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frequencies are calculated using expansions in spherical wave -
functions. These calculations include the dependence of the sensor
response on both frequency and the direction of wave incidence.
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Abstract

This note considers the response of a hollow spherical dipole
in non-conducting media. This sensor is a sphere with a slot *

around the equator which is uniformly resistively loaded. The
current through the resistive load across the slot is proportional
to the time rate of change of the displacement vector for low fre-
quencies. The response characteristics of such a device at high
frequencies are calculated. using expansions in spherical wave
functions. These calculations include the dependence of the sensor
response on both frequency and the direction of wave incidence.

Foreword

The calculations in this note have a form similar to those
in a few previous notes on cylindrical loops. This note ext-ends
these types of-calculations t-ospherical geometries where the
sensor in this case measures the displacement current density.
For convenience the figures are grouped together after the sum-
mary and before the appendices. Appendix C was written by Mr.
Joe P. Martinez of Dikewood and we would like to thank him and
Mr. Larry Berg of AFWL for the numerical calculations and graphs.
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I. Introduction
v

Among the problems of electromagnetic sensor design for use
in non-conducting media there are the general problems of sensor
accuracy, directional sensitivity at high frequencies, and maxi-
mizing the upper frequency response for a given sensitivity.

,..
Here

we are concerned with sensors for measuring some electromagnetic
field component, or its derivative, with a flat frequency response
over the bandwidth of interest so that in measuring pulsed fields
there is no distortion of the waveform, within limits like the
risetime. As an example, a multi-gap cylindrical loop h s a well w
calculable equivalent area for.measuring a component of $ and by
increasing the number of gaps the upper frequency respons~ can be
raised and the directional sensitivity at high frequencie-s is re-
duced (for waves still propagating perpendicular to the loop
axis) .1

In this note we consider another kind of sensor which we
term a hollow spherical dipol+ Since this sensor is based on a
sphere we can analyze its performance using vector eigenfunction
expansions in spherical coordinat-es. (This in itself is a good
reason for considering a spherical sensor.) The analysis will
follow an approach similar to that–used in two previous notes
concerning cylindrical loops where cylindrical vector eigenfunc-
tions were used.~/2

The basic sensor geometry is shown in figure 1. It consists
of a hollow sphere of radius a with a gap_of-angular width 240
symmetrically cut around the equator of the sphere. The sensor
is described in spherical coordinates (r, 0, +) as a conducting
surface on r = a for O ~ 0 < 00 and n - @o < 0 ~n. The gap is
described by r = a and 60 < 0 < m - 90 where O < 60 < m/2. We
have the relation

+(+-e. (1)

the cylindrical coordinate system (Y, +, z)There is also
and the sensor geometry is constrained to have axial symmetry
(about the z axis) so that its response is independent of +. The
gap is assumed to have resistive loading uniform in @ to preserve

.

1 Capt Carl E. Baum, Sensor a~d Simulation Note 41, The Multi-
&~p Cylindrical Loop in Non-Conducting Media, May 1967. .

?-. Capt Carl E. Baum, Sensor and Simulation Note 30, The Single-
Gap Cylindrical Loop in Non-Conducting and Conducting Media,
January 1967.
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axial symmetry. This resistive loading might in pr.act-i.cebe
many cable inputs evenly spaced around the gap; the cables would
bring the total cuxrent crossing the gap with equal delays to one
common point where the signal is desired. Such cable networks
are not=considered in this note, but they are assumed to be lo-
cated in positions which do not signif.i.cantlyperturb the sensor
geometry.

The basic mode of operation of this type of sensor uses the
short circuit current across the loop.gap. AS will appear in the
analysis, for wavelengths much larger than a the short circuit
current is just 3va2 times the z component of the total cuzrent
density. If the medium conduct-ivity is zero then the total cur–
rent density is just the displacement current—density. (There
are no source currents in ~hese calculations.) T’h~sone might
refer to this sensor as a D sensor ox a total current density
sensor, depen-ding on the specific application.~ The sensor has.
an equivalent area of 3~a2 which is quite accurate as long as ~.
is small. The actual accuracy of this number for the equivalent
area is not considered in this note. The simplifying assumptions
allowing the present high-frequency analysis give 3na2 as the
equivalent--area.

