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A Compton Diode for Measuring Both
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I. Introduction

Simulation Notes IX

the Gamma Flux and One Component of the

To understand EMP phencmena, it is necessary to know the time history of
the gamma radiation, Y(t), from two aspects; (1) the Ccmpton current; and
(2) the rate of ionization of the air. In the second of these aspects ~
is considered zs a sczlar or isotropic quantity, i:e., it makes no difference
as to the direction of travel of the photon. ‘This quantity will be called
the gamma flux, the total number of ~ rays per second entering a sphere
whose cross section is given by the radiation units and given the symbol, ~.
Howe.~er, the first of these aspects requires that ~be considered as a vector
~~antity becsuse of the strong correlation of the direction of the Ccmpton
scattered electrons with t~gama quanta... This..vector quantity will be
called the gamma current, d, any component of which can be calculated frcm
the net number of gammas per unit time crossing e unit circle perpendicular
to the chosen direction. A particular component of the gamma current will
be indiczted by a subscript to ~, e.g. ~+ . Note that by these definitions
the gamma flux must always be positive but any component of the ganma current
can be either positive or negative. Only in the case of unidirectional gammas
will /~~ equal ~and by considering such a case the trad~ional ~units
(roentge~s/see, rads/see, etc.) ccn be carried over to

‘“er W

F“ Usually, how-
is less than ~.

Typically, gamma detectors have been designed to measure ~ (isotropic
response) or have used collimation to measure only those ~rays coming from
a specified s-olid angle (usually small), making angular response character-
istics of the detector unimportant. The purpose of this note is to
describe a gamma de~ector based on the Compton diode principle which is cap-
cble of measuring 7’”

Figure 1 (on page 2 .) is a schematic of the cross section of such a
detector consisting of two hemispheres of some dense material, separated
from each other and from an external conducting case by some non-hydrogenous
dielec~ric, with each hemisphere connected to one of the center conductors
of a twinax ccble. An axis of symmetry is drewn through the two hemispheres
and the dependence of sensitivity to the gamma rays is determined only by
the angle 0 with respect to this axis (because of symmetry). For this
discussion then, it is necessary to consider only the case of garmnarays
coming from one direction and the only important characteristic of this
direction is the angle 0. ‘Tokeep the notaticn clear then the gcmma rays

coning from angle Elwill be given the symbol X(9) and the Compton current
associated with these ga=a rays will be given the symbol Jc (9).
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Sensor and Simulation Notes IX-—.. ..

@
A Compton Diode for Measuring Both the Gamma Flux and One Component of the
Gamma Current

I. Introduction

To understand EXP phencmena, it is necessary to know the time history of
the gamma radiation, ~(t), from twoaspe.ts; (1) the Compton current; and
(2) the rate of ionization of the air. In the second of these aspects ~
is conside-ced as a scalar or isotropic quantity, i.e., ic makes no difference
as to the direction of travel of the photon. This quantity will be called
the gamma flux, the total number of ~ rays per second entering a sphere
whose cross section is given by the radiation units and given the symbol, Y.
Ho,~ever, the first of these aspects requires that ~be considered as a vector
quantity because of the strong correlation of the direction of the Ccmpton
scattered electrons with the gamma quanta. This vector quantity will be
called the gcmma current, X any component of which can be calculated from
the net number of--gammasper unit time crossifiga unit circle Ferpendiculzr
to the chosen direction. A particular component of the gamma current will
be indiczted by a subscript to ~, e.g. ~4 . Xote that by these definitions
the gamma flux must always be positive but zny component of the gamma current
can be either positive or negative. Only in the case of unidirectional gammas
will i~j equzl ~and by considering such a case the trad~ional Xunits
(roentge~s/see, rads/see, etc.) can be carried over to ~ . Usually, how-
ever

L71
is less than ~.

