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Abstract

The waveforms of the magnetic field are calculated and graphed at

observation points close to, as well as far away from, an infinite cylindrical

antenna excited by a step-function voltage across a circumferential gap

of

infinitesimal width. Analytical expressions for the early time and the late

time behavior of the field are also derived. Precise criteria are given
concerning the validity of some previous results obtained by performing

inverse Laplace transform on the time-harmonic far-field expression.
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I. Introduction

Recently we have presented some quantitative results on the radiation
field of an infinite cylindrical antenna, loaded with either finite or zero
resistance per unit length and excited by a step-function voltage across a

»2 The method used in the previous calculations is first to make

delta gap.
the far-zone approximation to the time-harmonic field and then to invert this
far-field expression to the time domain. Although the results obtained via
this method are, to be sure, correct for dilstances very far away from the
antenna and for not too loﬁg an observation time, it is not clear precilsely
where and when the results do not hold. To settle this question we have to
look for an expression for the field valid everywhere and for all time, and
from this expression we can then deduce, analytically or numerically, some
precise criteria for the validity of the previous results. This is one
objective of this note. '

The second objective of this note is to present some new results on

the time behavior of the field near the antemnna. These results should be

valuable in the present development of an airborne EMP simulator. .
One aspect of the present problem has been considered by Wu3; that is,

he calculated the total current on an infinite cylindrical antenna excited

by a step-function across a delta gap. Later, Morgan re~derived Wu's

expression for the current by a different method.4 Independently, BrundellS

studied the same problem with a treatment of the field included; however,

he gave no quantitative results. The approach we shall use is slightly

different from Brundell's, but much simpler. We shall numerically evaluate

some derived formulas for the field and present some quantitative results

in graphical form. )
In Section II, we begin with a previocusly derived expression for the

time-harmonic magnetic field and proceed to take its inverse Laplace trans-

form for a step-function excitation. After several transformations of variables

we arrive at a contour Integral. This contour integral is then deformed, in

Section III, into two different representations by a real integral, ome of

which is suitable for numerical computation. In Section IV, some limiting

forms of the sclution for smzll and large times are given, together with .

a few concluding remarks.
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IT. Forpulation

The time-harmonic magnetic field H, of a perfectly conducting,

¢

infinite cylindrical antenna of radius a and having ffz = - Vé(z) on

its surface is given by

@©
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H (p,2) = Tzd . D

)

The geometry and notation of the present problem are the same as in references

1l and 2, and are depicted in Fig. 1.

Let p=- ik and V = vo/(pc) , 1.e,, the excitation is a step
function of voltage vy - Then, the inverse Laplace transform of (1) gives
ZOH¢(p,z,t) 1 et L L- K, (vo) 52 )
v 2ri L vK_(va) i
0 )
C -00
P
2 2.1/2 R , . ,
where v = (£ + p") » the proper branch of which is defined in Fig. 2.
2 2,1/2 L2 2,1/2
In going from (1) to (2) we have used (-7~ -7p7) =4i(z" + p") ’
Hél)(ix) = - i(Z/W)KO(x) , and Hfl)(ix) = - (Z/ﬂ)Kl(x) . The paths of integra-

tion are shown in figures 2 and 3,

We now change the integral over  in equation (2) to that over v .
First, let us determine the path of integration € in the v-plane. Since
2)1/2 , we must choose the branch of (:2 - pz)l/2 in the v~-plane
such that along Cv we have |

(i) z to be real in conformity with the path of the z-integral,

(ii) Re v 20 to guarantée damped waves for p > o ,

(iii) In g >0 for z >0, and Img <0 for z < 0 so that the

waves are damped for lz] > @,

Now we write
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/(vl - v, = Py + pz) + 21(v1v2 - plpz)

To make ¢ real along Cv we must choose Cv such that

VivVy T PPy (32)
and

2 yA 2 2
vl—\)z—pl-i-pzzo . (3b)

Thus, Cv must run}alongside the part of hyperbolas (3a) where (3b) is
satisfied and vy 2 0 . Since 7 4is positive real on one part of Cv and
negative real on the other part of Cv (that is, the phase of ¢ differs
by 7 imn going from one part of the path to the other), there must be a
branch cut running between the two parts of Cv . Hence, we arrive at Fig. ¢
without the arrows, and the direction of Cv is still to be determined.

