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Sensor and Simulation Motes IX

A Compton Diocde for Measuring Both the Gamma Flux and One Component of the
Gamma Current

I. Introduction

To understand EMP phencmena, it is necessary to know the time history of
the gamma radiation, kat), from two aspects; (1) the Compton current; and
(2) the rate of ionization of the air. 1In the second of these aspects )~
is considered 2s a scalar or isotropic quantity, i.e., it makes no difference
as to the direction of travel of the photon. ‘This quantity will be cailed
the gamma flux, the totzl number of ) rays per second entering a sphere
whose cross section is given by the radiztion units and given the symbol, > .
However, the first of these aspects requires that J be considered as a vector
quantity becsuse of the strong correlation of the direction of the Compton
scattered electrons with the gsmma quantz... This .vector quantity will be
called the gzmma current, p~ , any component of which can be calculated frem
the net number of gammas per unit time crossing a unit circle perpendiculzz
to the chosen direction. ‘A particular component of the gamma current will
be indiczted by a subscript to 27, e.g. .+ Note that by these definitions
the gamma flux must always be positive but any component of the gzmma current
can be _either positive or negative. Only in the case of unidirectional gammas
will./é?]equal a’and by considering such a case the traditional units
(roentgens/sec, rads/sec, etc.) ccn be carried over to ) . Usually, how-

ever /2?7 is less than 2/.

Typically, gamma detectors have been designed to measure ZY'(isotropic
response) or have used collimation to measure only those a’rays coming from
a specified solid angle (ususlly small), making angular response character-
istics of the detector unimportant. The purpose of this note is to
describe a gamma dqgfctor based on the Compton diode principle which is cap-
cble of measurinz J . ’

Figure 1 (on page 2 ) is a schematic of the cross section of such a
detector consisting of two hemispheres of some dense material, separated
from each other and from an external conducting case by some non-hydrogenous
dielectric, with each hemisphere connected to one of the center conductors !
of a twinax ccble. An axis of symmetry is drzwn through the two hemispheres .
and the dependence of sensitivity to the gamma rays is determined only by ;
the angle ® with respect to this axis (beczuse of symmetry). For this !
discussion then, it is necessary to consider only the case of gamma rays
coming from one direction and the only important characteristic of this
direction is the angle 8. To keep the notaticn clear then the gcmma rsys
coming from angle © will be given the symbol Z/(B) and the Compton current
associated with these gamma rays will be given the symbol J¢ (©).

\

CLEARED
FOR PUELIC RELEASE

pLG4-085E



/ Sensor and Simulation Notes IX

A Compton Diode for Measuring Both the Gamma Flux and One Component of the
Gamma Current

1. Introduction

To understand EMP phenomena, it is necessary to know the time history of
the gamma radiation, 2fkt), from two aspects; (1) the Compton current; and
(2) the rate of ionization of the air. 1In the second of these aspects )
is consideved s a scalar or isotropic quantity, i.e., it makes no difference
as to the direction of travel of the photon. This quantity will be called
the gamma flux, the total number of ¥ rays per second entering a sphere
whose cross section is given by the radiztion units and given the symbol,
However, the first of these aspects requires that }/be considered as a vector
quantity becasuse of the strong correlation of the direction of the Compton
scattered electrons with the gemma quanta. This vector quantity will be
called the gemma current, J~ , any component of which can be calculated from
the net number of-gammas per unit time crossing & unit circle perpendiculzax
to the chosen direction. A particular component of the gamma current will
be indicated by a subscript to 27, e.g. Z:L . Note that by these definitions
the gamma flux must always be positive but any component of the gemma current
can be either positive or negative. Only in the case of unidirectional gammas
will / /equal Z/and by considering such a case the traditional units
(roentgens/sec, rads/sec, etc.) can be carried over to 5’ . Usually, how-

ever /f/ is less than 3/

Typically, gamma detectors have been designed to measure 2( (isotropic
response) or have used collimation to measure only those a/rays coming from
a specified solid angle (usually small), making angular response character-
istics of the detector unimportant. The purpose of this note is to
describe a gamma dq&fctor bzsed on the Compton diode principle which is cap-
able of measuring J .