9
Typically, gamma detectors have been designed to measure > (isotropic

response) or have used collimation to measure only those Frays coming from
a specified solid angle (usually small), making anewlar response character-
istics of the detector unimportant. The purpose of this note is to
describe a gamma de~ector based on the Compton diode principle which is cap-
able of measuring T“

Figure 1 (on page 2 .) is a schematic of the cross section of such a
detector consisting of two hemispheres of some dense material, separated
from each ether and from an external conducting case by some non-hydrogenous
dielectric, with each hemisphere connected to one of the center conductors
of a twinax c~ble. An axis of symmetry, is drzwn through the two hemispheres
snd the dependence of sensitivity to the garmmarays is determined only by
the angle @ with respect to ~h<s axis (because of symmetry). For this
discussion then, it is necessary to consider on-lythe case of gamma r~ys
coming from one direction and the only important characteristic of this
directio~ is the angle 0. To keep the notation clear then the gamma rays
coming from angle 0 will be given the symbol Y(G) and the Compton current
associated with these gamma rays will be given the symbol JC (6).
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Since the detector response is dependent only on Q then all gammas coming

o

from cngle 0 can be averaged to make ~(e) in terms of per unit solid
angle, Then &(0) need be considered from only one direction taken arbi-
trarily to be the % axis.

The currents, II (0) and 12 (Q)2arise frcnnthe fact that the gamma rays,
y(e) , coming from a particular direction are attenuated in passing through

the electrodes. Since the Compton current density, Jc (6), is proportional to

~(e) there will be a net current (negative) deposited in the electrodes. To
determine these currents (to first order) will require multiplication of the
Compton current density by one minus the gamma attenuation factor, and integra-
tion of this quantity over the projected area of the electrode on the (
plane (normal to ~(.0)). This will later be calculated. P’o)

However, certain characteristics of this detector may be determined
from some general considerations. Assuming that the distance, d, between
the hemispheres is small compared to their radius, r. , the spm of the
currents, 11 (e) phJS 12 (e), clearly is independent of 0 for constant
~ (e) because in this case there is effectively only one spherical electrode
and the response must be isotropic from symmetry considerations. A more impor-
tant consideration is that if the ~-ray mean free path in the electrode material,
K& , is much less than the radius, then all the Compton current incident on

the sphere can be assumed to be collected with little of ~(e) passing through
the electrode. Thus negligible Compton current leaves a shadowed side of the
electrode, This means that the differential current, 11 (e) minus 12 (Q), can
be calculated by considering the projected unshadowed areas of the electrodes
on the plane normal to y(e) (the ( P , $) plane).

● Since the difference in these areas is proportional to cos 6, the
differential output is weighted by this factor, or the differential current
is proportional to the vector component of Y(9) in the direction of axial
symmetry. Since this ~ true for all 9 then the differential current is
just the component of & in the direction of axial symmetry. This is the
desired characteristic of such a detector.

Now that general features of the detector are established some more
detailed calculations will be made on the model of exponential attenuation
of ~(e) and JC (8) passing through the electrodes. Second order
scattering will not be considered.
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11. Detector Geanetry

For convenience in analyzing this detector define a cylindrical
coordinate system, (//%0,2), based on the (-,#-~z) system
(right handed) indicated in figure 1. The (+4@ plane (normal to
&@))transforms into the ( p, @) plane as shown in figure 2. The
(~ ,~) coordinates are normalized to the circle of intersection
the electrodes with the (>, $) plane giving the transformation
equations as

~ Cos @

51

(1)
~ sin o

z =Z

Using these relations some important distances and boundaries

of

can
be expressed in the chosen coordinate system. First the height, =,,
of a point on the spherical electrode surfaces from this reference
plane is

(2)

Second the height, Z2, of the plane dividing the hemispheres from the

(y> ‘/)plane is givenby

z2f* = tan e

or ZE = ~p cos $ tan El (3)

These two heights are needed to calculate the gamma attenuation. It is
tissumedfor these calculations (and those to follow) that the distance
between the electrodes is small compared to r. and can be neglected,

Finally the circle which defines the boundary of the hemispherical
electrode surfaces projects onto the ( ~ , @ plane as an ellipse as
shown in figure 2 and is defined by the parameters~d and (31related
by equating ZI and ZE from eqns. (2) and (3) giving