To determine the direction of € we define the two branches of
e - p2 as follows. The first brancﬁ is defined so that [ = ip at v =0
and the second branch is defined so that ¢ = - ip at v =0 . Clearly, the
first Riemann sheet maps into the upper (-plane and the second sheet maps
into the lower Z-pline. Then, in accordance with the condition (iii) we use
the first branch for z > 0 and the second branch for z < 0 . It is not

difficult to see that the path Cv depicted in Fig. 4 actually corresponds
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to a path slightly displaced from the real ({-axis into the upper g-plane.
A path slightly displaced from the real Z~axis into the lower (Z-plane
(for =z < 0) will transform into C; on the second Riemann sheet with
direction opposite to Cv .

Under the transform £ = Vv° - p° we now can write (2) as follows:

2 2
Kl(\)p) ei/\) - pz
Ko(va)

v = > dv , z >0 (3

Zng _ 1 pct 1 J
2mi e dp —
y; 2 2

c Ve -

P Y

Since on the first Riemann sheet /vz - p2 >+ v as !v[ + = in the
first and fourth quadrant of the v-plane respectively, and since Ko(va)
has no zeros for |arg v| < 7/2 , we can deform Cv into Fv as shown in
Fig. 4. Now the branch point v = p always lies to the right of Fv (that

is to say, Fv can be made independent of p) and, therefore, we can inter-

‘3 change the order of integration in (3) and obtain, with vv° - p° = 1/p° - v°
2 2
ZOH¢ =1 Kl(vp) R 1 e-‘/p -V Jpet dp
v 2ni K (va) 2nd —
o o 2 2
T c /pT - v
v P
K, (vp) ———
1 1 2 2
53 j X (va) Io(v/(ct) - z7)dv , for ct > z (&)
r ©
v

=0 for ct < z

where we have used a well-known result for the inner integral.6
The iIntegrand in (4) has no singularities to the right of Fv (Fig. 5)
AN
and behaves as exp[ - v(p - a - V(ct)® - z2°)] as ]v‘ + o in the right half

plane. Thus, (4) gives
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as it should.

for

. 2
et < V(p - a) + 22
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III. Solution

is deformed into the imaginary axis of the v-plane (Fig. 5)

we have, noting that the integral around the branch point v = 0 is zero,
? (=] o p

Setting

which is

Z H K, (vp)
o¢ _ 1 1 N2 212
v = T J X o) Io(vT)dv T = ((et) z
) 0
T
v
R A LT Ky ()
= . b
271 J K (va) L,mdv + 99 [ K (va) Ly vrid
=i © o]
(o] =)
K. (iv,p) K, (iv, o)
1 1YV . 1 [PV
27 j K (iv.a) Io<lv2T)dv2 + 2w J K (iv.a) Io(iVZT)de
_ o 2 o 2
i T H§2>(“zp) i 1 H§l)<"2°)
-5 ;Tfyz——;; Jo(vzt)dvz + 3?'J E?TTE——;; Jo(vzr)dvz
o o Vo o o Vo
T (Vap)Y (vaa) - T (vaa)Y, (v.p)
% J 120 00 0 2777172 JO(\)2((“)2 _ 12

I(z,t) = 2waH¢ =

2 2
Jo(vza) + Yo(vza)

in (7). we find that the total current I(z,t) is given by

@

b4y
o |
nZo J
o

22 1/2) dv

Y

2
J v, ((et)™ - 2

2

2 2
Jo(v:a) + Yo(vza)

identical to Wu's expression.

)d

9

(6)

(7

(8)

To obtain a form suitable for numerical integration we proceed as follows.
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First, we substitute7 viIo(vr) = KO(VT) - Ko(vrelﬁ) and niIo(vT) =
Kd(ure_lw) - Ko(vt) into the first and second integrals in (6) respectively

and obtain

7 H ¢ K, (v)
o _ 1 1 iw
= - ; 5 J Ko(va) EKO(VT) - Ko(ure ) Jdv

-q oo

, {e0

K, (vo) .