Figure 1 (on page 2 ) is a schematic of the cross section of such a
detector consisting of two hemispheres of some dense material, separated
from each other and from &n external conducting case by some non-hydrogenous
dielectric, with each hemisphere connected to one of the center conductors
of & twinax ceble. An exis of symmetry is dreawn through the two hemispheres
and the dependence of sensitivity to the gamma rays is determined only by
the angle 6 with respect to this axis (beceause of symmetry). For this
discussion then, it is necessary to consider only the case of gamms rays
coming from one direction and the only importent characteristic of this
direction is the angle 8. To keep the notation clear then the gamma rays
coming from angle © will be given the symbol 2((6) and the Compton current
associated with these gamma rays will be given the symbol J¢ (8).
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Since the detector response is dependent only on 8 then all gammzs coming
from cngle 8 ccn be averaged to make b/(e) in terms of per unit solid
angle. Then X(©) need be considered from only one direction taken arbi-
trarily to be the = axis.

The currents, I (8) and I, (8)yarise from the fact that the gamma rays,

2f(9), coming from a particular direction are attenuated in passing through
the electrodes. Since the Compton current density, J. (8), is proportional to

Zf(e) there will be = net current (negative) deposited in the electrodes. To

determine these currents (to first order) will require multiplication of the
Compton current density by one minus the gamma attenuation factor, and integra-
tion of this quantity over the projected area of the electrode on the Q/o )]
plane (normal to Zf(e)). This will later be calculated.

However, certain characteristics of this detector may be determined
from some general considerations. Assuming that the distance, d, between
the hemispheres is small compared to their radius, r, , the spum of the
currents, I1 (8) plus Iy (8), clearly is independent of 8 for constant
JE (8) because in this case there is effectively only one spherical electrode
and the response must be isotropic from symmetry considerations. A more impor-
tant consideration is that if the ¢ -ray mean free path in the electrode material,

fé- , 1s much less than the radius, then all the Compton current incident on

the sphere can be zssumed to be collected with little of & (@) passing through
the electrode. Thus negligible Compton current leaves a shadowed side of the
electrode. This means that the differential current, I; (8) minus I (8), can
be calculated by considering the projected unshadowed areas of the electrodes
on the plane normal to X(8) (the ( 2, ) plane).

Since the difference in these areas is proportional to cos 8, the
differential output is weighted by this factor, or the differential current
is proportional to the vector component of’J?G) in the direction of axial
symmetry. Since this ig true for all O then the differential current is
just the component of in the direction of axial symmetry. This is the
desired characteristic of such a detector.

Now that genmeral features of the detector are established some more
detailed calculations will be made on the model of exponentiigl attenuation
of Z/(G) and J. (®) passing through the electrodes. Second order
scattering will not be considered.



11. Detector Geometry

For convenience in analyzing this deteclor define a2 cylindrical
coordinate system, (/o , @, z), based on the ( <, g2 ) system
(right handed) indicated in figure 1. The (fxsgy) plane (normal to
¥(6)) transforms into the ( Y @) plane as shown in figure 2. The
( , ) coordinates are normalized to the circle of intersection of

the electrodes with the (/o, @) plane giving the transformation
equations as

A = ¥, cos ¢ gy
7 = Ve sin @
=z = Z

Using these relations some important distances and boundaries can
be expressed in the chosen coordinate system. First the height,;z,,
of a point on the spherical electrode surfaces from this reference

plane is
z =% f;'y_l _/08 (2)

Second the height, Z5, of the plane dividing the hemispheres from the
(/fg /) plane is given by

za//)(_ = tan @

or Z, = YQ/D cos @ tan © (3)

These two heights are needed to calculate the gamma zttenuation. It is
assumed for these calculations (end those toc follow) that the distance
between the electrodes is small compared to r, and cen be neglected.

