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Resistively Loaded Radiating Dipole Based on a
Transmission-Line Model for the Antenna
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Abstract

In order to smooth the waveform after the initial rise, as
radiated from a long and thin pulse-radiating dipole, one can
put resistive loading in series with the antenna conductors. 1In
this note we consider a few forms of such resistive loading for
which the resistance is continuously distributed along the an-
tenna. The calculations are based on an approximate transmission-
line model of the antenna. The results indicate some smoothing
associated with a uniform resistance per unit length for the an-
tenna. The waveform is further improved by the use of a special
nonuniform resistance distribution for which the resistance per
unit length goes to = at the ends of the antenna.

CLEARED FOR PU3LIC RELEASE
YL~ AY— f,’oﬂj,”)b Ny (T({




I. Introcduction

Onsa o= se-radiating dipole antenna
concerns the loading the structure so-as to
¢oiimize the ¢ Considér a general axially and
lengthwise symm ipole antznna as in figure 1. We
assuma that it 5 apacitive generator; the genera-
tor capacitance e sumed to be large comparsd to the
antanna capacita i sad in two earlisr notes+:< there
arz zectain Iund lim Loai impos=2d on the radiazed wava-,
form by such an antanna-pulssr compination. The addition ol
series passive elaments in the antenna will still give a radiated
wavelorm consistent with these limita:tions. Such additional el-
emani still, however, have a significant effsct on the zadi-
at rm, such as by damping rasonances con the antenna.

As discussad in anothar Swo nozss-:+ lumped resistors can
be introduced along the antsona structure to shape the wavelorm.
In this note ws conside: some continuous distributions of resis-
tive loadlng along the antenna. For these calculations we use
an approximate transmission-line model for the antenna. The e~
sistive loading iz considered from tha pcint of view of smooPH—
ing the waveform after the initial riss. The resistance atten
ates the current wave propagating toward the ends of the anuenna
so that abrup: changes in the radiated waveform (associated with
such raflecticns) are reduced. The case of uniform resistance
distribution (per unit length of the antenna) is first consid-
sred, This is Zollowed by cecasideration of a special form of
noauniform rasistance distribution.

IT. ‘Transmission-Line Model

In figurs 1 we have a somewhat gensral type of axially and

langthwise symmetric dipole antenna. The antenna is assumed to

I, Capt Carl Z. Zaum, Sensor and Simulation Note 65, Some Limit-
ing Low-Fraguancy Characteristics cof a Pulse-Radiation Antenna,
Cctobar 1853.
2. apkt Carl E. RBaum, Sensor and Simulation Note 69, Design of
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FIGURE 1. AXIALLY AND LENGTHWISE SYMMETRIC DIPOLE
ANTENNA



be centered on the z' axis and located symmetrically with re- - - '
spect to the x', y' plane. Primed coordinates are used for cur-

rents and other quantities in the immediate vicinity of the an-

tenna; unprimed coordinates are used for the position at which

the fields are observed. 1In the cases of interest in this note

the antenna is assumed to have a resistance per unit length A(z')

where for symmetry A is assumed to be even in z'. If one de-

sires, A can be a more general type of impedance per unit length

including inductance and capacitance.

In the transmission-line model of the antenna the antenna
in figure 1 is approximated as a transmission line for purposes
of calculating the current along the antenna and the veoltage at
the driving terminals. Figure 2A illustrates this concept. The
generator has capacitance Cq and a time-domain voltage source
Vou(t) where u(t) is the unit step function. The generator
drives a transmission line of length h equal to the antenna
length; this transmission line is approximated as being termi-
nated in an gpen circuit. The antenna current is I(z') directed
parallel to ey, the unit vector in the z' direction. I(2') is
even in z2' by symmetry. For the transmission-line model as in
figure 2A we use [ as the coordinate along the transmission line
and I(z) is egual and opposite along the two sides of the trans-
mission line. Also there is a voltage V(z) along the transmis-
sion line.