- 12 [ Kl(va) [Ko(ure Ty - KO(UT)]dU
2m o

o -

o) iw '
K, (vp) , K, (vp) .
1 J 1 in 1 1 ~imw
= K (vte™ )dv = J K (vre Ydv
2 2 . Ko(va) o 2ﬁ2 Ko(va) o
-f (o]
. T K, (vo) R 7)) :
- — - K {(vt)dv + j K (vt)dv 9)
2‘WZ . Ko(ua) o 2Tr2 ) Ko(va) o

We now deform the integration path of the first integral into 03 + L.,

that of the second integral into C, + L+ , and those of the last two integrals

2
into the positive real axis (Fig. 5). From the asymptotic forms of Ko and
Kl it is easily seen that respective integrals over the infinite quarter

circles C

10 02 , C, and C, wvanish for 1 > o - a . By making use of the

3 4
formula

sin muw
sin w Iu(z)

e—m_l Ku(z) - Ti

the integrals over L. , L, and the real positive axis become

E
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Kl(vlp) - wiIl(vlp}

: K (vnT)dv
o o Ko(vla) + ﬂlIo(Vla) 0o 1 s 1

[N\
o]
oy
s
f
[y
O YV

Kl(vlp) +*Will(vlp)

Ko(vlt)dvl

!
[y
oV
oO+—-—38

om Ko(vla) - niIO(vla)

-]

K, (v,p)

1 171 :

+ 2 J K (v,a) Ko(vlT)d\)l
T o1

Ko(vlt)dv for T > p - a (10)

. T I, ()1 (vya)K (vyp) + I, (vp)K (vya)]
l b
0

Ko(vla)[Kg(vla) + ﬂzli(vla)]

Writing u = v,a and multiplying both sides by r we finally arrive at the

dimensionless form

=]

rZ H I @I (WK, (wop/a) + K WI. (up/a)]
“To% _ EJ o ‘"o 71 . e K (o t/a)du (11)
Yo a 5 Ko(u)[Ko(u) + Io(u)] °

for ct > ((p - a)2 + 22)1/2

This integral was numerically evaluated as function of T for several values

of r and 6 , where T 4is defined by

ct - ((p - a)2 + z2 1/2

a

)

T =
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The results are presented in figures & through 13.
Setting o = a in (l1) and making use of the Wronskian relation
among the modified Bessel functions we arrive at an alternative representa-

tion for the total current

o]

TZ
o
o

ety - 4v j Io(u)Ko(u t/a) du

R @K@ + T2 ]

which was used for numerical computation in Ref., 2.
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IV. Remarks

It is expected that, for p/a >> 1 and for some interval of the
observation time aT/c , equation (11) should reduce to equation (4) of
Ref. 1. Since equation (l1) is valid for 1 > p - a , the statement that
p/a >> 1 also implies that <t/a >> 1 . Using the appropriate asymptotic

forms for Il(u pla) , Kl(u o/a) and Ko(u t/a) in equation (l1) we obtain

@ —y (TR
rZOH¢ c j Io(u) . ul= ) du (129
2

v 2.2 u
o 2/t RC(u) + T (u)

For observation time much smaller than op/c , i.e., for T << pg/a , we have

ct - r << p . ‘Then

((ct)z _ z2 1/2 _ (C(ct - 1) + r]2 _ 22)1/2

-
]

(pz + 2r(ect - r) + (ct - r)z)l/2

et - 1
sin 8

Insertion of this approximate expression of 1t in (12) gives

© ct - r
rzo%@q~ 1 J Io(u) e—u(a sin 6)'§3_ (13)
vo 2 sin 6 K2(u) + T‘_212(“) u
oo o

which is identical to the integral used in Ref., 1. Thus, the previous results

are correct if p/a >> 1 and T << p/a .
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The curves 1abelled "rf/a = 104” in.figures 6 ‘through 13 correspond
to those obtained in Ref. 1. It appears that there is g difference between
them in the early times. This apparent discrepancy is due to two different
definitions of T . Let T denote the T wused in Ref. l, Then, for

old
pla >> 1

et - (o -a?+HY? et - -2
a a

+ sing -1

]
H

old = (1 -~ sin 8) .

