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Some Further Considerations for the Circular
Parallel-Plate Dipole

Capt Carl E. Baum
Air Force Weapons Laboratory

Abstract

A previous note contained calculations of various features
of the circular parallel-plate dipole; this note continues these
calculations. In this note various problems are considered, in-
cluding the frequency response characteristics of a resistive rod
used as the output resistor, the effect of the thickness of the
sensor disk electrodes on the equivalent height, the effect of
dielectric spacers on sensor capacitance and equivalent height,
the electric field distortion near the edge of a conducting
ground plane with a square edge, and the electric field distor-
tion of a circular ground plane of nonzero thickness by consider-
ing it as an oblate spheroid.
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I. Introduction

In a previous notel we have treated some of the design con-
siderations for a circular parallel-plate dipole. These consid-
erations included the capacitance and equivalent height of the
sensor, the frequency response of the sensor associated with a
resistor inserted between the plates and in series with a low im-
pedance output cable, and the perturbation of the electric field
produced by a surrounding dielectric shell.

In this note we consider several more problems associated
with this type of sensor. First we consider the response of a
uniform conducting dielectric rod as the output resistor. This
can be compared with the response of a conducting tube in the
previous note. Second we consider the error introduced into the
equivalent height by the non zero thickness of the circular disk
electrodes. Third we consider the errors introduced into the ca-
pacitance and equivalent height by the use of dielectric spacers.
Finally we consider the error introduced into the incident field
by the presence of a disk of finite thickness which might be used
as a ground plane, either between the two electrodes of a differ-
ential sensor, or adjacent to a large conducting surface and
forming one side of a single ended sensor.

II. Short Circuit Current for a Resistive Rod

In reference 1 we considered the output resistor as a cy-
lindrical shell of radius Y. with surface resistance Rs. For
Rs >> Z it was found that the total current flowing alOng this
sheet has a flat response to the incident wave,up to frequencies
such that the wavelength is of the order of Yfiwhere Z is the
wave impedance
given by2

z f
&=
E

.
of the medium containing the i~cident wave. Z is

(1)

where u and E are the permeability and permittivity, respectively,
of this medium; the conductivity of this medium was assumed to be
zero. The medium inside the resistive shell was assumed to have
the same electromagnetic parameters as the external medium.

While the total current on this cylindrical shell has a
rather high frequency response there are still other problems to

1. Capt Carl E. Baum, Sensor and Simulation Note 80, The Circular
Parallel-Plate Dipole, March 1969.

2. Rationalized MKSA units are used throughout.
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consider. The current on the resistor must be related to the cur-
rent into some other device which records this current or trans-
ports the current to some other position for eventual recording.
The manner of connecting the resistor to some device such as a
coaxial cable can significantly influence the high-frequency char-

.—.

acteristics of the current into the cable. For example, there
may be currents in the output cable associated with displacement
current between the sensor plates and in the.resistor structure.
There are then problems to be considered concerning the geometry
Of how the resistor current gets into the output circuitry.

In figure 1 we show a possible geometry for the output re-
sistor, including the connection to some output circuitry. For
these calculations the resistor is taken as a uniform rod of
length b, radius Y
tivity a.

or permeability Pr permittivity el~and conduc-
The propagation constant in the resistor is then

(2)

The propagation constant in the medium between the plates is

K= um (3)

Note that this resistor is placed between the plates in a manner
such that there is a narrow annular sl~t (with width small com-
pared to Yo) in the perfectly conducting sheet (the plane z = O)
around the resistor. The signal to the coaxial cable or other
output circuitry passes through this narrow annular slot. One
purpose of choosing this geometry is so that with this annular
slot shorted out we can calculate the short circuit current at
the slot as a boundary value problem in cylindrical coordinates.
Such a calculation includes the displacement current in the re-
sistor. In reference 1 we considered a resistive tube; with the
present type of output connection one would have to add the dis-
placement current inside the tube to the conduction current along
the wall of the tube in order to find the short circuit current
into the type of output connection being presently considered.
In this note we only consider the short circuit current from the
point of view of determining optimum resistor dimensions and con-
ductivities . We do not here consider the source impedance pre-
sented to the output circuit.