For calculating the various distributed elements of the .
equivalent transmission line the_antenna can be approximated as
an equivalent biconical antenna.> In this approximation the an-
tenna (without the series impedance loading) has a characteris-
tic impedance Z» given by the characteristic impedance of an ap-
propriate biconical antenna. A biconical antenna with cones at
8 =67 and 8 = 7 - 8; has a characteristic impedance®

pA 8
o 1
Iy, = — ln[cot(-z—)] | (1)
where
U
= _2 o~
ZO = . 377Q (2}

5. S. A. Scheikunoff and H. T. Friis, Antennas: Theory and
Practice, Wiley, 1952, pp. 425-431.

6. All units are rationalized MKSA.
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The corresponding geometric factor in the impedance is

fg E= ;2 = % ln[cot(éiq] (3)

0

If the biconical antenna has a half length-h and a radius a at

its ends (z' = +h) and if a << h so that the antenna is thin
then
21 2h
£y = 3 1n(§-) (4)

The biconical antenna can then be assigned some value of a such
that its mean radius is roughly the mean radius of the antenna
of figure 1. Essentially a is chosen such that the approximate
characteristic impedance of the antenna in figure 1 corresponds
to that of the equivalent biconic.

The medium ocutside the antenna has permittivity e,, perme-
ability M5, and zero conductivity. We then have inductance and
capacitance per unit length for the equivalent transmission line
given by

L' =y f

The series impedance A(z') put into the antenna contributes an
additional longitudinal impedance per unit length given by

Z2'(z) = 2A(T) (6)

Note the factor of 2 due to the presence of A in both arms of
the antenna. For an incremental length dz we then have the
lumped element representation of the transmission line as shown
in figure 2B.

A tilde ~ over a gquantity indicates the Laplace transform;
the Laplace transform variable is s. For convenience we define
a normalized retarded time as

- ct - r (7)

T * 7w



where

ot
n

h
c

The local propagation constant on the transmission line is

1/2
= ' ' 111/2 _ [ z' ]
¥y = [(sL' + 2")YsC'] = Yq 1l + T
where
- s/ETT = 2= B
Yo = T ¢ h
The local impedance is
7 - [SL' +z']l/2=Z [1+Z' ]1/2
- sC’ ® sL'

The transmission-line eqguations for our case are

8V _ oy y
3T (2' + sL")I
ai = - '57
5—5— sC'Vv

(10)

(11)

(12)

(14)

Differentiating the second equation with respect to { we obtain

a one-dimensional wave equation for I as



Q>
H

- sC' (2" + sL')I = 0 ’ (15)

Q2
[
N

This can alsoc be written as

2= ~
i—% - (y + sc'z')r =0
3z
(16)
2~
3T 2=~
—s =Y I=20
3z

After solving for the current I(z) on the equivalent trans-
mission line this current is used for I(z') on the antenna with
z = |z'|. Then using a thin-antenna approximation I is assumed
concentrated on the z' axis and the radiated waveform (as in
ref, 1) is calculated as

h '
~ Mo s - Yo2'cos(8)
E(8) = sin(6) I T I(z')e * dz'
o
-h
(17)
. Hol 3 h z'cos (8)
£(9) = sin(8) I 7 5t j}lI(z', % 4 -—j;———)dz'
where t* is the retarded time given by
- r
t* =t - 2 (18)

The normalized waveform in equations 17 is related to the far or
radiated electric field Ef6 (only a & component) by

rEf rEfe Yor ’
e {19)

vy
[1}]
<
T
1]
<

o <

Note that £ is considered using retarded time so that a current
wave initiated at t = 0 at the center of the antenna will pre-
duce a waveform at the observer beginning at t* = 0.




