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Resistively Loaded Radiating Dipole Based on a
Transmission-Line Model for the Antenna
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In order to smooth the
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Abstract

.......... .
wav”eforrn%’fter the initi”al rise, as

radiated from a long and thin pulse-radiating dipole, one can
put resistive loading in series with the antenna conductors. In
this note we consider a few forms of such resistive loading for
which the resistance is continuously distributed along the an-
tenna. The calculations are based on an approximate transmission-
line model of the antenna. The results indicate some smoothing
associated with a uniform resistance per unit length for the an-
tenna. The waveform is further improved by the use of a special
nonuniform resistance distribution for which the resistance per
unit length goes to @ at the ends of the antenna.
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FIGURE 1. AXIALLY AND LENGTHWISE SYMMETRIC DIPOLE
ANTENNA
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be centered on the z’ axis and located symmetrically with re- ‘
spect to the x’, y’ plane. Primed coordinates are used for cur-
rents and other quantities in the immediate vicinity of the an-
tenna; unprimed coordinates are used for the position at which
the fields are observed. In the cases of interest in this nohe
the antenna is assumed to have a resistance per unit length A(z’)
where for symmetry A is assumed to be even in z’ . If one de-
sires, A can b,ea more general type of impedance per unit length
including inductance and capacitance.

In the transmission-line model of the antenna the antenna
in figure L is approximated as a transmission line for purposes
of calculating the current along the antenna and the voltage at
the driving terminals. Figure 2A illustrates this concept. The
generator has capacitance Cg and a time-domain voltage source
Vou(t) where u(t) is the un~t step function. The generator
drives a transmission line of length h equal to the antenna
length; this transmission line is approximated as being termi-
nated in an ~pen circuit. The antenna current is I(z’) directed
parallel to ez, the unit vector in the z’ direction. 1(2’) is
even in 21 by symmetry. For the transmission-line model as in
figure 2A we use c as the coordinate along the transmission line
and 1(<) is equal and opposite along the two sides of the trans-
mission line. Also there is a voltage V(C) along the transmis-
sion line.

For calculating the various distributed elements of the
equivalent transmission line the antenna can be approximated as
an equivalent biconical antenna. 5 In this approximation the an-
tenna (without the series impedance loading) has a characteris-
tic impedance Zm given by the characteristic impedance of an ap-
propriate biconical antenna. A biconical antenna with cones at
e =0~and6=n- 61 has a characteristic impedance6

(1)

where

5. S. A. Schelkunoff and H. T. Friis, Antennas:
Practice, Wiley, 1952, pp. 425-431.

(2)

Theory and

6. All units are rationalized MKSA.
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FIGURE 2. TRANSMISSION-LINE MODEL OF ANTENNA
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isThe corresponding geometric factor in the

(3)

If the biconical antenna has a
its ends (z’ = Ah) and if a <<
then

length-h and a radius a athalf
h SO that the antenna is thin

f = + in(+)
9

(4)

suchThe biconical antenna can then be assiqned some value of a
that its mean radius is rouqhly the me& radius of the antenna
of figure 1. Essentially a-is-chosen such
characteristic impedance of the antenna in
to that of the equivalent biconic.

that the
figure 1

approximate
corresponds

The medium
ability Po, and
capacitance per

outside the antenna
zero conductivity.
unit length for the

has permittivity Eo, perme-
We then have inductance
equivalent transmission

and
line

given by

L’ = llofg

E
o= r

(5)

c’
‘9

The series
additional

impedance A(z’) put into the antenna contributes
longitudinal impedance per unit length given by

an

(6)z’(L) = 2A(G)

Note the factor of 2 due to the presence of A in both arms of
the antenna. For an incremental length d~ we then have the
lumped element representation of the transmission line as shown
in figure 2B.