Referring again to figure 1 note that the output circuitry
occupies a volume with finite extent in the z direction. In ref-
erence 1 we considered the ideal case of two coaxial disks at
z = &b. In a real sensor the signal has to come out somewhere.
We assume for the present calculations that the signal is taken
out near z = O on the z axis by including a conducting plate of
finite thickness centered between the conducting disks. The
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Figure 1. IDEALIZED RESISTOR WITH ANNULAR-SLOT OUTPUT
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output circuitry would be inside this plate. Another case of in-
terest is with a single disk at z = b and an infinite ground
plane at z = O, in which case the output circuitry is below z = O
as in figure 1. A differential sensor_stith two symmetrical disks
has two resistors like the one shown in figure 1. We consider
one resistor, the results applying equally well for two, as would
be used in a differential sensor.

In designing a parallel-plate dipole of this type there are
a few basic parameters normally established. These include the
disk position (z = b) which establishes the equivalent height of
the dipole, the sensor capacitance, and the resistance of the re-
sistor at the sensor output. With these parameters and whether
the sensor is to be single ended or differential established one
then would like to maximize the frequency response of the sensor.
In the present calculations we seek to make the short circuit
current from the resistor be uniform with frequency to the maxi-
mum frequency possible for the case that the resistor is a uni-
form circular rod. Considering a single resistor of length b as
in figure 1 we have a resistance

b
‘2 = ~y2a (4)

o

R2 and b are both considered as fixed numbers while Y. and IScan
be varied to optimize the short circuit current from the resistor.

Instead of Y~ we then define a characteristic distance which
is fixed by choic~ of R2

Then define a normalized

Let

Y. ‘1
P=qf E =—

r E

frequency as

(5)

(6)

(7)

be dimensionless parameters. For fixed ~r we wish to find the
best value of p which optimizes the frequency response of the
short circuit current as expressed in terms of a.
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Some parameters of interest can now be written as

KYO = ap —

K. 1/2

‘lyo
.ap+ “~1’ ‘apq= ap[Er - 1

where we have defined

The

and

‘l=[cr-iq==

wave impedance in

‘“m

[ 1&ll’2 = ‘r - L 1’2
lTap2

(8)

(9)

the resistor is

(lo)

we have the convenient relations

‘1 K 1—= —= —
z ‘1 q

‘1—= -i(a + iucl)
‘1

‘lKl = Lull

betw=en the
propagating
in the form

(11)

With the above preliminaries taken care of we go to the
boundary value problem. As in reference 1 we assume an incident
plane wave
and z = b)
components

two perfectly conducting surfaces (Z = O
in the *X direction with only two field
(with el~t suppressed)

Ez
= ~ ~-iKYcos (@)

= Eoe-lKx o
inc

(12)

E. E
H =-~e-lKx=-#e

-iKYcos (@)

Y“lnc
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where we have a cylindrical coordinate
to cartesian coordinates (x, Y, Z) as

x=’+’ Cos(f.$), Y = Y sin($)

system (Y1 $r Z) related

—.— (13)

In cylindrical coordinates the incident wave has the expansions

[

m

Ez = E. Jo(KY) + 2X (-i)nJn(K’+)~Os(n@)
inc n=1 1

E. m Jn(KY)

‘Y. ‘-iz--
2~(-i)n KY sin(n$)

mc n=1

(14)

E.

[

m

%. ‘-i~
J:(KY) + 2X (-i)nJ;(Ky) cos(n$)

mc n=1

Primes on the Bessel functions denote the derivative with respect
to the argument. Two components of the wave inside the resistor
(Y < Yo) are

[

C.u

E = E. aoJo(KIY) + 2~ (-i)nanJn(Kly) cos(n$)
‘1 n=1 1
‘$1= ‘1

The reflected
by

E

[
# aoJ~(KIY) + 25 (-i)nanJ~(Kl’f’)cos (n@)
1 n=1 1

wave (for Y > Yo) has two Of its components

(15)

given

[

al

(L) (KY} cos(n$)= E b H(2) (KY) + 2~(-i)nbnEinE
‘2 ’00 n=1 1

(16)

{2) ~Ky)Cos(m$)E

[
‘2){KY) + 25 (-i)nbnHn~$2 = -i : boHo

n=1 !