Finally the circle which defines the boundary of the hemispherical
electrode surfaces projects onto the ( Y @) plane as an ellipse as
shown in figure 2 and is defined by the parametersjci and ¢1 related
by equating =, and z, from eqns. (2) and (3) giving

/;% = (1+ cos? ¢ztan2 6)'}E (&)

This is the equation of an ellipse with major axis 1.0, minor axis,
cos0, and avea, 77 cos8. This boundary divides the projection of the
hemispherical electrodes into three regions. This divigion is needed
to set up the surface integrals to be used later. Regions A; and Ay
apply to only electrodes 1 and 2 (as in figure 1) respectively while
region Ag applies to both electrodes with recognition that electrode 1
is shadowing electrode 2.
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When the surface integrals for the currents in the electrodes are set
up z, and Z, will be used for computing the thicknesses of the electrodes
in tHe direction of the gamma rays. The incremental sres, dA, for these
integrals 1is

=10 o df (5)

Equations (2) to(5) together with the boundary lines of the regions in

the ( A @) plane give the required geometric relationships to set up
the integrals for the detector sensitivity.

III. Detector Sensitivity
A. Compton Current Calculations

For the purpose of these calculations it will be assumed that
for any projected incremental electrode area, dA, (normal to the gamma
flux from angle 8) the incremental current, J (/Ab ¢ } dA, into the

electrode is s
Jesp)dA = L) (1- e VRS

where Jc(/D, @) dA is the incremental Compton current incident on the
electrode (referred to the projected incremental electrode area),
41;:(/D,¢) is the electrode thickness in the direction of the gamma
rays, and /3. is the gamma mean free path in the electrode material.
Jo (p,8) is assumed to be in equilibrium with the gamma flux which for
a given photon energy is generally independent of material because of
the predominance of Compton scattering. The ratio of Compton current to
gamma £lux, then, will be the same in the dielectric surrounding the
electrodes as in zir, but will change somewhat in a high atomic mass
electrode material, implying that the current leaving the side of the
electrode away from the gamma flux (represented by the exponential in
eqn. (6)) may be a little inaccurate. However eqn. (6) will provide a
good approximation, particularly as A=z ( o, ¢) becomes much larger
than /-, making the Compton current leaving the electrode much less
than that entering.

Therefore the expressions to evaluate to determine the currents in
the electrodes, I, will be of the form

~4z(p )
Izgg%@(z—e 28 4 o

where the area of integration is the part of the Q/Q, @) plane on which
a2 particular electrode projects.



B. Electrode Currents

‘ Eqn. (7) can now be used to compute I; (8) and I, (8), the electrode
currents. To compute Ij (9) one must first use eqns., § and (3) to evaluate
the electrode thlckness (Az)1

0 - Cox¢ 72!19)
'For-/os (]+cos¢7”an‘39)-}é
(V‘ej/oh/q_?)

2 For 12p 2 (1+cos’ 7"‘“”‘2@ (8)
< p< 3%
(I"ej,om /41>

(Az)l =

Since electrode 1 is unshadowed then the Compton current density incident
on this electrode, Jcl, (/oJ Y, is

, (o 8 =3¢ (9) ¢))

The current in electrode 1, I; (8), can then be expressed as

o 27 (. 1+cosi{7 tante) &

L@ = Jr) |0 R 70 "0), 4 df
(PégaonAs)

"J@rfgf(z R 4t
(10)

% N1scorp tinie)
(r@j'on /4)



For electrode 2 the thickness, (zﬁz:)z, is similar to that for
electrode 1.

r,( _Z"‘ + Co:¢ f‘ane)
( /for P = (] +ces ¢f'an‘9)
< (regron Ay)
(Az = -
N en i fur{ 1222002 o M"‘@%

¥ < ¢ <
(11)
Since electrode 2 is partially shadowed by electrode 1, the Compton current
- density, J,_ (0, @), incident on this electrode will be reduced by an amount

equcl to thie gamma ray attenuation in electrode 1 (already calculated for

eqn. (l0)) giving
J@ cBOIH - cosb 2 0)
for/o (_Zf'co:¢fdn29)

; (region Ay)
‘a(/a"w— J(Q) fo {1‘/9 (L+cos’P 7‘3"’2@
<%

(ré?juan Aa)

(12)




Again using eqn. (7) the current in electrode 2, I, (8), is

BT f(1+ cos’P ‘/&nfé)-'/é

-5 =0 Ccos n 25 y
L) = ];(9) Ga (e 7 (Tpp cosd fa 0>-e iﬁ?)/%#

¢ fT? /g k /4
51 (ﬁ 3)

272
+J(a rf (l-e—'?f/”;aa//ao/q)
’aé + cos2la n? .G
(1+cos2dt: %) (}’éj/'o” Z)

(13)

Strictly speaking these expressions only apply for O0X& < 72
because of the assumption that electrode 1 is shadowing electrode 2.
However, from symmetry, for O &7 the roles of the two currents,
Il(e) and 12(8), can be interchanged to give the desired results.