A tilde - over a
the Laplace transform
a normalized retarded

indicates the Laplace transform;
is s. For convenience we define

quantity
variable
time as

et-r
‘hsh

(7)
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(8)
1

c

The corresponding normalized Laplace transform variable is

(9)‘h sth

h

where

(lo)

line is

‘h

constant on

c

The propagation the transrnissic

~l)scl]m = ‘J ‘ $1”2
(11)Y

where

= [(sL’ +

‘h
‘o =s/zT=:=r (12)v

The local impedance is

[

sL’ + z’ 1/2 Zm ~
1

=
Sc‘ [

71/2
+ 3+-

.
z =

The

(13)

transmission-line equations for our case

3V
z= -(Z1 + sL’)i

(14)

Differentiating the second equation With respect
1 as

we obtaint(3
a one-dimensional wave equation for

7
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32:
sC’ (Z’ + sL’)i = 0

aG2
(15)

This can also be written as

(16)
2-

? - y2i = o

After solving for the current I(g) on the equivalent trans-
mission line this current is used for I(z)) on the antenna with
<= Iz’]. Then using a thin-antenna approximation I is assumed
concentrated on the z! axis and the radiated waveform (as in
ref. 1) is calculated as

J
h

!J yoz’cos(e)
i(e) = sin(e) R+ ~(z’)e dz ‘

o -h
(17)

where t* is the retarded time given by

The normalized waveform
radiated electric field

(18)

in equations 17 is related to the far or

Efe (only a 6 component) by

rEf
e Jor

w (19)
“o

Note
wave
duce

that g is considered using retarded time so that a current
initiated at t = O at the center of the antenna will pro-
a waveform at the observer beginning at t* = O.
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For convenience (as will become apparent later) we define ‘-
other normalized waveforms by

(20)

In this form z’ is the ~aplace transform of <’ with respect to
~h (frOm equatiOn 7). ~’ is then a function of sh which we take
eqUal tO JUth tO give a Fourier tranSfOrm fOr the plOts. Writ-
ing out these normalized waveforms we have

L

/

11 f Sh “ ~ yoz’cos (e)
~l(e) = sin(9) ~ I(z’)e dz ‘

2voth -h

(21)
.

g.’(e)= sin(6) ~~~ ~~ I(z’, t* + “c~s(e))dz’
o

Assume that Z’ is of a form such that at low frequencies
(uth << 1) the charge distribution on the open-circuited trans-
mission is not influenced by Z’, but only by C’. Then the an-
tenna capacitance is

ch
Ca=C’h=#-

9

and the mean charge separation distance is

ha=h

(22)

(23)

For example if Z’ includes only resistors and/or inductors of
finite magnitude then equations 22 and 23 apply. If on the
other hand Z’ were a single series capacitor these equations
would not apply. Then for low frequencies (s + O) we have from
reference 2 the result

(24)

where

,. . . . . . . . .
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Define a capacitance parameter as

Then as s + O we have asymptotically

-. a
(25)

(26)

This general result for our restricted form of Z’ is independent
of z’ and can be used to check some of the results for the radi-
ated waveforms in the low frequency limit.

The above discussion outlines the transmission-line model
for the dipole antenna. This model will be used in the next two
sections to calculate the radiated waveforms for the case where
L is uniform with respect to z’ and for the case that A is a
particular function of z’. The reader should note that due to
the limitations of this transmission-line model the results are
rather approximate. Of course, one can calculate certain fea-
tures of the waveform more accurately and use the results for
comparison with the results of the transmission-line model. As
discussed in reference 2 the amplitude of the initial rise of
the radiated waveform can be accurately calculated if a biconical
wave launcher is used. Also if the mean charge separation dis-
tance and capacitance of the antenna can be accurately calculated
or measured we can calculate the low frequency content of the
radiated waveform provided the generator meets certain require-
ments. In addition one can calculate the radiation from a per-
fectly conducting infinite cylindrical antenna7 and use this for
comparison to the results of the transmission-line model for a
perfectly conducting antenna during part of the time-domain
waveform. By such comparisons one can obtain some estimate of
the accuracy of this transmission-line model for some specific
antenna.