For convenience (as will become apparent later) we define
other normalized waveforms by

(20)

W'J‘fiz ]

' = oqf ' = 27f
g€ m ga, | g g %,

In this form &' is the Laplace transform of £' with respect to
Th (from equation 7). &' is then a function of sy which we take
equal to juwty to give a Fourier transform for the plots. Writ-
ing out these normalized waveforms we have

> of Sh V z'cos (8)
g'(e) = sin(e f az!'
A th
(21)
u_f h ,
£'(9) = sin(8) 7%_§ %E jﬁ I<z', g o 2 czs(@))dz,
o ~h

Assume that Z' is of a form such that at low frequencies
(wtp << 1) the charge distribution on the open-circuited trans-
mission is not influenced by 2', but only by C'. Then the an-
tenna capacitance is

€ h
o}

Ca = C'h = rg— , (22)

h, = h (23)

For example if Z' includes only resistors and/or inductors of
finite magnitude then eguations 22 and 23 apply. If on the
other hand Z' were a single series capacitor these egquations
would not apply. Then for low frequencies (s -+ 0) we have from
reference 2 the result

£z otlfs Er o~ 2mf £ s, (24)



R
£,(8) = 7= E;_ + 5;— sin(8) (25)

Define a capacitance parameter as

Ca
a = 1 + 5—- (26)
g
Then as s - 0 we have asymptotically
- Sh
_— .
E = ﬁ Sln(e) (27)

This general result for our restricted form of Z' is independent
of 2' and can be used to check some of the results for the radi-
ated waveforms in the low frequency limit.

The above discussion outlines the transmission-line model
for the dipole antenna. This model will be used in the next two
sections to calculate the radiated waveforms for the case where
A is uniform with respect to z' and for the case that A is a
particular function of z'. The reader should note that due to
the limitations of this transmission-line model the results are
rather approximate. ©Of course, one can calculate certain fea-
tures of the waveform more accurately and use the results for
comparison with the results of the transmission-line model. As
discussed in reference 2 the amplitude of the initial rise of
the radiated waveform can be accurately calculated if a biconical
wave launcher is used. Also if the mean charge separation dis-
tance and capacitance of the antenna can be accurately calculated
or measured we can calculate the low frequency content of the
radiated waveform provided the generator meets certain require-
ments. In addition one can calculate the radiation from a per-
fectly conducting infinite cylindrical antenna’ and use this for
comparison to the results of the transmission-line model for a
perfectly conducting antenna during part of the time-domain
waveform. By such comparisons one can obtain some estimate of
the accuracy of this transmission-line model for some specific
antenna.

7. R. W. Latham and K. S. H. Lee, Sensor and Simulation Note 73,
Pulse Radiation and Synthesis by an Infinite Cylindrical Antenna,
February 1969.
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III. Uniform Resistive Loading

As our first case for consideration let A be a real posi-
tive constant independent of z' and define

R Ah (28)

O

This is the case of uniform resistive locading of the antenna.

Ro is the total resistance of one arm of the antegnna, say be-
tween z' = 0 and 2' = h. The wave equation for I(Z) has the so-
lution

o"Y% _ ~v(2h-7)

(29)
e~2yh

I(z) = I(0)

1 -

where we have made I (h) 0. The voltage from eguations 14 is

f(O) e-YC + e'Y(Zh'C)

Vig) = =+~ v - (30)
sC 1 - e 2vyh
The antenna impedance is then
o -2vh
z, = Y(O) =7 L * s = (31)
I(0) 1-e7%Y
Now I(0) can be found from
LA SR
I(0) = E_I:S—C-_ + Za} (32)
g
Then I(Z) is given by
- v -yz _ _=Y(2h=7)
HORS R I ~T7R (33)
Z[1 + e ] + —=I[1 - e ]
sC
The resistance per unit length of the transmission line is
R' = 2' = 2A (34)

11



giving

R 1/2 '
2 = Zm[l + —s_f;-'-] (35)
Having I(Z) we can substitute 7 = lz'] and use this current

as the assumed antenna current. From equations 21 we have a
normalized radiated waveform

-1

1 ]

sC 2
g e

_ s5in(6) [l+e_2Yh] + [l_e-ZYh

£ (0) ]1/2

!
b.+ %ff

1
- - _ s, vcos (8)
. Jr e vh|v] _ gmvh(2 I“"]e h dv (36)

-1

where we have used the substitution

3]

(37)