In outline this note first considers the expansion of–an in-
cident electromagnetic plane wave in terms of—spherical vector
eigenfunctions. Then this plane wave is imposed on the sphere
with a shorted gap in order to calculate the short circuit–cur-
rent as a function of frequency and the angle of–wave incidence.
Then assuming small ~. and a quasi static electric field distri-
but-ion across the gap we calculate the sensor admittances associ–
ated with both the volume inside and outside the sensor. Combin-
ing the admittances due to the sensor geometry and the assumed
cable loading with the short circuit current then gives the sensor
response functions for an incident plane wave. From these results
things like optimum cable loading can be calculated. For this
sensor with the case of interest that–the medium conductivity is
zero the admittance due to the cable loading is large compared to
the sensor admittance {basically a capacitance) for frequencies
below the upper frequency response of the sensor. The sensor re-
sponse is then normalized by dividing the current out~t by 3na2
times 13,the ideal low-frequency response.

3. Capt Carl E. Baum, Sensor and Simulation Note 38, Parameters
for Some Electrically-Small Electromagnetic Sensors, March 1967.
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11. Electromagnetic Fields in Spherical Coordinates

Consider that we have a linear, homogeneous, isotropic medium
with permittivity c?

$
ermeability p, and conductivity a. We have

propagat-ion constants

(2)
.

and a wave impedance

z = ~. ‘ ix
(3),’

where s is the Laplace transform variable which we take as iw for
the frequency-domain analysis in this note. The radian frequency

is u and i is the unit imaginary. OuZ interest lies for the most
p~rt=i~ ~ Q 0, as is used for the numerical calculations. How-

ever we keep o

With time
equati~ns have

in the analysis for generality. I
./

haumonic fields and with ei(utsuppressed Maxwell’s
the farm

(’4)

together with the constitutive relations and 0hm4s law

From”equations ~ and 5 one obtains
form

v2!i+k23=?L

‘d (5)

vector wave equations of the

=6 (6)

Not-e-that there are assumed to be no source currents or charges
j; ;b:)~;;e:::a;e::;::r:ut ther$ will be charges (and c~rr!nts)-’. Thus E (as well as H) has zero d~vergence
away from boundaries allowing the result in equations 6.

h A~~-. units are rationalized MKSA.
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In spherical coordinates the solution of the scalar wave
equation can be.written as a linear combination of functions of
the form5

(7)

1where f~~~ kr) is one of the spherical Bessel functions jn(kr) ~
yn(kr-),

4
h l)(kr), h 2)(kr) for ! = i, 2, 3, 4 in that order.

The third ~rgument o E is listed as e or o (meaning even or odd) ;
e corresponds to using cos(m~) and o to using sin(m$) . Unless
noted to-the contrary-the definitions of–the-special functions
correspond to those in a standard reference work, 6 in particular
the Legendre functions of the first kind P~(&) of degree n and
order m on
form (ref.

P:(g)

where

Pn(E)

the cut (-1 < C < 1) in the complex ~ plane have the
6 eqn. 8.6.6T –

(8)

(9)
,411*u<

where we only consider n and m as non neqative inteqers and ~ as
a real argum~nt with -1 < ~ < 1. Our de~inition di~fers from
that in some texts on el~ctr~magnetic theory5~7~8 in which the
factor of (-l)m is not included: The form of equation 8 is how-
ever consistent with various texts dealing with the special

&

5. J. A. Stratton, Electromagnetic Theory, McGraw Hill,
section 7.3.

6. Abramowitz and Stegun, cd., Handbook of.Mathematical
tions, AMS 55, National Bureau of Standards, 1964.

1941,

Func-

7. W. RX Smythe, Static and Dynamic Electricity, 2nd. cd.,
McGraw Hill, 1950.

8. Morse and Feshbach, Methods of Theoretical..Physics, McGraw
Hill, 1953.

5
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functions of mathematical physics. ~r~rlo For & as a general com-
plex number not on the cut (-1 < 5 < 1) the definition diff-ers
somewhat. The form in equation–~ a~rees with more general defi-
nitions for real m not necessarily an integer. In any case we
only use -1 < ~ < 1 in this note.. .