(4)

This is the equation of an ellipse with major axis 1.0, minor axis,
cose, and area, T Cose. This boundary divides the projection of the
hemispherical electrodes into three regions. This division is needed
to set up the surface integrals to be used later. Regions Al and A2
apply to only electrodes 1 and 2 (as in figure 1) respectively while
region A3 applies to both electrodes with recognition that electrode 1
is shadowing electrode 2.
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When the surface integrals for che currents in the electrodes are set
Up + and Za will be used for c~puting the thicknesses of the electrodes
in the direction of the gamma rsy%. The incremental are~, dA, for these
integrals is

o

(5)

Equations (2) to(5) together with the boundary lines of the regions in
the ( #?, ~) plane give the required geometric relationships to set up

the integrals for the detector sensitivity.

111. Detector Sensitivity

A. Compton Current Calculations

For the purpose of these calculations it will be assumed that
for any projected incremental electrode area, dA, (normal to the gamma
flux from angle 0) the incremental.current, J (~~~ ) dA, into the
electrode is

“ W)JA ~,,
Jp#dA = 1~~) (i - e

where Jc(~, d) dA is the incremental Compton current incident on the
electrode (referred to the projected incremental electrode area),

AA#,@) istheelectrodethicknessinthedirectionof the ga~
rays,and Pxis the gamma mean free path in the electrode wterial.

Jc (P,O) is assumed to be in equi~ibrium with the ga~a flux which for
a given photon energy is generally independent of material because of
the predominance of Compton scattering. The ratio of Ccmpton current to
gamma flux, then, will be the same in the dielectric surrounding the
electrodes as in air, but will change somewhat in a high atomic mass
electrode material, implying that the current leaving the side of the
electrode away from the gamma flux (represented by the exponential in
eqn. (6)) maybe a little inaccurate. However eqn. (6) will provide a
good approximation, particularly as Az(> ,@ becomes much larger
than r~, making the Compton current leaving the electrode much less
than that entering.

Therefore the expressions to evaluate to determine the currents in
the electrodes, 1, will be of the form

I=f&?.@(l-Law)44
A

(7)

where the area of integration is the part of the (~, @) plane on which
a particular electrode projects.



B. Electrode Currents

Eqn. (7) can now be used to compute 11 (Q) and I (e), the electrode
currents. To compute 11 (Q) one must first use eqns. (2? and (3) to evaluate
the electrode thickness, (Az),.

Since electrode 1 is unshadowed.then the CcnnPtoncurrent density incident
on this electrode, J=l,(flJ ~)j is -



For electrode 2 the thickness, (Az)2, is
electrode 1.

similar to that for

Since electrode 2 is partially shadowed by electrode 1, the Ccmpton current
density, J (#,@), incident on this electrode will be reduced by an mount
equ;< tc efi~gamma ray attenuation in electrode 1 (already calculated for
eqn. (10)) giving

L (rey’wl /42)

(12)
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●

(13)

Strictly speaking these expressions only apply for 0S 19 S ‘1/L
because of the assumption that electrode 1 is shadcxiingelectrode 2.
However, from symmetry, for

%
5@5T the roles of the two currents,

11(0) and 12(e), can be interc anged to give the desired results.

Because of the characteristics of this detector as discussed in
Section I it is desirable to express the common mode and differential
currents instead of 1~ (E))and 12 (e). This procedure also simplifies
the calculations to scme extent, Defining these two quantities by
convention one has the common mode current, Icm (e),

(14)

and the differential current, Idif,

~,{~)
q (9) -g (6”

—

~
(15)

I (e) ca~’now be expressed using eqns, (10) and (13) by noting that
t~~integrals corresponding to region A3 can be combined making all the
integrands identical and thus the three remaining integrals can be
combined into one integral over the full circle in the (
Thus Icm(@ is

>, 0) plane,

277 2

J/

-’+fi=j7j&~~

LOJQ ZJ r’ (I-e<00 (16)

00

9
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This same result could have been obtained from a consideration of the
current coming from a sphere immersed in the gamma flux. In fact the
negative of the exponent in the exponential function in eqn. (16] is
just the thickness of such a sphere divided by ~X.