This reflected wave is taken as a purely outward propagating wave
as was also done for the example in reference 1. Thus the size
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of the conducting plates is assumed infinite making this a high-
frequency or early-time calculation.

To find the coefficients in the field _expansions first make
Ez continuous at Y = Y. giving

—..

(17)‘2)(KYO)anJn(KIYo) = Jn(KYo) + bnHn

Making Ho continuous at Y = Y. gives

(KIYo) = *[J: (KYO) + bnH:2) tKYo)] (18)

rewritten aswhich can be

J;(KYo) + bnH:2)iKYo) (19)(KIYO) = qanJ:(KIYo)

Solving for an we have

J (KlYo)H;2) iKyo)]
n‘2)(KYO) -an[qJ~(Klyo) ‘n

= J;(Kyo)H~2) (KYO) J (KYO)H:2)\KYo)
n

(20)2i
= 1TK%

have used a Wronskian

short circuit current

relation for the Bessel

across the annular slot

functions.

at Y = YoThe
given

I =

byis

E
; aoJ:(Kp’o)

1-J
2?T

‘$ y=y

Yod@
c o

i27rYo

4E
‘2)tKYo)]

-1
=- + J: (KIYo)[qJ: (KlYo)Hj2) (Kyo) - JO(KIYO)HO

1
A

(21)
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If we expand the Bessel functions for small arguments (small in
magnitude) we find for small IKYOI and lKIYo\ the asymptotic re-
lation

—.

(22)

This, of course, is the sum of the low-frequency conduction and
displacement currents in the resistor. Note that this asymptotic
form in equation 22 is not the asymptotic form for low frequency
u but for small IKYOI and \KIYo~ so that the leading term of the
Bessel function expansions is used. If an asymptotic form for
small u is used other terms related to the resistor size (which
might be thought of as an inductive effect) also enter in. An
appropriate normalizing current is then

(23)

so that in normalized form we have

I
4J:(K1YO)

[qJ:(Kl~o)Ho‘2)(KYO) - (2)[KY ~;l—=
10 JO(KIYO)HO (24)

@ZIK
o

In terms of the normalized parameters a, p, and q defined pre-
viously we have

(25)

so that we have

I ‘2)(Up)~ J’(apq)[qJ:(apq)Ho—=
10 a O

- Jo(apq)H:2) {ap)]-l (26)

In figures 2 and 3 the magnitude and phase of I/I. are
plotted as functions of the normalized frequency a for ~r = I and
Gr = 10 and for several values of the parameter p. Note in fig-
ure 2 for &r = 1 that based on the magnitude of 1/10 the best
frequency r~sponse curve has p s 0.4.- In figure 2 for &r = 10
the best case is with p ‘ 0.15. For these
the frequency response is roughly constant
ized frequency which is roughly a ‘ 7.

cases the magnitude of
to the highest normal-
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For a particular value of p the resistor radius and conduc-
tivity can be found from

and

0 b= ‘2=
nY:R2 22ITpbZ

(27)

(28)

Note that as R2 is increased the optimum Y. is decreased and the
corresponding u for maximum frequency response is increased.

As a rough physical interpretation there are at least two
effects which make the frequency response nonflat at high fre-
quencies. There is the displacement current as shown in equation
22. The displacement current tends to increase the current mag-
nitude at high frequencies. For fixed R2 the effect of the dis-
placement current is decreased by increasing o and correspondingly
decreasing Yo. The second effect is that as the frequency is in-
creased and wavelengths in the resistor become of the order of Y.
(in magnitude) the current is not uniform in the resistor and
skin depth limitations enter the problem. This decreases the
magnitude of the net current flowing through the resistor. The
optimum value of p, and thus the optimum value of Y. for fixed
b and R2, is chosen to roughly compensate these two effects to
maximize the frequency response.

The Bessel functions of real and complex arguments were cal-
culated using a computer code discussed in a previous note.3

III. Error Introduced into the Equivalent Height by Non Zero
Thickness of the Disk Electrodes

One of the fundamental parameters of the circular parallel-
plate dipole is its equivalent height. In this section we con-
sider the effect of finite thickness of the one or two circular
disk electrodes on the equivalent height. This problem is con-
sidered from a quasi static or low frequency viewpoint.