Because of the characteristics of this detector as discussed in
Section I it is desirable to express the common mode and differential
currents instead of I; (8) and I2 (6). This procedure also simplifies
the celculations to some extent. Defining these two quantities by

convention one has the common mode current, I,qn(®),

[ @ =] +Lc)

(14)

and the differential current, I4if,
ORNNC)
I . = 1 2( (15)
l‘{ B

Icom(e) can now be expressed using eqns. (10) and (13) by noting that
the integrals corresponding to region A3 can be combined making all the
integrands identical and thus the three remaining integrals can be
combined into one integral over the full circle in the {/o’ #) plane.
Thus Ioon(®) is 271

L@=]i| Ja- 7%ty o

Com
o



This same result could have been obtained from a consideration of the
current coming from a sphere immersed in the gamma flux. In fact the
negative of the exponent in the exponential function in eqn. (1l6) is
just the thickness of such a sphere divided by lﬁf.

Idifféycan also be expressed using eqns. (10) and (13) by noting
that if the variable, @, in the integral corresponding to region A
in eqn. (10) is replaced by @- 77, this integral becomes identica% in
form to the integral corresponding to region Ay in eqn. (13). Thus,
when the electrode currents are differenced these terms drop out and
one is left with a single integral over region A3 so that

A
2T (L+cos% 1an®0)

-2

L,@=]6 5| |1e =T penlatret®dy, 1y
2 o ‘o

(17)

The problem is now somewhat simplifiedzco‘Icom(e)/Jc(e) is independent
of 6 anq%aby symmetry Igq;¢(8)/Jc(8) can be calculated for values of ©
greater than 77/2 by the relation

:Z;inf(za) - — *Z;n*r(fzf-éf)
J (6 L (7-8)

)

(18)

The charecteristics of Icom( and Idif(e)can now be investigated.
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C. Characteristics of the Common Mode Current

To evaluate Icom(é) first note that in eqn. (16) the integrand and
limits are independent of ¢ so that the equation can be reduced to

L.@]@x @r)j(l e

ﬁﬂv“

% 4
(19)

Next moaking the substitution

v = 102 (20)
Va = ;02 (21)

and which makes the differential become

V¥ = @

qn. (19) becomes

or

—Br

I..@=Jw i Em (z e " V)prdy

CO

(23)

The limits on this integral are then inverted and the integrand multiplied
out .

-2rs

L. 6= ]’ (zm) (’V -pe V) dy 24

This is integrated to glve

!y
(9) J(@) (Z@[’y 2 J N C 2% -_Z)/ (25)

©

21 1S /ry LB e'é»% (26)
L .@=Jery ]*E(E) +(,: +(—2»C:

11



Thus, with the approximations used one is sble to explicitely solve for
the common mode current in terms of the Compton current density associated
with 3’(5,)) the radius of the electrodes, apd the gamma mean free path
in the electrodes. The independence of Icom<e /Jc(e) on 6 shows the
isotropic nature of this detector in the common mode so that Igom will be

proportional to the integral of J(6) over the entire solid angle, .

Ideglly for an infinitely thick, detector Icom(e) is just JC(Q)FP;a

the total Compton current incident on the detector. This makes it
convenient to define Iqop as

ICam(e> :"]c—(g) 77—52 ﬁow} (27)

where feoom is the sum of terms in the brackets in eqn. (26). The value

of feom lies between 0.0 and 1.0 and is the fraction of the Compton current
incident on the detector which is collected and is thus a measure of how
close the detector approaches the ideal case(fcom = 1.0}.

