constants of integra-
tion which we can also assume to be zero. Suppose that we define
a reference voltage V. and a reference current 10 which have the
same waveforms as the Vm and Iml and which are related by

(54)

Then we can define voltage and current coefficients by

Vm= Vmvo ,

Then equation 53 can

M
v = L’i +
m mm x

k=1
k#m

31m _ 910
r= ‘m ~

be rewritten

M’ “m,klk

(55)

using these coefficients as

(56)

If we define for convenience of notation

M ~Lm,
m,m

then equation 54 can be written as

M

(57)

Vm = x M’ ‘m,klk
k=l

17
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This can be regarded+as a ~atrix equation relating the M component
coefficient vectors v and L (with components vm and im, respec-
tively) by the M by M normalized inductance matrix (M~,k).

-—.

There are various ways the turn groups might be connected to
each other and to the sensor terminals. For any particular form
of interconnection one can calculate the distribution of currents
and/or voltages. With this information one can calculate the
equivalent area, inductance, equivalent volume, and figure of
merit of the sensor. In the next two sections we consider two
types of sensor design based respectively on series and parallel
connection of the turn groups.

Iv ● Special Cases Using Series Connection of Turn Groups

Now assume all the turn groups are connected in series and
constrain

Nm=l

i =1
-1

form =l,2, ....M
m

(59)

xma-* J

This defines loops with single turns which are uniformly spaced
in the x direction. This uniform spacing of equal currents with
respect to x is used as an approximation to the optimum surface
current density on Y = “a g~ven by equation 32 and as discussed in
section II. As M is increased this discrete current distribution
should more closely approximate the continuous current sheet dis-
cussed in section 11.

For this series connection the equivalent area is the sum of
the equivalent areas for the individual turns from equation 38
giving

&

m=1

where Xm is defined above.
average equivalent area per
ized form by dividing by La

M

Z(’

1/2
1- x:)

(60)
m=1

Another interesting quantity is the
turn which can be written in normal-
to give

18



A= M

-%
2

x(

1/2

Ma= M(l + y)
1- x:)

m=1 —.
(61)

This is plotted in figure 4 for various values of M. For large M
we can use equation 33 with a replaced by b and with Jso given by
IM/2b so that as M + ~

and

A
*+~=; (l+y)-l

The voltage at the loop terminals
dent magnetic field is just the sum of
ing the definitions in equations 55 we
by

M

E

dIo
v= Vv=

mo ‘w

(62)

(63)

in the absence of an inci-
the turn voltages. Recall-
have a loop voltage given

(64)

m=1

where 10 is taken as the current at the sensor terminals and L is
the sensor inductance. Using equation 54 we have

M
L
m= x vm

m=1

Then substituting from equation 56 we have

M
L 1—= —

x
PfiM2 M2 m=l

M
L; + x M’

k=l
m,k

I

(65)

(66)

k#m

where the normalized inductances are found in equations 46 and 50.
This result is plotted in figure 5.

The figure of merit is just

19
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(67)

This is plotted in figure 6. As one would expect n is increased
by increasing M.

v. Special Cases Using Parallel Connection of Turn Groups

For these special cases assume that all the turn groups have
the same equivalent area so that the open circuit voltages for
each turn group are the same from an incident magnetic field with
a uniform x component. Then connect these turn groups in parallel
so that the sensor has an equivalent area given by

A
eq =A’eqm

In the absence of

2LbNmYm for m = 1, 2, ● ... M (68)

an incident magnetic field VmNmis the voltage
for each turn group and thus also the voltage at the sensor ter-

... ...

minals. Thus we have

From

VmNm = VkNk

the first of

VNmm = ‘kNk

and from equation

YmNm = YkNk

Thus we can define

for k, m = 1, 2, .... M (69)

equations 55 we also have

for k, m = 1, 2, .... M (70)

68 we have

for k, m= 1, 2, *.., M (71)

form =l,2, ....M (72)

Then from equation 56 the im can be found from the vm Provided
the Xm are specified.

The current at the sensor terminals is just

22
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From equation 71 we can define some reference number of turns No
such that

N
Nm=: form =l,2, ....M

m

The sensor inductance L comes from

dI 21 Mi
VmNm = vmNmVo = L ~ = L & ~ ~m

m=l m

which can be written as

Miy
vmNm = No = x

mm
bmlr

= o

or

(75)

(76)

(77)

where the im are found from a solution of the equations

M
Yn = L~in + x M’ ‘

n,klk
k=l
k+n

The equivalent area can

A = 2!tbNo= 2!laNo(l+
eq

The figure of merit is given

for n = 1, 2, .... M

be written as

-1
y)

by

24
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4

[1

L -1
=

Tr’(l+y)
2—pLN~

(80)

Consider three cases of this type of sensor as illustrated
in figure 7.

Case 1:

As illustrated in figure 7A for this case we choose

Then from equations 78 and 46 we have

From equation 74 we have

No = Nl

The sensor inductance is then

The equivalent area is

The figure of merit is

4
[()]

-1
n’ in ~

(l+y)2

(81)

(82)

(83)

(84)

(85)

(86)
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The inductance is plotted in figure 8; the figure of merit is
plotted in figure 9.

— ..
Note for this particular sensor geometry that the conductors

are positioned at $ = ~n/2 and have an equivalent area with only
an x component. As illustrated in figure 7A one can place the
same type of sensor with conductors at $ = O, IT. This second
sensor has an equivalent area with only a y component. These two
sensors then can be used to measure two orthogonal magnetic field
components. Considered together the two sensors have conductors
uniformly spaced with increments of n/2 in $.

Case 2:

As illustrated in figure 7B for this second

This gives

()31T‘l =y2=vl=v2=sinzr ‘“9239

31T
()‘1 = -X2 = Cos K- ‘ “3827

‘1
= N2

= ‘lNo

case we

The normalized inductances from equations 46 and 50 are

()2Y1Li =L’=
2 *ln—

Y

4X: + 4Y;

4X:
L J.

~ ln(Xl)=-—

Due to symmetry il = i2 so that from equation 78 we have

.

‘1 [012Y1 ‘1

‘1’i2=Li+M12=nyl ln~
f

choose

(87)

(88)

(89)

(90)
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The equivalent area is

Aeq ‘ 2LbylNl

and the inductance is

—.

f.- ,2 . .

The figure of merit is

2
4

()[]

No L -1 8Y;
o = E

25
[
in

n(l+y} MEN; (l+y)2

The inductance and figure of merit are plotted
respectively.

(91)

(92)

( )1

2Y1
-1

(93)
~

in figures 8 and 9

For this sensor geometry the conductors are positioned at
$ = &3n/8 and $ = ~5Tr/8giving an equivalent area with only an x
component. As illustrated in figure 7B one can place the same
type of sensor rotated by n/2 so that the conductors are located
at @ = &n/8 and @ = -&7n/8. This second sensor has only a y com-
ponent for its equivalent area. Conside~:ed together, these two
sensors can be used to measure two orthogonal components of the
magnetic field. These two sensors together have their conductors
uniformly spaced in @ in increments of n/4.

Case 3:

For this third case, as illustrated in figure 7C, we choose

which gives

(94)

=Y3=v1=v3=sin
()

1
‘1 ;=2
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