3. Richard C. Lindber~, Mathematics Note 1, BESSEL: A Subroutine
for the Generation of =essel Functions with Real or Complex Argu-
ments, October 1966.
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In figure 4 we show a cross section view of a circular par-
allel-plate dipole with spacing 2b between the disks (inside
faces) and with each disk of thickness w; the disk radius+is a.
In another note we have shown that th~.equivalen$ height heq is
the same as the mean charge separation distance ha. Since the
two thick disks are both symmetric about the z axis we have only
a z component of the equivalent height and can write

K =h:=~a=ha:zeq eq z
(29)

where ~z is a unit vector in the z direction and we have defined

(30)

To calculate the equivalent height we calculate the mean charge
separation distance using the quasi static or low-frequency charge
distribution on the antenna with no incident field and with a pos-
itive charge Q on the upper electrode (z = b to z = b + w) and
with -Q on the lower electrode.

Let the upper electrode have voltage +V and the lower elec-
trode -V. The

c .Q
Z!v

Using symmetry
culated from

capacitance of the sensor is

(31)

about the z = O plane the equivalent height is cal-

(32)

where V+ is the volume of the upper electrode and p is the charge
density. Our objective is to find approximate lower and upper
bounds for heq which we call hl and h2 respectively so that

h <h < h2
l–eq–

(33)

4. Capt Carl E. Baum, Sensor and Simulation Note 69, Design of a
Pulse-Radiating Dipole Antenna as Related to High-Frequency and
Low-Frequency Limits, January 1969.
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Of course we would like h2 - hl to be as small as possible to
minimize the error in designing such a sensor for a particular
‘eq ●

Clearly a lower bound for heq is ~ust

hl = 2b

since all the charqe is located at Izl > b.

(34)

We could also use
2(b + w) for an up~er limit on he but tisingthe capacitance
formulas in reference 1 we can ge? a significantly tighter ap-
proximate upper bound. First note that the surface charge den-
sity on the inner face (z = b) of the upper electrode has a lower
bound as

(35)

where E is the permittivity. This is because -V/b is the average
vertical electric field (average over z) between the electrodes
(lz~ : b, IYl : a) and the maximum field magnitude for each Y oc-
curs on the electrodes. The field enhancement is particularly
strong near the edge of the electrodes (’.? = a) . Let Q1 be the
total charge on the inner face (z = b) of the upper electrode. A
lower bound for Q1 is then

(36)

This simply says that the charge on the inside of the disk is
larger than the charge if &he field were uniform because of the
fringing fields. Another way to look at this is to look at the
electric field lines which terminate on charges on the inside
surfaces of the two disks (z = tb) . These field lines bulge out-
wards, some extending be ond Y = a;

7
the average cross section

area (at fixed z with [z < b) through which these field lines
pass is greater than na2. This makes the capacitance associated
with the inside surfaces greater than c~a2/(2b) .

Let Q2 be defined by

(37)

From equations 31 and 36 we have the inequality

14



Q2<Q-+T~2= 2VC - E ; na2

Now to obtain an upper bound for--heqwe

h
eq < :[Q1b + Q2(b + w)]

This is greater than heq because Q2
z between b and b + w. The average
less than b + w.

From equation 36 we can define

(38)

have

(39)

is distributed over values of
z associated with Q2 is then

(40)

For Q1 and Q2 we then have

vQ1=sFna2+Q3

(41)

Q2 ‘Q-E~Ta2-Q3

The inequality in equation 39 can then be written as

h ~{[E ~ ~a2v
eq ‘Q +Q3]b+[Q-s~na2 -Q3](b+w)} (42)

or

heq < ~{Qb + [Q - c ~ ~a2 - Q31w}

[

Q3

1
=2b+21-~~a2-—w

Q

[

2 Q3

1=2b+ 2 1 - ~- —w
Q

Since Q3 is positive
ing the inequality.

(43)

we can drop this term while still maintain-
Thus for our upper bound we take

15



‘2 [=2b+2w l-$

Note for large a/b that

[
1

‘2-hl=2w1-@

c~a2

2b 1
Capproaches ‘s~~2\(2b).

z~a2

2b 1

(44)

We now have

(45)

and for large a/b this is much less than 2w. A convenient way to
write the bounds on heq is as

B can be considered a relative error bound

(46)

in calculating heq.