<
11}
i

Define the integral in eguation 36 as Z. We then have

1 _ _ s, vcos (0) -s, vcos (8)
_ f [e=YBY _ o=2Yh YhV, [e h e o hn }
o

dv

m
|

shcos(e)-yh -shcos(6)=yh
e -1 _ e -1
shcos(e) - vh shcosie) + vh

shcos(6)+yh -shcos(6)+yh
e - 1 =-2vh + & - 1 e-th (38)
Sh

cos(8) * Yy ¢ s cos (8) - vh

So that the normalized radiated waveform is

-1
1

T2,

= sin (8) -Z2vh

Er(e) = S0 = m2vh

[l+5lr [l+e ] + [l1-e

sL ]1/2

12




rE
2nf £ Y. r
= 2 — 8 ¢ ° (39)
h o)

From equations 38 and 39 one can rather approximately calculate
- the radiated waveform as a function of w and & for various
choices of resistance and other antenna parameters. Taking the
inverse transform the corresponding time-domain waveforms can
also be calculated.

Por our present purposes we only consider the waveform for
this case of uniform resistive loading for the specific angle
& = m/2 so that the observer is located on the x, y plane, a
plane of symmetry. Then we have

T = %H[l - 2e”YR L mvhy
2
= %H[l - e7Yhy " (40)

Defining a dimensionless parameter as

1
2 = R th _ 2Ath _ 2RO (a1)
- L' L’ 2

o]

then vh can be written as

1/2
vh = sh[l + Sﬁ} = s, (s, + 8)1%/2 (42)

Also note the relation

C

= 9 = - 1771
ngZw sCaZ°° Ca sh[a 1] (43)

The normalized waveform can then be written as

~ 2 1/2
fTy - 1 - -vh E_ o - 1
(%) = gl - e [[l * sh} * s ]

13



-1
1/2 _
+ [[1 + -B-] -e=- 1 l:]e 2vh (44)
Sn

-1
1/2
o (my - 1 E_ o - 1 _ -vh -2Yh
g (7) - 3% [1 + sh] - i [1 - 227 YR 4 o727hy
n
© [l + E._]l/z - LT_.
s s
. _qy 0 h ol -2nYh
(-1) ” 73 Pa—— e {45)
Z_ e E] et
=0 Sy, Sy

In this form we can separate the initial wave and the successive
reflections by considering each term associated with a particu-

lar power of e~ Yo,

If we make a further simplification by assuming that the
generator capacitance is arbitrarily large so that we can set
¢ = 1 we then have

2 (2)

b & 2] 3 (L1)Rg-2mYR
n=0

1 -Yh
[l - 2e
Sy, + B

«©

Z (-1)Be—2mYh _ ZZ (_l)me-(2m+l)‘{h
m=0 m=0

1

- s, F B

+ 2:(_l}m—le-2myh

m=1
- _‘Tﬁ'shl+ ‘1 r 2 (-1 Be” (20l YR (46)
n=1

For convenience define

14




so that we can write

g ) = ZE:EA (48)
n=o

Now éé is associated with the initial signal which reaches the
observer and the £pj for n > 1 can be considered successive re-
flection terms.

N

For the time-domain waveform at & = 7/2 (and for large Cg)
we can take the inverse Laplace transforms of the various terms
with respect to sp. For the n = 0 term we have

-Brh
Eo = e u(rh) (49)
For the terms for n > 1 first use the inverse Laplace transform
(with respect to sh)38
-m'vs, (s, +8)
h'~h -(B1../2)
-1lle _ _ h 8 /2__.2
L = u(Th m')e Io(f W ) (50)
Shisp*

where m' > 0 and I, is a modified Bessel function. Integrating
with respect to m' from m to « gives

-m%sh(sh+6) - (81, /2) Th
L-l e = u(T,.~-m)e h I <§ Tz-m'2>dm'
sh(sh+6) h o\2 h
m (51)

Multiplying the Laplace transform by sp and differentiating the
inverse transform with respect to Th gives

8. AMS 55, Handbook of Mathematical Functicons, National Bureau
of Standards, 1964, egn. 29.3.91.
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—m/sy (s, +8)
L-ie = u(t,_-m)
Sy + B h
~(81./2) [h -
. a h 8 2 |2 '
é_‘F; [ f IO<-2- ,}Th"m )dm (52)

m
Substituting m = 2n - 1 and multiplying by 2(-1)® we have &} for
n > 1,

Note that for tp < 1 we have £'(n/2) = £L. The first part
of the waveform is then a step rise followed by an exponential
decay. Writing &} as