For certain values of the parameter, W/}, fcom can be approximated
by simpler expressions. For Wy} > 2> 1.0,fcom becomes simply

1 /8
£.=1- 7
(28)

The opposite case, K’A’- << 1.0, is more complex because the
exponential must be expandecf as far as the cubic term to remove the terms
in  ¥/F;. Since

g 2 3
SRl (O R
then for l;ﬂ} <<].0 ,
o=l 3 F-2r22-50)

(30)

12



The constants and terms_in lp/p, cancel leaving only terms in ﬂ/r}. if
2 . .
terms of order ( G»ﬁg,) and higher are ignored then

L 4k
ﬁom;\: ‘g 7:2: (31)

This approximation illustrates the possible undesireability of having a
thin detector because its sensitivity (to the Compton current) will be
energy dependent as: reflected in /g while for the thick detector eqn.
(28) indicates that this effect wiii appear only as a small correction
term.

D. Characteristics of the Differential Mode Current

The evaluation of Idif(e)(from eqn. (17)) is a much more complex
matter than the evaluation of Icop 8) because of the appearance of @
both in the argueménts of the exponentials and in one of the limits of the
integral over 2 . However, much cen be learned by looking at certcin
epproximations end certain cases.

1. Very Thick Detector

If it is assumed that f@4§?» 1, then over the region of integration
the exponentials in the integrand of eqn. (17) contribute negligibly to
the integral since their expoments are always negative or zero which makes
these terms arbitrarily small over all but a vanishingly small part of the

. . . L ‘ _}/
region of integration Tben‘2 (1+ cose¢ 712”49> a

w
~ Jor
l;(,f(e) _—-ﬁ_— fo jo /2 6//0 /¢ (32)

However, this integral just represents the area of region A3 in the (/.% ¢)
plane. Since this is an ellipse with major axis 1.0 and minor axis cosé
the value of this integral is simply 77 cos® so that

2
@)3’ m cos &
:z;ﬁ¢7 2

(33)

showing that in the approximation of a thick detector the response is
proportional to cos® as desired.

13



This equation applies for «ll © since the symmetry requirement of eqn.
(12) is setisfied by cos8.

This result shows that the msgnitude of Idifféﬂhas a maximum value
of J¢ (e)7n@€/21 which mekes it convenient to define Iq;f(®) as

[, & =]@mr® 1@
2 (34}

where -
27 (1 f6052¢f§na€)

F e
1 -2 i/ —= ‘-;?(‘/17370 (os¢fén9) ¢

{(9):_7—7'- (Z*eEZﬂ—Ze’ 20%04/
Aot a (35)

The factor fdif(e) now varies between ~1.0 and +1.0.

2. Very Thin Detector

Unfortunately, since exponential functions do not expand as &

sum of one over their arguements this kind of a scheme cannot be used
to see how closely fdif( approsches the cos® dependence of large

Gy?}. However, the exponentials of eqn. (35) can be expanded in
powers of F}4} to evaluate this dependence for small ﬁyﬁ} . Thus

2¥e [7-= % 2
e T e 1-2809 5B -

(36)

and

P

'Fn"(.l‘,oz- cosf 1an @ /
o 7e115e% 20 cosd 7o ):]--%(];oe)é+%/¢5,¢mqe
LmNrr_a_2 Ny 8%
‘/'a r})(_zf) Z-E/i(z/o)/a(os¢f&w9

+'§"("§>a/2““’¢ fan?8 e
o

(37)

14



Combining these expressions with eqn. (35) gives

27 (1+ cos &f.(hz@)

()(-2/0)/0(05¢7§M - ._j/o CosP tan’ ]/0

(3%)

BeCause of the symmetry of the limits of this integral around ¢==Z§and
py .

= , the terms in the integral involving cos@ to an odd power will
give no net contribution to the integral.