This equation accounts for the difference just mentioned.

Next, we shall deduce the limiting forms of equation (11) for large

T and small T . From the definition of 1 , i.e., 9

2,1/2 1/2

2 .
((et) - 2 =P +om@- i GHYE @~ A :

a

LI
a

we see that T/a >« as T + o , and that 1t/a > pfa -1 as T+ 0.

Late time behavior of rZ H,/v
o ¢ o

Substituting

-xu t/a
Ko(u t/a) = s ax

1 Vx% - 1

into equatioﬁ (11) and interchanging the order of integration we have
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rZngg - EJ f I (U)EI (WEx, (up/a) + K (WI;(up/a)] un /e (14
Yo 2 ] K (K3 () + r2 12 ()]
- [o] (o] [e] o

For large x t/a the inner integral can be evaluated asymptotically in the

same way as described in Ref. 1. Thus, (14) becomes

rZ H <
¢ 1 1 dx
v T T ein s J ; o 57 .1 ]2 (as t/a » =)
° 1v/x" -1 7 %
1 [ d(ln %) a 1)—1/2
= - 5 _ i
2 sin 8 [ln'—— + 1n x] X2

1 1
m T 2 sin ® 27 s as t/a > (15)
: lang

where T = 1.7810-.. . It is to be noted that the asymptotic formula (15)
was derived under the condition o¢/a < t/a » = . For T > 100 , one can use

" in figures

(15) to extend the curves, except the ones labelled "r/a > 104,
10 through 13, since the difference between the results calculated by (15)
and those obtained by numerically computing equation (l1) is less than 3%

for T = 100 .

Early time behavior of rZ H /v
0 ¢ o

Let t/a - p/a+ 1 =¢ . We wish to examine the limit of ron¢/Vo
as € > 0 . Following the same procedure as in Ref. 1 we break equation (11)

into two parts, viz.
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where & 1s chosen in such a way that in evalaating 12 one can use the

asymptotic forms for the modified Bessel functions. Thus

" _ _ _ -ue - up -~ a)/a
Iz~____1 _Lj fe ulp ~ a)fa | ulp a)/a} e - da . (16)
w21 Vot 5 Yu
If p>a and (p - a)/a > ¢ > 0 , then (16) gives
T~ L . (172)

1l
w2 Vplp - a) /e

If p=a and e~ 0, then (16) gives

V2, 2

1 1
Iz- - {(a” + zz)'i((ct)2 - 22) 2

: (17b) 8

I1 is easily seen to be negligible compared to IZ when € -+ 0 . The curves

in figures 6 through 9 indeed have the behavior described by (17) for small

T . Using (17b) one can immediately deduce that the total current I(z,t)
takes the form

Yo 2/3
I(z,t) -Efl 2 % = 71
-z

o ((et) )?

s as ct - z -+ O+ .

Before concluding this note, two additional remarks are in order.

T roughout this note we have treated exclusively the magnetic field H¢ ,

Vroting aside the non-vanishing components E_ and Ee of the electric

t:a1d. Of course, Er' and E, are obtainable from H¢ via Maxwell's
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equations; but an extra integration over time is required, thus making Er

and Ee expressible in terms of double integrals. Very far away from the

=27 H
o

antenna, however, we have E , 1.e., E and ZOH have identical

waveforms. The reason that eH¢ cai be expressid as a single integral is
that we have considered a step-~function excitation which allows one integral
of the double integral (i.e., the inner integral of (4)) to be evaluated
explicitly. The second remark is that although we have treated an infinite
antenna in this note, the results are still valid for an antenna of total
length 2h if the observation time aT/c < h/c + (R2 - Rl)/c > Ry and R2
being respectively the distance from the observation point to the excitation

point and to the nearer end of the antenna.
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Figure 8. Magnetic-field waveforms for a step-function excitation.
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Figure 9. Magnetic-field waveforms for a step~-function excltation. .
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Figure 12, Magnetic—fileld waveforms for a step-function excltation.
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Figure 13, Magnetic-field waveforms for a step-function excitation.
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