Similar to Stratton [ref. 5, section 7.11) define two ’inde-
pendent sets of vector wave functions which can be used to con-
struct any divergenceless vector field satisfying the vector wave
equation (as in equations 6). The f=irstset-of vector wave func- .
tions is defined by

-&)
[(n,mr~)=VxrE ‘L)(n, m, o‘):r‘1 (10)

where ‘Zris the unit vector in the r direction, and similarly for
other unit vectors. These vector wave functions have components
as

M(fi)(n, m,
r

:)=~

‘L)(n, m, o‘)=la ‘2)(n, m,
‘6 sin(0) ~ E :) (11)

where the last two ccnnponents can be expanded as

‘R)(n, m,
P;(coS (e))

I

-sin(m@)

‘e ;}=n f(i) (kr) ml
sin(f3) cos (m+)

(12)

9. Magnus, Oberhettinger, and Soni! Formulas and Theorems for
the Special Functions of-Mathematical Physics, 3rd cd., Springer-
verlag New York, 1966.

10. E. v?.Hobson, The Theory of Spherical and Ellipsoidal Har-
monics, Chelsea, New York, 1955.
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The second set of vector wave functions is defined by

.

,-

which has components

N(~)(n, m, n(n + 1)
:) = ~r @ (n, m,r :)

which can be

m, :)=1 kr sin((3)

expanded as

f(i) (kr)
:)

1

cos (m+)
m, ==n(n -!-1) n ~r P;(coS (e))

sin(m+)

‘) =mz ~.

m, :) =

where a prime is used

[
krf(~) (kr]rn

kr

[
krf(Q)(kr)]’ P~(cos(0)) mn ~-sin(m+)

kr sin(9)
1cos (m@) 1

(13)

(14)

(15)

to indicate differentiation with res~ect to
the argu~ent of the spherical Bessel function being consid&ed.
Similar to equation 13 we also have the relation

(16)

The fiand fifunctions are mutually orthogonal on a sphere (of con-
stant kx) . Also ~n the unit sphere we have the orthogonality re-
lations that two N functions with different n or m are orthogonal,
or if one is even and the other odd they are orthogonal. The

7
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same results hold for the ~ functions. For all indices the same
we have

n(n + 1) (n + m)= [1 i “8M,012’IT2n + 11 ![f(~)(kr)]2
-m)!n

and

where 8ml ,m2 is the Kronecker delta function defined by

[

1 for ml = m2

65
‘1’m2 o for m, # m,

With the fiand
electric field with

(17)

(18)

(19)

A &

fivector wave functions we can now expand an
zero divergence as

(20)

.nstant with dimensions volts/meter and wherewhere E. is some cc
an,m and ~n~nlare dimensionless constants. Note that we can also

sum over L and over even and odd functions but typically for some
particular form of wave only one k will be needed and with appro-
priate symmetry only one of e and o will be needed for each type
of vector wave function. Comparing equations 4 and 5 with the

.-)

.
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relations between the ~ and fi+functions (equations-13 and 16)
note that we can f-indH from E by replacing

+(~)
M (n, m, ~) + ~fi(i) (n, m, ~)

(21)

+@)
(n, m, ~) + + ii(L)(n, m, :)

giving an ~ to go with equation 20 as

-+&
cl (n, m, ~) +-13n,mfi(L)(n, m,
n~m :)1 (22)

Similarly if we are given an expansion for k we can find ~ by
substituting

fi(j)
(n, m, ~) +._izfi(L)(n, m, :)

(23)

With the fiand fifunctions we can expand any electromagnetic
field distribution as long as the fields have no divergence which
requires p = O in $quations 4. For completeness note that the
wave equation for E found from equations 4 and 5 is

(24)

.