X 27 (L +cas P Tan 26)~%
o= 4] [t rmdpsd

(39)

This integral can be solved by first shifting back to rectangular
coordinates using the relationships

/Z -—/Cos¢
D =p s
Ay do =240 AP

Eqn (3¢) then reduces to

(40)
which transforms the 1nte rgl to
co:;)
oJ [
ﬂ——,?—— (41)

where Cos ‘
/‘Z 056 (42)

15




1s the equation of the elliptical boundary of region A3 in these
normalized rectangular co rdinates Eqn €41) reduces further to

@{@,—--)j - (Cay- 0] dn

€os Q
This reduced equation further lends itself to a substitution of the

form
g cosé

0(5 (osé

(43)

(44)

which leads to

NG Iy
f“ o‘ey [.Z _fa_@a ]
‘E("F(Q) (a—) ‘ 1 A1-FE (45)

vwhich is now in a form where the © dependence is removed from the
integral. Using another set of substitutions

f =/<>/ cos ¢,
2 :/o' S/h f’
AEdD =0 dy

(46)

then

2 7yL
f.0(® :%—(@mef [1-p" | o'de' P

(47)

16




Since the integrand and the limits are independent of ¢/the integrzl over
¢’will only give a factor of 27 leaving

Lt
76/,'?(9)22(%>6on (P/V/BJV//&/

(48)

The integral over/o’can be easily evaluated as

pyome(fomold 4] = H(5fere

(49)

This gives the very encouraging result that for )y <<l the detector
sensitivity is still proportional to cos@ 1nd1cat1ng thct the angular
dependence may not be too sensitive to the parzmeter /ﬁf It there-
fore may not be too difficult then to construct such & detector with a
rezsonable approximation to the cos6 dependence.

3. Exact solution for 6 = 0.0
In order to get some estimate of how closely the approximation

of a thick detector (iy;.;b>l ) has been achieved, eqn. (35) for fd fﬁﬁ
can be exactly solved for the case & = 0, i.é.

£ f’j [me L P L VO

(50)
Again the integral over @ can be removed to give
2
~2L /T -Ce./j‘_:*,;
©0) = lre TTE7P° 214277 ), 4
£ 20( ) -

Making the substitutions of eqns. (20) through (22) as were used in the
evaluation of the common mode current

o L =
=2 (1572850 1y
' Z

(52)

17



or 7 25 -
f(,?c@%f(ww oy 4y

(53)
Integrating equation (53) gives
e 2k - %Jj
@ =L] 2 (3 )( 2 Z
.
(54)
12 E (D) (2 L)
=1z c)* (f’e )¢ TR T2 )¢
(55)
For G/&}z) 1 this becomes approximately
_ LRV
75/.-#@ ~1-3 (7“')
(56)

This last expression shows how rapidly the approximation of a thick
detector (from the viewpoint of the differential signal) is approached.
The approximstion of & thin detector has already been considered in eqn. (49).

E. Summary

In designing such a detector where it is desirable that ﬁ/?.h) 1
there are three calculations to mske: 0) feom from eqns. (27) and (5
This gives the degree to which the common mode signal is independent of
f@/?}_ 62 fd.f( from eqn. (55). This gives the same calculation
for the dlfferential signal.@athe ratio of fdif(o to fcom. This is a
form of signal to noise ratio. :

18



Unfortunately, the author is unable to evaluate eqn. (35)
analytically for f4;¢ for all ©. This could easily be done on a
computer but since second order scattering of the photons has not

been considered a computer calculation of this integral may not be
very profitable.

IV. Response Time of Detector

Another point to be considered in the design of this detector is
its capability for time resolution of the gamma pulse. A convenient
method of _calculating the time resolution is to calculate the capaci-
tance of the detector in both common and differential modes and using
the common and differentizl mode impedance of the twinax to calculate
a time constant or risetime for a step radiation input.

The detector capacitance in the common mode, C.oy, can be
calculated by considering the two electrodes as one spherical electrode
of radius r, inside a conducting case of radius /. The dielectric
constant is K (or €/g). Thus,

<:’ /( €f’zfeéa nn
com

;= e
(57)
This gives a rise time,
’ Qe +
t =22Z2C.,. =2k 22
Ve om s
(58)

The detector capacitance in the differential mode, Cdqif, has two
contributions; (1) the direct capacitance across the boundary between
the two electrodes, and(ﬁ) the capacitonce of one electrode to the outer
shell and in turn to the other electrode. The direct capacitance,

Cdirect, 1is just

Clirect = -Ker (59)

The capacitance through the outer shell, Cjpqirect, 15 calculated by

considering that the capacitance of one electrode to the case is just
Ccom/2 and that this contribution to the differential capacitance is

represented by two such capacitors in series or

Cindirect = Cc,,,,, = K 7 &s ﬁlf (60)
% Y

19



Thus,

Cd,f' C;I;‘recf‘ C“W/:'Pecf' k °e T+ hi=ts (61)

and the risetime,

F‘J‘rf 2 ts

]L"d.-{ =02 Cpy ZZZ Kﬂ’eor;e?_,,, s )

h-kr
(62)

From these risetime calculations sbme constraints can then be placed
on the detector dimensioms.