To get an estimate for B and h2 we can use an approximate
capacitance formula discussed in reference 1. This is the
Kirchoff approximation which includes the non zero disk thickness.
This approximation is

Then we have

For small w/b and for large a/b this is roughly

B’ #[in(+) - 11

(48)

(49)

Iv. Error Introduced into the Capacitance and Equivalent Height
by Dielectric Spacers

Assume that dielectric spacers are used to hold the two
disks or disk plus large ground plane at a fixed separation, i.e.
the spacers establish b. Let these spacers have a dielectric
constant c~ and let them have shapes which are independent of z
between the plates (~z~ < b, [VI < a). Let the total cross
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section area of these spacers at each fixed z (with IzI < b)
equal As. The electric field between the plates is approximately
a uniform Ez for large a\b if positions near the disk edges are
not considered. The increase in.capacitance due to these spacers
is then

A
Cs ‘ (ss - &) &

The relative increase in the capacitance is defined by

(50)

(51)

If we approximate C by s~a2/(2b) for lar9e a/b then ‘his ‘rat-
ional increase is roughly

The use of dielectric
height of the sensor. The
discussed in reference 4, is fundame~tall~ the dipole moment of
the sensor divided by the amount of charge transferred between
the sensor terminals. This charge is significant here because as
charge is transferred from’one disk to the other there is a polar-
ization current in the opposite direction in the dielectric
spacers. The dipole moment has only a z component given by

(52)

spacers also affects the equivalent
mean charae separation distance~ as

Pz = 2b(Q - QJ

where the charge transferred between the electrodes is

Q = 2V(C + Cs)

(53)

(54)

and the charge

Qs = 2VCS

Note for these
zero thickness
then

associated with the dielectric polarization is

(55)

calculations the two disks are assumed to have
and to be at potentials k37. The dipole moment is
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Pz = 4bVC

and the equivalent height is

h ~z
eg =ha=—=2bC:C

Q s

. Zbb’X’
= 2b[l + f~]-l

For small f~ we have

h
eq = 2b[l - fs]

—.

(56)

—

(57)

(58)

The decrease in the equivalent height is then about 2bfs and f~
is the approximate fractional decrease of the equivalent height.

The decrease in the equivalent height is then attributable
to the dipole moment induced in the dielectric spacers which sub-
tracts from the dipole moment due to the charge transferred be-
tween the disks. The z component of the dipole moment in the di-
electric is -justthe dielectric volume 2bA~ times the z component
of the polarization vector (Es - S)EZ in the dielectric or
(SS - s)2bA~Ez; this is just -2bQs.

v. Electric Field Distortion Near the Edge of a Thick
Ground Plane with a Sauare Edae

Another source of error in a parallel-plate dipole is the
non zero thickness of a ground plane. Such a ground plane could
be a conducting plate of thickness 2w’ centered between the two
disks of a differential sensor or it could be a conducting plate
of thickness w’ which is placed on a larger conducting ground
plane as part of a single ended sensor. Figure 5 illustrates
this situation. In figure 5A there is illustrated a cross sec-
tion of a differential sensor with such a central ground plane
which might contain cables to conduct the signal to the periphery
of the sensor. Figure 5B shows a region near the edge of the
ground plane with a square edge.

,
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In this section we consider the distortion of the incident
electric field near the edge of such a ground plane at low fre-
quencies so that we can use a quasi static approach. The ground
plane is considered as a circular disk_gf non zero thickness 2w’
and radius a’ with a’ >> w’. Near the edge of this disk we ap-
proximate the geometry as two dimensional by neglecting the curv-
ature of the edge. AS shown in figure 5B we set up a coordinate
system based on the edge. Only two coordinates x’, z are of in-
terest with x’ = O on the edge and z = O centered halfway’in the
disk; z = w’ is the top surface of the disk. The boundary con-
ditions are that the electric potential be a constant (which we
take to be zero) on the disk surface and on the positive x’ axis.
We are of course considering the case where the static incident
electric field is uniform and can be written as

2. = Eo:z
lnc (59)

We only consider the region z > 0 for x > 0 and z > w’ for x < 0.
The sensor electrodes are assufiedabsent–for these–calculations.