-V x(Vx~)+-k2~=0

which reduces to

.#g
--V(v ●~)-I-k2ti=0 (25)

As--discussed by Stratton another set of wave functions are needed
which we define as

(26)

which has components

9
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L(R) (n, m,r
:) =

(R)
‘e (n, m, ;) =

LjL) (n, m, :) =

.-
de Isin (m@)

(-sin(m$)f(i) (kr) p:(cOs (e))
n

kr
11

m
sin(%)

Icos (m@)

The ~ and ~ vector functions are related as

(28)

The ~ and & functions a~e mgtuall~
constant kr) . However the L and N
if at least one of the indices (i,
tions are orthogonal to each other
same, in which case we have

orthogonal on a sphere (of
functions are only orth~gonal
n! ml ~) diff-ers. The L func-
unless the indices are all the

[
f(i) ‘kr)

1n(2

(29)

For another reference concerning these spherical vector wave
functions see Morse and Feshb.ack.ll The definitions uqed here
are similar to Morse and Feshback except that we use e=ut whereas
Stratton and Morse and Feshback both use e‘Lut for the harmonic
time dependence.

11, Ref, 8f Part 11, pp. 1864-1866.

.
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Such

Vector Plane Waves in SDherical Coordinates

Now consider vector Diane waves in spherical coordinates .
a wave has the general form

(30)

thewhere ~ is some unit vector
propagation vector is given

with fixed
by

3irection md where(

(31)

+
where e~ is the direction of–propagation of the wave. Figure 2A
$hows a general pl~n.e+wave a$ some position ~ propagating in the
el direction wi$h E, 14,and k all mutually orthogon.a~ vectors.
We assume that E has a fixed polarization (and thus H also has a
f-ixedpolarization) for purposes of illustration. This plane
wave also has

(32)
J.

the wave is propagating in the +:1 direction.

is a fixed dirqction..in space determining the

that

+
el

wave

so

of
direction
which is inpropagation. ~ and H are-parallel to a plane

$urn pe~pendicular to e~. Construct two orthogonal unit vectors,
e2 andAe3, parallel to this plane as shown in figure 2B. Now
since cl-is a fixed direction in space it can be described by
fixed angles 01 and $1 in a spherical-,coo$din~te system with re-
spect to the cartesian unit vectors (eY, ev, ez) which arq also
fixed directions in space. As shown in f~<ure-2Q choose :2 to be
parallel t~ the same plane to yhich both e~ and ez+are parallel;
also mak~ e2 perpendicular to el. l?inally choose e3 perpendicular
to both el and e2, thereby making it parallel. to the Xr y plane,

These ll-ewunit
that we have

+ +
‘1 x ‘2 = ‘3 ‘

made

+=
‘1

fozm a right handedto

r

system

(33)

angle

so

+’

‘2 x ‘3
+
ea x:=

1
+

‘2J

o<$~<Not~ that :2 is chosen
of e2 is ‘rr/2- 01. In

such that for n/2 the polar
terms of the cartes~an unit vectors we have

11
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+’
‘1

~
‘2

+
‘3

= sin(O1)cos($l)Jx -t-sin(el)sin($l)~y + COS(6L):Z

~ -Cos(el)cos(+l):x - cos(Ol)sin(@l)ly + sin(91)~z (34)

= sin(+l)gx - Cos(+l):y

Cartesian and spherical coordinates are related as

x = r sin(e)cos ($)

[y = r sin(6)sin(@)

z = r COS(6)

The cartesian and spherical unit vectors are related as

+
e
x

-)-

‘Y

+

e‘z

Cc)s(e)cos($):x+-

-sin(~)~x + Cos(l$):
Y

Substitute for the cartesian unit vectors

+-

(35)

(36)

in equations ,34 from

i

.

.

.

equations 36 and use some trigonometric identities to give

12



+

‘1 = [Cocos -!-sin(81)sin(6)cos($ - $l)]Zr

+ [-cos(O1)sin(6) +–sin(O1) cos(6)cos(@ - $1)1=8

+

‘2 = [sin(81)cos (6) - cos(81)sin(6)cos($ - $1)1Zr

- [sin(@l)sin(6) + COS(81)COS(6)COS($ - $1)]Z6 (38)

-cos(9)sin($ - $-p:;

Note that $ and $1 appear in the combination $ - $1 in this
formulation.