V. Sample Calculation

To illustrate how the previous calculations might be used and to get
a feel for the numbers involved it is useful to make a sample calculation.
Assume that the electrode material is nickel (which has been used by LASL
for Compton diodes) and that it is desired to have /) give a decade attenu-
ation, i.e.,

Fo e
~ 2.3 (63)

For nickel/; is about 3.5 cm., near the minimum of .the gamma-ray total

cross section curve. This would make ¥ about 8.05 cm. (3.17 in.). From
eqns. (26) and (27) then

ﬁam = 71 (64)

and from eqn. (55)
IC‘ (6) =,58 (65)
d'F
These numbers indicate the closeness of approximation to a thick detector.
Assume further that the desired risetime in both modes is 3 nanoseconds,
that the dielectric is some non-hydrogenous material with a dielectric

constant similar to teflon (K2 2.1), and that all spacings (d and /-F, )
are 2 cm. Then the capacitances are from egns. (57) and (61)

Ccam = ?8 /y‘ﬁ
Carg = 48 pf

(66)
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and the impedances from eqns. (58) and (62) are
Z = 15
Z = 31/ (67)

These values are lower than standard twinax cable impedances but could
be achieved by resistive matching at the input.

Finally, a sensitivity can be calculated for this detector by
considering the detector cross section and a relation between the
Compton current and gamma current as

e
J:(e) 2z =2x10 "0re)
(68)

where J. is in amps per square meter and b/is in roentgens per second
(air equivalent dose). The common mode sensitivity, Sgom, is then
about

S

Com

= _&?}W”;a Com -~ “'3 7)(/0-,0 Cou/omé_g

LD roenTgen -

and the differential mode sensitivity, Sdif, is about

I(e) a 16
— —_C___ 0 Dt — 00(/ wi
SF = 9’(9)221;@.';(0) = =[x calenls o

kaeut’? €hn

However, if resistive matching were used these sensitivities would be
reduced accordingly.

The design of such a detector is clearly a matter of trading off
various desirable characteristics to achieve an optimum set of parameters.

VI. Generalization of Detector

This scheme for measuring a vector component of E’ can be generglized
to measure two or even all three components. As illustrated in figure 1
the electrode material has been split once to form two hemispheres and
this arrangement measures the vector component of normal to this plane
of separation. If this sphere of electrode material is split again to
form two different hemispheres and signal cable is attached to all four
of the electrodes then by appropriately summing and differencing the
electrode signals two vector components (plus the isotropic flux) can be
obtained. Finally, by splitting the sphere into eight parts along three
mutually orthogonal planes with common point of intersection in the center
of the sphere, the three orthogonal vector components of ) and the isotropic

Y can all be obtained.
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Another method to obtain the three vector components together with the
isotropic Y~ is to use three single-vector-component detectors. This last
alternative may be simpler snd provide more flexibility in use.

VII Summary

In its simplest form, as shown in figure 1 (on page 2 ), this
detector can give two bits of information on one twinax cable; (1)  the
isotropic ¥ in the common mode, and (2) one vector component of in the
differential mode. This detector concept can also be expanded to measure
any desired set of vector components of 2 either by making the detector
more complex or by using multiple detectors. Ideally the electrode radlus is
much greater than the & -ray mean free path but practically this is difficult
to realize. Care should be exercised in the selection of an electrode
material and perhaps the electrode should be a composite of more than one
material. The requirement for a thick electrode makes the capacitance ‘=1ge,
perhaps requiring a slight lowering of the detector sensitivity to achieve a
fast rise time.

However, the greatest advantage of such a detector is its reliability,
ruggedness, and simplicity of operation.

CARL E. BAUM, 1/LT, USAF
24 December 1964
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