-7● R. W. Latham and K. S. H. Lee, Sensor and Simulation Note 73,

*

(27)

Pulse Radiation and Synthesis by an Infinite Cylindrical Antenna,
February 1969.
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tive

This

Uniform Resistive Loading .-

As our first case for consideration let A be a real posi-
constant independent of z’ and define

(2a)

is the case of uniform resistive loading of the antenna.
R. is the total resistance of one arm of the ant~nna, say be-
tween z’ = O and z’ = h. The wave equation for 1(<) has the SO’-
lution

e-Y< - e-y(2h-c)
i(q) = i(o)

l-e
-2yh

(29)

where we have made ~(h) = O. The voltage from equations 14 is

The antenna

f(0) ~ e-y3 + e-y(2h-G)
Sc ‘

l-e
-2yh

impedance is then

Zazv+=z
, + e-zyh

I(0) l-e -2yh

Now ~(0) can be found from

‘(0)=w’ ‘r

Then ~(c) is given by

v e-Y c - ~-Wh-c)
~(~) s:

Z[l+e ‘2yh] + *[1 - e-2yh]
9

(31)

(32)

.

(33)

The resistance per unit length of the transmission line is

~1 = z’ = 2.’! (34)”

11



.
.

,.

.- ●giving

z=‘J +%1”2
(35)

Having ~(<) we can substitute C = Iz’\ and us@ this current
as the assumed antenna current. From equations 21 we have a
normalized radiated waveform

[
1 + +

.

-1

where we have used the substitution

-t

s Vcos(e)
lMlje h dv (36)

(37)

Define the integral in equation 36 as S. We then have

-J
1

[

Shvcos(e) -Shvcos (e)
== [e-yhv - e-’yheyhvl e +e 1dv

o

~shcos(0)-yh - ~ ~-shcos(0)-yh - ~
— —=

ShCOS(6) - yh - Shcos(e] T

shcos(e)+yh -shcos(O]+yh
_e - I e-’yh + > -le- ‘Yh (38)

ShCOS(6) + yh s~

So that the normalized radiated waveform is

~’(e) = Si;(e) ~
1[ 1

1/2

I

-1

1+* [l+e
-2yhl + _&_[l.e-”h]

9-

12



.8.

2Tf rEf*
.-

= A ~ ~yor (39)
‘h O

From equations 38 and 39 one can rather approximately calculate
the radiated waveform as a function of u and 0 for various
choices of resistance and other antenna parameters. Taking the
inverse transform the corresponding time-domain waveforms can
also be calculated.

For our present purposes we only consider
this case of uniform resistive loading for the
e = ?T/2 so that the observer is located on the
plane of symmetry. Then we have

.=$#l- 2e-yh + e
-2yhlz

2
. *[L - e-yh]

Defining a dimensionless parameter as

R’th 2Ath 2R0
6= L,=L,=~

m

then yh can be written as

[1
1/2

yh=shl+~ 1/2
= [sh(sh + 6)1

‘h

Also note the relation

Sc z =Scz 2 = Sh[cx - 1] -1gcn awc
a

The normalized waveform can then be written as

the waveform for
specific angle
x, y plane, a

(40)

(41)

(42)

(43)
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11

-1

+ 1+~ -~e-2yh
‘h ‘h

Expanding this result as a geometric series we have

.

n=o

(-1) 2nyh

.

.- ●
(44)

(45)

In this form we can separate the initial wave and the successive
reflections by considering each term associated with a particu-
lar power of e-yh.

If we make a further simplification by assuming that the
generator capacitance is arbitrarily large so that we can set
a = 1 we then have

co

w) ‘+1 - Ze-yh+e-2yh=(-l~ne-2nyh
11=0

I
m

. .*g z ~-llrne-zmyh - 25 (-l)me-(2m+l)yh
m=o m=o

m

+ E ~-l)m-le-2myh

m=1 I

!
w

= ‘+ 1 + 2~ (-l)ne-(2n--l)yh
n=1 I

(46)

For convenience define

14
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2(-l)n ~-(2n-l)yh~; : forn=l, 2, ...
‘h+S

so that we can write

n=o

Now EA is associated with the initial signal which reaches
observer and the ~~ for n > 1 can be considered successive
flection terms.