The general unit vector ~ (with constant direction) used in
equation 30 can be considered a~ a ~ine~r combin~tion of the sys-
tem of orthogonal unit vectors e~, e2, es. Now e~ gives the di-

. rection of propagation of the vector plane wave. For our purposes
we have an electromagnetic w-avewhich is an assumed TEM plane
wave. This plane wave will be used as the incident wave f~r cal-
culating the sensor res~onse, Ca~ling the+electric field Einc
and the magnetic field Hinc then Einc and Hinc must both be per-
pen~icular~to e~; they can then be formed from linear combinations
of e~ and e2. In f-igure3 we+ill strate such a plane wave inci-

8dent on a sphere centered on r = . The slot around the sphere
is to be centered on 6 = Tr/2so as to make the s~nsor symmetric
wit~ respect to the x, y plane. By symmetry if Einc were parallel
to e2 and thus parallel to the x, y plane it would drive no net
current across the gap; note we are going to integrate the cur-..
rent all around the gap to obtain the short-circuit current for
the sensor. Thus we are only interested in the polarization of

13
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the incident wave for which ~inc is parallel to :2 and our inci-
dent wave is defined by

(39)

Since one can convext an electric field distribution to the asso-
ciated magnetic fiel~ by the transformati~ns in+equations 21+we
only need to expand Xinc in terms of the M an~ N functions; Hinc
is directly obtainable from the expansion of Einc.

As a further simplification we will later set +1 = O to make
I parallel to the x, z plane as shown in figure 3. Since the
sensor geometry is independent of $ this represents no loss in
generality. Consider an rl, f3~,$1 spherical coordinate system
where 61 and $1 are the angles fixing the di~ection of propaga-
tion of the incident plane wave as above. The unit vectors for
such a coordinate system are

AS in Morse and l?eshbacki2 we define vector spherical harmonics
using the spherical angles 61~ $1 as

n+m
1[

cos (m$l)l
-— P~_~(cos(61)) sin(m$, )l

n
-L

m(2n+l) m

1 11

-sin(m@L)

+ ‘$1 n(n+l) ‘n(cos(el)) cos(m$l)

.

12. Ref. 8, Part II, pp. 1898, 1899.

14
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- ‘a [
n-m+l ~m

91 n-i-l ~+l(cos(el))

(4i)

n-t-m~m
1[

cos (m@l)
._ n_~ ‘Cos’01)) ~in(m+ )n

1 II

The letters e and o refer
ciated with the upper and
the vector wave functions-

Now we introduce the

lowe~ functions in braces just as with
previously introduced..

result of Mouse and Feshback13 for a
dyadic plane wave with i switched to -i giving

02 n

100

() ,++-=0 1 0 e-=]{”r

o 0 1. ,

‘x ~ ~12-~m,ol(-i)n
n=o m=o e,o 1(n-m): ,+

e ‘(l) (n,m,~)
2n+1) GETT1p(n’m’JL

:W,jt::; 5 9v ct r spherical harmonics are functions of 61 and +1
r M, N spherical vector wave functions are functions

of r, %, and ~. No~e the use of dyadic notation where two vectors
are written side by side to form a dyadic. (da,~) is the identity
dvadic which is also written in matrix form in ecmation 42. A
vector plane wave is formed by taking the dot product of some con-
stant vector on the ~eft of the terms in equation 42. Using a
general unit vector u with f-ixeddirection (as in equation 30) we
have a vector plane wave as

13. Ref. 8.,Part 11, p, 1866.

15
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.

(43)

The problem of expanding a vector plane wave -thenreduces to
finding the coefficients expressed above as dot products.