- (e*/t)
Eé = e u(t*) (53)

the time constant of the decay is

t
= 2oL L
t, =g =gr= (54)

At 1y = 1 the first reflection term appears. The step discon-
tinuity at tp = 1 is found from the initial value theorem of the
Laplace transform as

-2 sh - Sh(sh E)
t — 1 "
El(l+) = lim Sy sF 3 e e

sh-)w
_ s, (1=/1+=—)
.y Zsh h Sy
Rl -
s, +*®~h
h
= -2 ¢~ (B/2) (55)

Thus we have the ratio of the step discontinuity at T, = 1 to
the initial discontinuity at 1y = 0 as

16



£ (1+) ) ~-(R_/2_)
E%TEFT =2 o (B/2) _ 5, o O . (56)
(@]

where R, (equation 28) is the resistance along one arm of the
antenna and Z., is some mean pulse impedance ascribed to the an-
tenna, neglecting the resistive loading.

If, after the initial rise, one wants no more step discon-
tinuities in the radiated waveform, then equation 56 can be used
for socme gquality factor for the waveform. To minimize the mag-
nitude of this discontinuity Ro/Z« can be made larger. However
increasing Rp/Ze for a fixed h decreases the time constant of
the pulse decay (egquation 54) thereby decreasing the "pulse
width." If one wants a large pulse width then some compromise
is appropriate. Of course, one should recognize the limited ac-
curacy of the transmission-line model from which the above re-
sults are obtained. When applied to a real antenna egquation 56
is only very approximate.

IV. Special Case of Nonuniform Resistive Loading

Now go on to let A vary as an even function of z'. Make a
change of variable in the one-dimensional wave equation for I
(equations 15 and 16) by substituting I = Fe~Y0%; this gives

F 3F

— - or _ T e —
2Y, 57 = sC'Z'F =0 (57)

Next try a solution of the form F = £()F, so that F is split
into the product of a function of ¢ and a function of s; this

- sC'Z'£ =0 (58)

-—-_—2'\{

Q@

0 9%

Solving for 2' we have

2

v 1 1 3% _ 2 1 3f
Z2' =gT T 22 T It (59)
g
This solution has the form
7' = EéTT + R (60)

17



where we have

o
13
Rl__%r_%%_g_-zsz—% (61)

For this type of solution Z2' is the series combination of a re-
sistance per unit length R' and a capacitance~length product C''
(in farad meters). Both R' and C'' can be functions of 7, de-
pending on the form chosen for £(g). Of course if we want

R' > 0 and C'' > 0 for 0 < z < h so that R' and C'' can be re-
alized with passive elements, then the form we can choose for
£(2) is limited somewhat.

Choosing some particular form of £(z) we have one of the
two independent solutions of the second order differential equa-
tion (eguation 58) and we have a particular form of Z' consistent
with this solution. However, to avoid the need for_the other
independent solution we constrain f£(h) = 0 so that I is zero at
Zz = h and the other solution is not needed to match the boundary
condition there. Using the transmission-~line model of the an-
" tenna we have only an "outward" propagating current wave which
attenuates to zero at the ends of the antenna (z' = +h).

Consider now C''; it represents a distributed capacitance
in series along the antenna. At s = 0 this presents an infinite
series impedance along the antenna and at late times prevents
the voltage on the equivalent transmission line from being uni-
form with 7. At low frequencies the charge is not uniformly
distributed along the transmission line (i.e., the charge stored
in C', the distributed antenna capacitance). The charge near
the ends (z' = +h) of the antenna is then reduced thereby de-
creasing the electric dipole moment of the antenna. This in
turn reduces the low-fregquency radiation of the antenna. Thus
for the remainder of the discussion we only consider the case in
which we constrain that 1/C'' = 0 making Z' = R'.