Define a complex variable as

x : x’ + jz (60)

An appropriate conformal transformation for this geometry is5

1/2
x = ‘;[(*2 - 1) + arccosh(v)] (61)

where ~ is another complex variable which we write as

$ = u+ jv (62)

The electric potential function is a constant times v since for
large 1~1 we have the asymptotic relation

x =W+t) + O(ln($))

The electric potential function is then -w’Eov/n.

(63)

5. R. V. Churchill, Complex Variables and Applications, 2nd ed. ,
McGraw Hill, 1960, p. 291.
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Along the top surface of the disk (z = w“’,X’ < 0) we have

[

1/2
w’ 2

x’ =p-(u - 1) 1+arccosh(-u)— .– (64)

while v = O and u < -1. The electric field just above this sur-
face has only a z component and can be calculated as

w’E

()

-1

[

-1/2 1-1/2 -1
0 ax’

Ez=-~F =-EO-(U2 -1) u- (U2 - 1)

-1 1/2
[1

=E”Ou+l

Now for u << -1 so that x’ << -w’ we have

x’ =

giving

(65)

(66)

1/2

= Eo[l - ‘~1 (67)

The relative field enhancement due to the ground plane thickness
is about Wl/(ITlXll). This gives one some idea about the distor-
tion included in the field at the sensor electrodes at some dis-
tance lx’I from the edqe of the qround plane. Define this rela-,,
tive field enhancement- (for x’ <-0)
(but still small compared to a’) is

w’
%=-== h

as El which for lX1l >> w’
approximately given by

(68)

VI. Electric Field Distortion for a Thick Ground Plane
Approximated as an Oblate Spheroid

We turn now from the field distortion near the edge of the
ground plane to the overall effect of the ground plane thickness
on the sensor accuracy. Consider the static electric field dis-
tribution around the ground plane without the presence of the

21



disk electrodes. The ground plane of radius a’ and thickness 2w’
excludes the electric field from its volume and thereby enhances
the electric field at some positions in the vicinity of the
ground plane. Referring to figure 5A the sensor disk electrodes
are each spaced from the nearest surface of the ground plane by
the distance b. The field enhancement due to the ground plane
then increases the equivalent height to something greater than 2b
(in the differential case). Thus we consider the enhancement of
the incident electric field by the ground plane as an estimate of
the error introduced into the calculation of the equivalent height
(i.e. 2b). For this calculation we approximate the conducting
ground plane as an oblate spheroid.

In figure 6 oblate spheroidal coordinates are illustrated
for some cross section on a plane containing the z and x axes.
This set of coordinates, for which we use g, L, $, is defined by6

x z r. cosh(~) sin(c) COS($) = Y COS($)

y s r. cosh(~) sin(3) sin($) = Y sin(o) (69)

z ~ r. sinh(~) cos(g)

where ‘Y,$, z is our cylindrical coordinate system as before and
r. is just a convenient constant with dimension meters. We also
have

Y = r. cosh(c) sin(L) (70)

The scale factors for this orthogonal curvilinear coordinate sys-
tem are

1/2

‘c
= hc = ro[cosh2(E) - sin2(C)]

(71)

ho = r. cosh(~) sin(?.)= Y

The general solution of the Laplace equation

6. Moon and Spencer, Field Theory fo~ Engineers, D. Van Nostrand,
1961, chapter 10.
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v2@ = o

is of the form

(72)

.

.

where two terms in braces implies that some linear combination is
used. Note that in general n and m need not be integers, but in
the present case they will be integers. P and Q are Legendre
functions of the first and second kind respectively and we follow
the definitions for general complex arguments and for the cut in
the complex plane (real axis between -1 and 1) as defined in a
standard reference work.7 The problem discussed here is also
found in reference 6.