Idif(@can also be expressed using eqns. (10) and (13) by noting
that if the variable, 0, in the integral corresponding to region A
in eqn. (10) is replaced by@i7, !this integral becomes identica in
form to the integral corresponding to region A2 in eqn. (13). Thus,
when the electrode currents are difference these terms drop out and
one is left with a single integral over region A3 so that

(17)

The problem is now somewhat simplified;($Xcm(e)/Jc(e) fs independent
of Elan<~by symmetry Idif(e)/Jc(0) can be calculated for values of e
greater than V/2 by the relation

The characteristics of Icm (e) and Idif(e)can now be investigated.

10
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c. Characteristics of the Common Mode Current

To evaluate I~m(f3) first note that in eqn, (16) the integrand and
limits are independent of o so that the equation can be reduced to

J

1
-~#”7> +

~comc~)=~~e> < (1?r) {~ ‘ec D

Next making the substitution

*=]y

or

~’= 1 #

and which makes the differential become

*c/p=-j+
eqn. (19) becomes

(19)

( 20)

(21)

(22)

The limits on this integral are then inverted and the integrand multiplied
outa

J

1

r @ =J-(II}G’<Z7)(“ -#b /y’
t-o% c

o
This is integrated to give

(24)



.

Thus, with the ~pproximations used one is able to explicitly solve for
the ccmmon mode current in terms of the Compton current density associated
with Y(*>J the radius of the electrodes, and the gananamean free path

(@)/J=(e) one showS thein the electrodes. The independence of Icm

isotropic nature of this detector in the common mode so that Icm will be

proportional to the integral of ~(fl) over the entire solid angle, ~ .

Ideally for an infinitely thick, detector Icom(e) is just Jc[e)F& ,

the total Compton current incident on the detector. This makes it
convenient to define Icm as

(27)

where fcm is the sum of terms in the brackets in eqn, (26). The value
of fcom lies between 0.0 and 1.0 and is the fraction of the Compton current

incident on the detector which is collected and is thus a measure of how

(
close the detector approaches the ideal case fcm = 1.0),

For certain values of the parameter, 6/P&, fcom can be approximated
by simpler expressions. For Wrb >> l.O~fcm becomes simply

(28)

The opposite czse, %? ; <far
exponential must be expznde ~,
in ~~f~. Since

1.0, is more complex because the
as the cubic term to remove the terms

(29)

(30)



.

The constznts and terms2in ‘8/r6 cancel leaving only terms in ~1~~” If
terms of order ( ~/~&) and higher are ignored then

(31)

This approximation illustrates the possible undesireabLlity of having a
thin detector because its sensitivity (to the Compton current) will be
energy dependent as:reflected in Y while for the thick detector eqn.

Y(20) indicates that this effect WI 1 appear only as a small correction
term.

D. Characteristics of the Differential Mode Current

The evaluation Of Idif(e)(from eqn. (17)) is a much more comP1ex
matter than the evaluat-ionof Icom(0) because of the appearance of d

both in the arguments of the exp”onentialsand in one of the limits of the
i’ntegr~loyer ~ . How$ver, much can be learned by looking at certcin
approximations and certain cases,

1, Very Thick Detector

If it is assumed that k/&> 1, then over the region of integration
the exponentialsin the integrand of–eqn. (17) contribute negligibly to
the integral since their exponents are always negstive or zero which makes
these terms arbitrarily small over all but a vanishingly small part of the
region of integration. Then

/~~/<L+ Cos ‘$$7%&52)-~

Q’@ ))~J(QM2 /oc@4
I 2--.0 (32)

However, this integral just represents the area of region A3 in the (~~)

plane. Since this is an ellipse with major axis 1.0 and minor axis cose
the value of this integral is simply ~cose so that

(33)

showing that in the approximation of a thick detector the response is
proportional to COS9 as desired.