In order to make the capacitive term in Z' vanish we set

2

2L=y (62)
3G
Then with the requirement that £(h) = 0 and normalizing £ (zg)

such that £(0) = 1 we have

18



£(z) =1- ¢ (63)

-1 ’ '
2'(5) = ') = 2|1 - g (64)

In terms of the resistance per unit length on the antenna we
have (for -h < z' < h)

' ' Zm ' -1
A(z') = R' (Jz']) _ H—[l - LE_L] (65)

2 h

This special form of resistance Eer unit length has been con-
sidered by Wu, King, and Shen.9,10

With this special form of A(z') the transmission-line model
gives us a current distribution as

i -y z .
f(z) = [1 - %} e ° %(0) (66)

The vecltage along the transmission line is given from equations
14 by

) - %} <% 30y (67

fay o

~ __ 1 3I(z) _ _ 1T _
V(E) == g5 ST T "ET[ Yo
so that we have

V(0) = g lyh + 111(0) , (68)

In the transmission line model the antenna impedance is then

9. T. T. wa and R. W. P. King, The Cylindrical Antenna with Non-
reflecting Resistive Loading, IEEE Trans. on Antennas and Propa-
gation, AP-13, May 1965, pp. 369-373.

10. L. C. Shen and R. W. P. King, The Cylindrical Antenna with

Nonreflecting Resistive Loading, IEEE Trans. on Antennas and
Propagation, AP-13, November 1965, p. 998.
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- vV{0) 1
Z_ = = = — [Y_.h + 1]
a. I(0) sC'h o
1 1
= == + 32 =2 |=—+1 » (69)
sCa [Sh ]

This impedance is the series combination of a capacitance and a
resistance. The impedance of our ideal capacitive generator is
just

1

7 = i (70)
C

g~ sC

f(O) can now be found as

\ v -1
I(0) 59 [Zg + Za] L. 59[;5— + Tl" + zm]

scg sCa
Vol a -1 Y5 e -1
=glscc v | Tamlsy Tt
a ®|~h
v t
_© h
T I, s, o (71)

Using the transmission-line model the current on the an-
tenna is then

(72)

~ Vs  tn or.l:l i [z'[} e-sh'LXZT'_L

From equation 21 the normalized waveform can be calculated as

u_ £ ] [
£ = si og _h_ -1z
£1(8) = sin(®) 3 sh+af b - ]

-h

L2l s Zcos (o)
=S S os
o °h o hkE° g

20




h z! 2!
_ sin(8) Sh l [l _lz } sh<--l-H—-L+H—cos(e)>dzl
- 2 st h R e .
B (73)
Substituting
_ 2!
VR (74)
we have
1l
j = 8))
= _ sin(8) Snh _ Sh( | v]+vecos(
218 = = ) jr (1 - [vhe av
-1
1
i s -3, (1-cos(8))v
- 512(6) h J{ (1 - V)[e h
5 Fo
o
‘Sh(l+cos(e))v}
+ e dv (75)

This last integral is composed of two integrals of the form

1
.f (1 - v)e bv dv e bv<;
o

o=
-+
Ol
+
li—‘
]
\./

1 -b_1 .1
T (76)
2 22 b

The normalized radiated waveform is then

-sh(l-cos(e))
_ sin(8) 1 e - 1 Y
- 2(sh+a) I-cos (8) sh(l-cos(e))

£'(8)

-sh(l+cos(6))
+ 1 e - 1 + 1
I+cos (8) sh(l+cos(9))
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2nE bl Y. r
- i’ 77)
h o

Taking the inverse transform gives the time-domain results as

-aT, “OTy
£1(8) = sin (9} [ f _ l-e Ju(T )
2 1-cos (8) a(l-cos(e){z h
-a[rh—(l-cos(e))]
+ 1l l-e
z u(rh-[l-cos(e)])

(L-cos (8)) %

-aT -oT
+ e h - l-e B u(r.)
h

1+cos(®) 4 (1+cos(8)) 2

-a{rh—(1+cos(e))]

1l l-e
+ = u(t,. ~[l+cos(8)1])
“ (l+cos(e))2 h
| rEfe
= 2'1'ng ——\7;-— (78)

Note the interesting result that after 7y = 0 there are no step
discontinuities in §'(8). There are, however, discontinuities
in the slope of £'(68) at T = 1 - cos{6) and at 7 = 1 + cos(6).
In this respect the special resistance distribution in this sec-
tion gives a significantly better waveform than that associated
with a uniform resistance distribution.