Our_>plane wave+of interest (equatio~s 39) can be found by
setting u ~qual t~ ‘e-2and then equal to es while using the rela-
tions for e~ and e37given in equations 40-and setting-$l = O.
Considering first e2 we have

i: e,
2 “ F(n-,m, ~, = -i; ● ;(n~ m, :)

‘1

i +-
‘2

s E(n, m, :) = ‘i
V5m- /n(n+-1)

%2

+-
’01

● Z(n, mj

m,

(44)

= * 2;+1 [
n-m+1 ~m

~+l(cos (61)) - ‘+ p;.~n+1 {cos(el))][:~

Thus only the second set of coefficients for odd harmonics and
the third set foz even harmonics can b$ non ~ero. Note that n = O
is not used because the corresponding M and N functions are iden-
tically zero. ‘Thelast-of equations $~ can be rewritten using
identities for the Legendre functions as

14. Ref. 5, p. 402.

16
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dP#cos $)) 1i +
● E(n, m, :) =

-j.

in (n+l)
‘2 n (n+l) dOL -

IIo
(45)

The incident electric field from equations 39 can then be writt-en
as

n
+ -iI*;_=
ee2 },~o[

a fi(l)(n,m,o) + bn,mfi(~)(n,m,e)_j
n,m==

(46)

a
n,m

= [2-6M,o] (-i)n+2

b
n,m

= [2-6m,ol (-i)n+l

Setting t = :3

i~ ● t(n,m,~)3

we have

.+
= -ieT,

2n-i-l
n~n-t-1)

2n+l
n (n-t-l)

P:(cos(f31))(n-m)! .
m (n+m)! sin(6,)

J.

(47)

J.

another set of coefficients as

J.

.

\

dP~(cos (61))

= ‘* d
‘1

.. - --—- -.. ——- -..—.—
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(48)

The incident magnetic field from equations 39 can then be written
as

E ,+ -}
k, = # &3e-lk*r
lnc

+
ee -it.:
3 = ~ ~ ~ian,# (’)(n,m,o) + ibn,~(’) (n,m,e)]

n=l m=o

We then have the complete expansion of our incident wave.

.

(49)

Actually, with ~le-i~’~ and &3e-iE”~ expanded any+polariza-
t-ionof the incident electric field (perpendicular to k) can be
written as a linear combination of these two plane waves. The
associated incident magnetic field can be similarly written. Be-
ginning with equations 44 we restricted $1 = O. However, if it
is desired to have $1 # O there are at least two approaches to
generalize the present-results. First, one can simply leave
$1 ~ O in calculat-img the coeff-ieients as in equations 44 and 48;
this will put terms like cos(m$l) and sin(m+l) in the coeffici-
ents . Or second, one can take advantage of the axial symmetry of
the spherical coordinate system and consider @ - +1 as the azi-
muthal angle in the present result$; in Qlis case one just substi-
tutes @ - $1 in place of @ in the M and N functions in equations
46 and 49. Which of these methods if used is a matter of conven-
ience related to the problem at hand. As stated before we assume
the spherical sensor in the present problem to have axial symmetry
so that we use ~1 = O for convenience.

The expansion of ~le‘it”z would be another extension of the
present results for cases where there were source currents in the
incident wave such that the incident electric field had a non
zero divergence. ~This, of course, would be accomplished by sub-
stituting e~ for u and obtaining a set of coefficients analogous
to equations 44 or 48.
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Iv. Short Circuit Current

Having the incident plane wave, next consider the short cir-
cuit current from the sensor. For this calculation short circuit
the gap in the sphere so that it looks like a complete perfectly
conducting spk.erewith no gap. Then we consider the currents in-
duced on th-esphere by the incident plane wave. The incident plane
wave is given by equations 46 and 49 in the p.~evious section.
Add to this a scattered wave of the form

isc= ‘OiS[cn,~k(4)‘n;m;o)+ ‘n,mfi(4)‘nrmJe)]
n.1 m=o

(50)

lic= >~ ~ [j-cn,j(4)(n,m,o) -f-id,,,#(4)(n,m,e)]
n.1 m.o

The fourth kind of spherical b$ssel ~unctions a~e used to give an
outward propagating wave; the M and N functions are chosen even
or odd to match the $ dependence of those appearing in tb.eexpan-
sion for the incident wave.