13
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This equation applies for :11 G since the symmetry requirement of eqn.
(19) is sstisfied by cose.

This result shows that the msgnitude of Idif(@has a maximum value
of Jc (e)~#e2/& which mokes it convenient to define Idif(e) as

(34)

The fzctor fdif(e) now varies between -1,~ and +1,0.

2.

sum of
to see
L/FF .
powers

Very Thin Detector

Unfortunatelyj since exponential functions dQ not expand as z
one over their ar

r
ements this kind of s scheme cannot be used

how closely fdif( ) approaches the COSQ dependence of large
However, the exponential of eqn. (35) can be expanded in
of k/~Kto evaluate this dependence for small ~/& . Thus

(36)

and

(37)

14
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Combining these expressions with eqn, (35) gives
./&

rz~f(l+~dsz+ 7’%?2~]

(3:)

Becsluseof the symmetry of the limits of this integral o-rounda =% and
~=-~,the terms in the integral involving COSO to an odd power will
give no ret contribution to the integral. -fqn. (3?) then reduces to

/ZV/C.l+C”J’4%ti2ej b

This integral can be solved by first shifting back to rectangular
coordinates using the relationships

(40)

(41)

(42)

15
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is the equation of the elliptical boundary of region A3 in these
normalized rectangular co rdinates. .

6:f’$1’+(:YflL7L;~;J;zrt0

‘1 -m
(43)

This reduced equation further lends itself to a substitution of the

(44)

which leads to

which is now in a form where the 9 dependence is removed from the
integral. Using another set of substitutions

f ‘P” ‘O’ +“
d =/4’ W7f?$’

then

16
0



Since the integrznd and the limits are independent of O/the integrzl over
@’will only give a factor of 27Tleaving

(4:)

The integral overp’ can be eaaily evaluated as

/

(49)

This gives the very encouraging result that for ‘~r<cl the detector
sensitivity is still proportional to cose indicating that the angular
dependence may not be too sensitive to the parameter ~yrr . It there-
fore may not be too difficult then to construct such z detector with a
re~sonable approximation to the cose dependence.

3. Exact solution for f3= 0.0

In order to get some estimate of how close
of a thick detector (h/jy>>~ ) has been achieved
can be exactly solved for the case e = O, i.e.

zfl 1

f o
2

M
(1 ,;zHGz&i. 7’ir-

a$f” ‘T

ly the approximation

9 eqn. (35) for ‘difco

(50)

Again the integral

u)
(51)

Making the substitutions of eqns. (20) through (22) as were used in the
evaluation of the common mode current

17
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(53)

or

(55)

For t,~>> 1 this becomes approximately
/k

fj,(o ~ 1- g(+)’
t’

(56)

This last expression shows how rapidly the approximation of a thick
detector (from the viewpoint of the differential
The approximation of a thin detector has already

E. Summary

In designing such a detector where it is

signal) is approached.
been considered in eqn. (49).

desirable that r~r>>> 1— —
there are three calculations to make:[~)fcm from eqns. (27) and”(Z6),
This gives the degree to which the common mode signal is independent of

%%-
. ~~) f~j,f(o)fromeqno ‘55)’ of ~dlf~o) tofThis gives the same calculation

for the differential.signal.@the ratio . cm. This is a
form of signal to noise ratio.

18
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Unfortunately, the suthor is unable to evaluate eqn. (35)
analytically for fdif for all 6. This could easily be done on a

computer but since second order scattering of the photons has not
been considered a computer calculation of this integral may not be
very profitable.

Iv. Response Time of Detector

Another point to be considered in the design of this detector is
its capability for time resolution of the gamma pulse. A convenient
method of–calculating the time resolution is to calculate the capaci-
tance of the detector in both common and differential modes and using
the ccmmon and differential mode impedance of the twinax to calculate
a time constant or risetime for a step radiation input.