The low frequency asymptotic form of £'(8) is given by
equation 27. For high frequencies we have as sp + @ the asymp-
totic form

=y ~ sin(8) 1 1 1
£1(8) [l - cos (8) * 1 + cos(e)] = shsin(e) (79)

Note then that for low frequencies the normalized waveform is
proportional to sin(0) while for high frequencies it is propor-
tional to 1/sin(6). The initial step discontinuity in £'(8, ty)
is given by .
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(8, 04) = lim s, &' (8) = 53%767 (80)

Consider the case that Cg >> Cy so that we can set a = 1.
For this case §£'(8) is plotteg in figure 3 as a function of wth
for a few values of 6. Similarly &'(8) is plotted in figure 4
as a function of th for a few values of 8. Note that as 9 de-
Creases from m/2 to 0 the low frequency content of £'(8) de-
Creases; correspondingly the rate of decay of §'(€) from its peak
value increases and the pulse "width" decreases. Also as 6§ de-
creases from 7/2 to 0 the high frequency content of §'(€) in-
Creases; correspondingly the initial amplitude of &' (8) increases.

Now consider the special case that & = 7/2 so that the ob-
server 1s located on the x, y plane, a plane of symmetry. The
results simplify significantly. In the Laplace-transform domain
we have

.~ 1 1 e
£ () = 1 - =+ (81)
(2) sh + a‘ sh sh
In the time domain we have
. -qT -a(t,.=-1)
(1) = H[arwe Pifutrpefice P Juir- (82)

In figure 5A we have [g'(w/Z)[ plotted as a function of wty for
several values of a. ©Note that as o decreases toward 1 the low
frequency content increases. ¢&'(m/2) is plotted in figure 5B as
a function of th for several values of a. Note that as o de-
creases toward 1 the rate of decay of the waveform (after the
initial peak) decreases and the pulse "width" increases. Note
also for 0 < th < 1 that &' (7/2) is a monotonically decreasing
function of th, while for 1 < T, it is a monotonically increas-
ing function of Th, increasing from the minimum at Tt = 1 ap-
proaching 0 as Tp - ®. This waveform has one zero crossing
which occurs for some 1 satisfying 0 < T < 1.

If we set both & = 7/2 and ¢ = 1 then the time-domain nor-
malized waveform has the form

£'(3) = [2e-Th - lJu(Th) + [1 - e-(Th-l)]u(Th - 1) (83)
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The zero crossing for this special case coccurs at T = 1n(2) =
.69, while the minimum occurs at Tp = 1 and has a value of about
~-.26. Eguation 83 gives a very simple result for these special
values of & and a.

AR SummarX

The transmission-line model for calculating the radiation
from a dipole antenna, while rather approximate, can give some
interesting results. In this note we have used this model to
consider some aspects of the problem of loading the antenna struc-
ture with series impedance. Using a uniform resistance per unit
length the abrupt changes in the radiated waveform associated with
the reflection of the current at the ends of the antenna can be
reduced as one increases the resistance. At the same time, how-
ever, the pulse decays somewhat faster so that the pulse width
is decreased. As discussed in section IV one can use a special
resistance distribution which goes to = at the ends of the an-
tenna. The resulting time-domain waveform has no abrupt changes
(after the initial rise) due to current reflections. There is,
however, a discontinuity in the slope of the waveform, but this
is a lower order type of discontinuity. Perhaps there are other
forms of impedance lcading which can further improve the radi-
ated waveform in some way. Of course, one should recognize that
while the transmission-line model introduces a significant sim-
plification into antenna calculations the results are not rig-
orous in the sense of an exact solution to a given electromag-
netic boundary value problem. As such the results can be rather
approximate.

We would like to thank A2C Richard T. Clark for the numer-
ical calculations and graphs.
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