(47) “-

(48)

the
re-

For the time-domain waveform at 9 = IT/2 (and for large Cg)
we can take the inverse Laplace transforms of the various terms
with respect to Sh. For the n = O term we have

‘6T~

For the terms
(with respect

‘1 u(Th)

for n L 1 first use the inverse Laplace
to sh)8

(49)

transform

I -m’
=-1 e ‘Sh ‘Sh+

6)1

‘b ‘h(sh+@) I

-(RTh/2)
u(~h-m’)e 10(! (50)

where m’ > 0 and 10 is a modified Bessel function. Integrating
with resp~ct to m’ from m to Q gives

4=l=u(Trm);(’’h’2)Ih10(:=)dm’(51)

Multiplying the Laplace transform by sh and differentiating the
inverse transform with respeCt to Th glVes

8. AMS 55, Handbook of Mathematical Functions, National Bureau
of Standards, 1964, eqn. 29.3.91.
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!- (@Th/’2)“&e

Substituting m = 2n - 1
n>l.

(52)

and multiplying by 2(-l)n we have GA for

Note that for ~h < I we have ~’ (lT/2) = g:. The first part
of the waveform is then a step rise followed by an
decay. Writing g& as

1 exponential

the time constant of the decay is

At ~h = 1 the first reflection term appears. The
kinUity at Th = 1 is found from the initial value
Laplace transform as

J-Sh(l- l+—-)
‘h

e

= -2 e-(@/2)

(53]

(54)

step discon-
theorem of the

(55)

.. a

Thus we have the ratio of the step discontinuity at Th = 1 to
the initial discontinuity at Th = O as

16
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&i(l+)
-2 @3/2) = -2 ~- q#aJ)

E:(o+) =

-.

(56)

where R. (equation 28) is the resistance along one arm of the
antenna and Z~ is some mean pulse impedance ascribed to the an-
tenna, neglecting the resistive loading.

If, after the initial rise, one wants no more step discon-
tinuities in the radiated waveform, then equation 56 can be used
for some quality factor for the waveform. To minimize the mag-
nitude of this discontinuity Ro/Z~ can be made larger. However
increasing ~/Z~ for a fixed h decreases the time constant of
the pulse decay (equation 54) thereby decreasing the “pulse
width.” If one wants a large pulse width then some compromise
is appropriate. Of course, one should recognize the limited ac-
curacy of the transmission-line model from which the above re-
sults are obtained. When applied to a real antenna equation 56
is only very approximate.

s?. Special Case of Nonuniform Resistive Loadinq

Now go on to let A vary as an even function of z’. Mak~ a
change of variable in the one-dimensional wave equation for I
(equations 15 and 16) by substituting ~ = ~e-yo~; this gives

(57)

Next try a solution of the form ~ = f(~)~o so that ~ is split
into the product of a function of G and a function of s; this
gives

a%-2y ~- Sc’z’f = o
a<2 o a<

Solving for Z’ we have

(58)

(59)

This solution has the form

‘Z’= ~ + R’SC’{ (60)

17
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where we have
. . .- ●

(61)

For this type of solution Z’ is the series combination of a re-
sistance per unit length R’ and a capacitance-length product C’ f
(in farad meters). Both R’ and C’ ‘ can be functions of G, de-
pending on the form chosen for f(~). Of course if we want
R’ >OandC” >Ofor O~~<h so that R’andC” can bere-
ali=ed with passive elements, ‘then the form we can choose for
f(c) is limited somewhat.

Choosing some particular form of f(c) we have one of the
two independent solutions of the second order differential equa-
tion (equation 58) and we have a particular form of Z’ consistent
with this solution. However, to avoid the need forathe other
independent solution we constrain f(h) = O so that I is zero at
c = h and the other solution is not needed to match the boundary
condition there. Using the transmission-line model of the an-
tenna we have only an “outward” propagating current wave which o
attenuates to zero at the ends of the antenna (z1 = ah) .