Assume an incident potential of the form

0, = -Eoz = -Eoro sinh(~) cos(~)
lnc (74)

The Legendre functions of interest are

= sinh(~) arccot[sinh(~)] - 1

= sinh(~) arctan[sin~(~)] - 1

The incident potential is then

o
inc = Eoroip~(i sinh(C))p~(cos (c)) (76)

7. Abramowitz and Stegun, ed. , Handbook of Mathematics Functions,
AMS 55, National Bureau of Standards, 1964, chapter 8.
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Referring to figure 6 note that
oblate ellipsoids of the form

Place a perfectly conducting surface
spheroid as a rough approximation to
This oblate spheroid has a radius or

surfaces of-constant ? are

(77)

on C = tn. We use this
the groufidplane geometry.
maximum extent in Y of

‘1 = ‘o cosh(~o)

and a half thickness or maximum extent in z of

‘2 = ‘o
sinh(~o)

In using this conducting ellipsoid to roughly approximate a
ground plane one might rouahlv use rl ~ a’ and r. ‘ w’ where
and w’ are the radius and
ducting disk as in figure
planes so that r2\r1 << 1

fial~ thick~ess respect~vely of the

(78)

(79)

a’
con-

5. We are interested in thin ground
and

(80)

With @inc as in equation 76 we can make @ = O on ~ = go by
using only two terms from the expansion in equation 73 as

Q = -Eoro[-iP~(i sinh(g)) + 6Q~(i sinh(g) )lp~(cos(~)) (81)

Note from the last of equations 75 that as ~ + m

Q~(i sinh(g)) = O((sinh(~) )-2) (82)

so that @ + @inc for large ~. Setting @ = O on 5 = E. gives
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@ =

=

The
has

—

sinh(~o)

sinh(~o) arccot[sinh(co)l - 1
(83)

potential is then

{

sinh(co) [sinh(~)arccot [sinh(C)] - 1]
-Eoro s.inh(~)-

sinh(go)
/
COS(L)

arccot[sinh(co)] - 1

{

sinh(go)
-Eoz 1 - sinh(Z)arccot[sinh(E)l - 1

sinh(~) sinh(&o)arccot[sinh(Eo) ] - 1
I

The electric field has two components and is given by

(84)

(85)

maximum electric field magnitude occurs on E = Go where it
only a ~ component given by

EOCOS(L)

‘E <=< = 1/2
{
cosh(~o)

o [cosh2(~o)-sin2(<)1

sinh($o)
[cosh(~o)arccot[sinh(Co)1

sinh(~o)arccot[sinh(co) ] - 1



e

Eocosh(?o)cos (G) l-tanh’(~o)
=

1/2 l-sinh(:o)arccot[sinh(~o)l
[cosh2(E-)-sin2 (C)]

= E.

.

1-1/2 n

sinhz (co) ‘ l-tanh’ (co)
1+ cosh(~o)l

COS2(G)
-sinh(go) arccot[sinh(Go) 1

E.

r
= cosh(~o) 1 +

a

1
-1/2

sinh2 (go)
{1-sinh(~

COS2 (g)
o

arccot[sinh(go) 1}-1

(86)

This has its maximum value at ? = O (the z axis) where we have

E.
E = {1max

- sinh(50)arccot[sinh(Co) 1}-1
cosh2(&o)

For small Go we have

Ernax=

E. -1
{1 - sinh(co) [~ - sinh(~o) + 0(5~)1}

cosh2(&o)

{

-1
sinh(Co)

=Eo 1 - : + o(g)
cosh2(Eo) /

-1

= Eo{l - ; E. + O(g:)}

E
max

= Eo{l + ;“-go} + 0(5:)

(87)

(88)

(89)



Call the relative increase in the maximum field 57; this is then
for small go roughly

——

From this one can estimate how thin the ground plane
for a given radius in order ta hold the sensor error
sired small number by using the rough approximations
a’ = rl.

VII. Summarv

(90)

should be
to some de-
VJ1~ r2 and

In this note we have found some optimum conditions for the
design of a resistive dielectric rod to maximize the frequency
response of the short circuit current from the rod used as an
output resistor.

Most of the note deals with various effects which detract
from the sensor accuracy. In some cases error bounds are found
and in others approximations “to the relative error are found.
These effects include thickness of the sensor electrodes and
ground plane and use of dielectric spacers. All these error cal-
culations are based on solutions of the Laplace equation and thus
only apply for frequencies such that wavelengths are significantly
larger than sensor dimensions.

There are of course num~rous sources for small errors to
enter the basic parameters of a circular parallel-plate dipole
and other types of electromagnetic sensors as well. Perhaps some
future notes can further treat such error problems.

We would like to thank A2C Richard T. Clark and Mr. Larry D.
Giorgi for the numerical calculations and graphs.
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