The detector capacitance in the common mode, Ccm, can be
calculated by considering the two electrodes as one spherical electrode
of radius ~ inside a conducting case of radius ~ . The dielectric
constant is K (or ~/e~. Thus,

(57)

This gives a rise time,

The detector capacitance in the differential mode, Cdif, has two
contributions; (1) the direct capacitance across the boundary between
the two electrodes, and[2) the
shell and in turn to the other

Cdirect, is just

capacitance of one electrode to the outer
electrode. The direct capacitance,

&2

d“ (59)

The capacitance through the outer shell, Cindirect, is calculated by
considering that the capacitance of one electrode to the case is just
Ccm/2 and that this contribution to the differential capacitance is

represented by two such capacitors in series or

Cindirect = C,om=/y Tl%cq
T ~ -p6

(60)

19
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Thus ,

C$,f=CL.+tL4ik,ct+~&6K(jL+# ,61,
and the risetirne,f isr-,rf2

From these risetime calculations s’bmeconstraints can then be placed
on the detector dimensions.

v. Sample Calculation

To illustrate how the previous calculations might be used and to get
a feel for the numbers involved it is useful to make a sample calculation.
Assume that the electrode material is nickel (which has been used by LASL
for Compton diodes) and that it is desired to have ~ give a decade attenu-
ation, i.e.,

(63)

For nickel&is about 3.5 cm., near the minimum of the gamna-ray total

cross section curve. This would make K about 8.05 cm. (3.17 in.). From
eqns. (26) and (27) then

and from eqn. (55)

(64)

(65)

These numbers indicate the closeness of approximation to a thick detector.

Assume further that the desired risetime in both modes fs 3 nanoseconds,
that the dielectric ia some non-hydrogenous material with a dielectric
constant similar to teflon (K= 2.1), and that all spacings (d and ~-ho )
are 2 cm. Then the capacitances sre frcrneqn.s.(57) and (61)

(66)

20
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and the impedances from eqns. (5S) and (62) are

(67)

These values are lower than standard twinax cable impedance but could
be achieved by resistive matching at the input.

Finally, a sensitivity can be calculated for this detector by
considering the detector cross section and a relation between the
Compton current and gamma current as

.-
(68)

where Jc is in amps per square meter and ~is inroentgens per second
(air equivalent dose). The common mode sensitivity, Scm, is then
about

(69)

and the differential mode sensitivity, Sdif, is about

However, if resistive matching were used these sensitivities would be
reduced accordingly.

The design of such a detector is clearly a matter of trading off
various desirable characteristics to achieve an optimum set of parameters.

VI. Generalization of Detector

This scheme for measuring a veczor component of ? can be generalized
to measure two or even all three components. As illustrated in figure 1
the electrode material has been split once to form two hemispheres and
this arrangement measures the vector component of F normal to this plane
of separation. If this sphere of electrode material is split again to
form two different hemispheres and signal cable is attached to all four
of the electrodes then by appropriately summing and differencing the
electrode signals two vector components (plus the isotropic flux) can be
obtained. Finally, by splitting the sphere into eight parts along three
mutually orthogonal planes with common point of intersect-on in the center
of the sphere, the three orthogonal vector components of $ and the isotropic
~ can all be obtained.

21
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Another method to obtain the Ehree vector components together with the
isotropic ~ istou se three single-vector-ccmponent detectors. This bSt
alternative may be simpler snd provide more flexibility in use.

VII Summary

In its simplest form, as shown in figure I (on page ~ ), this
detector can give two bits of information on one twinax cable; (1) the
isotropic yin the common mode, and (2) one veccor component of F in the
differential mode. This detector concept-can also be expanded to ‘measure
any desired set of vector components of ~ either by making the detector
more complex or by using multiple detectors. Ideally the electrode radius Is
much greater than the ~-ray mean free path but practically this is difficult
to realize. Care should be exercised in the selection of an electrode
material and perhaps the electrode should be a composite of more than one
material. The requirement for a thick electrode makes the capacitance ‘.qrge,
perhaps requiring a slight lowering of the detector sensitivity to achieve a
fast rise time.

However, the greatest advantage of such a detector is its reliability,
ruggedness, and simplicity of operation.

CARL E. BAUM, l/LT, USAF
24 December 1964
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