Consider now C“; it represents a distributed capacitance
in series along the antenna. At S = O this presents an infinite
series impedance along the antenna and at late times prevents
the voltage on the equivalent transmission line from being uni-
form with L. At low frequencies the charge is not uniformly
distributed along the transmission line (i.e., the charge stored
in C’ , the distributed antenna capacitance) . The charge near
the ends (z’ = Ah) of the antenna is then reduced thereby de-
creasing the electric dipole moment of the antenna. This in
turn reduces the low-frequency radiation of the antenna. Thus
for the remainder of the discussion we only consider the case in
which we constrain that I/C’ ‘ = O making Z’ = R’ .

In order to make the capacitive term in Z’ vanish we set

a2f
-20 (62)
N2

Then with the requirement that f(h) = O and normalizing f(~)
such that f(0) = 1 we have

18
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e

f(c) =l-:

.

(63) ‘-

This implies

2za
z’ (c) = R’(c) =

[1-l& k-l
(64)

In terms of the resistance per unit length on the antenna we
have (for -h < z’ < h)

5ul.Qll=A(z’) = z :[, - q]-’ (65)

This special form of resistance
?0

er unit length has been con-
sidered by Wu, King, and Shen.9/

With this special form of A(z’) the transmission-line model
gives us a current distribution as

i(c) = [1- *I ‘Ye’ ‘(0)
(66)

The voltage along the transmission line is given from equations
14 by

+(c)=--&-=- +[-YO(l -:) -;] :’0’ i(0) (67)

so that we have

V(O) = * [yoh + l]i(0)
.

(68)

In the transmission line model the antenna impedance is then

9. T. T. Wu and R. W. P. King, The Cylindrical Antenna with Non-
reflectina Resistive Loadincr, IEEE Trans. on Antennas and Propa-
gation, A5-13, May 1965, pp~ 369-373.

10. L. C. Shen and R. W. P. King, The
Nonreflecting Resistive Loading, IEEE
Propagation, AP-13, November 1965, p.

19
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$(0) =zaz — ~:fh [yoh + 1]
i(o)

(69)

This impedance is the series combination of a capacitance and a
resistance. The impedance of our ideal capacitive generator is
just

(70)

~(0) can now be found as

v

[
-L=vo 1 +Cl+z

1

-1
i(o) =: [Zg+zal ——s Sc Sc a

9 a

. = >[< + 2.]-’ = &[&+ q-’

V.
=—2=

Using the
tenna is then

% (71)
‘h+a

transmission-line model the current on the an-

From equation 21 the normalized waveform can

(72)

be calculated as

.. e

‘sh~ ‘h%os(’)dz,
“e e

20
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= sin(e)
2 *iJh[l - WI:h(-w%os(’))dz; ‘-

-h (73)

Substituting

(74)

we have

~

1
‘h

i’(e) = Si;(e)
s’(-lvl+vcos(o))

(1 -s +a Ivl)e dv
h -1

J
1

= sin(9) ‘h
[

-Sh(l-cos(e))v
— .

2 ‘ +Ci, (1 - v) e
ho

-Sh(l+cos (e))V
+e 1dv (75)

This last integral is composed of two integrals of the form

1
1

J ( )(l-v) e-bvdv=e-bv-~+~+ ~
o b2 o

1 -b-l+l
‘~e b2 5

The normalized radiated waveform is then

i’ (e) = sin(e)
2 (Sh+a)

r -Sk(l-cos (e)) 1
1 1

LL
e -1+1

l-cOs(e) sh(l-cOs(e)) 1
r -sL(l+cos (0)) 1

1 1
11

e

1

-1+1
+ l+c: s(e) ‘h (l+cOs(e))

21
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Taking the inverse transform gives the time-domain results

(r -C%T= -“CXTL ,

g’(e) = Sy {1
LL

l-e
120S (6)- 1-+ u (Th)

a(l-cc)s(0))

‘drh-(kde))]
l-e

(bcos(e))2
u(T#kd6)])

[

LL

+ l:cos(e)

‘C%T

l-e h
1

~ u(Th)
a(l+cos (e))

-Cmh-(l+cos(fm]
+ + l-e U(TL-[1+COS(6)I) 1a

{1+CC9S(6))A
11

(77)

as

Note the interesting result that
discontinuities in C’(6). There
in the slope of E’(6) at T = 1 -

after ~k = O there are no

(78)

step
are, ho~ever, discontinuities
cos(e) and at T = 1 + cos(f3).

In this respect &he special resistance distribution in this sec-
tion gives a significantly better waveform than that associated
with a uniform resistance-distribution.

The low
equation 27.
totic form

frequency asymptotic form of ~’ (6) is given by
For high frequencies we have as sh + ~ the asymp-

sin(8)
[

1 1
1

1
2sh 1 - Cos(e) +m-=h s sln( Q)

(79)

Note then that for low frequencies the normalized waveform is
proportional to sin(6] whi~e for
tional to l/sin(8)., The initial
is given by

high
step

frequencies it is propor-
discontinuity in 5’ (6, ~h)

22
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Consider the case that C
i

>> Ca so that we can set a = 1.
For this case i’ (e) is plotte in figure 3 as a function of ~th
for a few values of e. Similarly E’(e) is plotted in figure 4
as a function of Th for a few values of 0. Note thqt as ~ de-
creases from Tr/2to O the low frequency content of t’(f3)de-
creases; correspondingly the rate of decay of E’ (~) from its peak
value increases and the pulse “width” decreases. Also as 6 de-
creases from IT/2to O the high frequency content of ~’ (e) in-
creases; correspondingly the initial amplitude of C’ (9) increases.

Now consider the special case that O = IT\2 so that the ob-
server is located on the x, y plane, a plane of symmetry.
results simplify significantly. In the Laplace-transform
we have

In the

() 1 I; =Sh+ a 1
(

time domain we have

() [[$ =+ (l+cz)e
‘a’h-’]u(’h)+[l-:a( ’til)]u(Th_l)

i

The
domain

(82)

(81)

In figure 5A we have Ii’ (IT/2)I plotted as a function of ~th for
several values of a. “Note that as a decreases toward 1 th~ low
frequency content increases. ~’(T/2) is plotted in figure 5B as
a function of ~h for several values of a. Note that as a de-
creases toward 1 the rate of decay of the waveform (after the
initial peak) decreases and the pulse “width” increases. Note
also for O < ~h < 1 that ~’ (Tr/2) is a monotonically decreasing
function of ~h, while for 1 < ~h it is a monotonically increa
ing function of ~h, increasing from the minimum at ~h = 1 ap-
proaching O as Th + OJ. This waveform has one zero crossing
which occurs for some Th Satisfying O < ~h < 1.

If we set both 6 = IT/2 and
realized waveform has the form

([ -’T

1@=2eh-lu(T h)+

,s-

Ci = 1 then the time-domain nor-

[

- (Th-l)

l-e
1
u(Th - 1) (83)

23
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The zero crossing for this special case occurs at Th = in(2) ‘
-.

.69, while the minimum occurs at Th = 1 and has a value of about
-.26. Equation 83 gives a very simple result for these special
values of 0 and a.

v. Summarv

The transmission-line model for calculating the radiation
from a dipole antenna, while rather approximate, can give some
interesting results. In this note we have used this model ,to
consider some aspects of the problem of loading the antenna struc-
ture with series impedance. Using a uniform resistance per unit
length the abrupt changes in the radiated waveform associated with
the reflection of the current at the ends of the antenna can be
reduced as one increases the resistance. At the same time, how-
ever, the pulse decays somewhat faster so that the pulse width
is decreased. As discussed in section IV one can use a special
resistance distribution which goes to w at the ends of the an-
tenna. The resulting time-domain waveform has no abrupt changes
(after the initial rise) due to current reflections. There is,
however, a discontinuity in the slope of the waveform, but this
is a lower order type of discontinuity. Perhaps there are other
forms of impedance loading which can further improve the radi-
ated waveform in some way. Of course, one should recognize that
while the transmission-line model introduces a significant sim-
plification into antenna calculations the results are not rig-
orous in the sense of an exact solution to a given electromag-
netic boundary value problem. As such the results can be rather
approximate.

We would like to thank A2C Richard T. Clark for the numer-
ical calculations and graphs.
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