The boundary condition at r = a is that EO = ‘$ = 0. From
the spherical vector wave functions in equations 12 and 15 this
requires

an,mjn(ka) + c
h(2) (ka) = O

n~m r.

[kajn(ka)] ‘
[ 1
kah~2) (ka) ‘

b
ka

+d = oLn,m n,m ka

giving

(5i)

jn(ka)
c =-
n,m 2) (ka)

a
hi n,m

(52)

[kajn(ka)] ‘
d =-
n,m

[
2) (ka)1

,b
kah~ n,m

Note that the total field is
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(53)

The surface current–density ~~ on the perfectly conducting
spherical surface on r = a has 6 and $ components which can be
found from the magnetic field just outside the surf-a-ccas

J=-H
‘e 4 r=a+

P:(coS(e))
*

sin(e) m cos(m$)

+ ib
n~m

J = HO
% r=a+

[kajn(ka)] 1

1

dP:(cos(6))
jn(ka) -

[

, h~2) (’a) do

1

cos (m+)
kah:’) (ka)

1

(54)

dP~(cos(9))
.

de sin (m$)

1 [kajn(ka)] ‘
- ib~,m jn(ka) -

[

h(z) (ka)
kah~2 )

!’
(ka)’ n

1

d’(cOs(a))

suii m sin(rn$)

.

20
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To simplify this we use a Wronskian relationlb to obtain

[
‘2)(ka)]‘h(2) (ka)~kajn(ka)]’n

- jn(ka) kahn

= ~lkayn(ka) Lkajn(ka)l ‘ - kajn(ka) Ikayn(ka)l ’

‘k
Using this result in equations 54 gives

J=
‘e

[
>55 a.,m ,ka),,j,) ,ka,

n=l m=o n

P;(coS(e)) <<55

sin(e)
m _s&n-(m$)

+-bn,m
1

[
ka kah~2) (ka)

1’

dP;(cos (e))

~ Cos ‘m+)
1

(55)

(56)

E@n

E xl

dP;(cos(e))
J~=fi

1
-a sin (m@)

$ ‘~m (ka)2hj2) (ka) do
n=l m=o 1 11

1 P~(cOs (e))
-b

[
“m ka kah:2) (ka)

1’

s~n(o)
J

.

With surface current density on the sphere determined we can
calculate the total current crossing a circle of constant $ on
the spherical surface; this is

15. Ref. 6, eqn. 10.3.4.
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where

bn,o

Rewriting

= 2Ta sin(e) b 1

[
“0 ka kah~2)

1
(ka) ‘

de,
J.

the Legendre functions with the relation

dP~(cc)s(0))

d8

dP;(cos(6))

de
= P:(coS (e))

we then have

* P:(cos(61) )P:(cos(e))

For small Ikal we

h,(2)(ka)= i(2rl-
n

have fo-rthe

1) !!(ka)-n-~

spherical Hankel

()+-O ‘(ka)-n

The double f-actorial function is define-d by

(2n)!! ; (2n)(2n -

(2n - 1)1: = (2n-

with the conventions

2) ● C” (4)(2)

l)(2n -

(even)

3) “+” (3)(1)

(57)

.

functions

(61)

(62)

(odd)
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0!:=1, (-1)!:=1

For small lkal the n = 1 term in equation 60 dominates and we
have as ka + O

E
1(9) = 3~a $ (-ika) sin(@l) [sin(@)]2 -tO ‘(ka)2

()

= -3na2Eo(o + iuz) sin(61)[sin(6)]2
()

+ O (ka)2

(63)

(64)

Thus for low frequencies the short circuit current is proportional
to (a + iu&)Eo sin(61) which is the z component of the total cur-
rent density. For the case that a = O then the response is pro-
portional to iu$Eo sin(el) which (in the t-imedomain) is just the
z component of b. Setting 6 = T/2 so that the position of the
loop gap is on the equator of the sphere we have as ka -~O

I(Tr/2)=
()

-AeqEo(a + iuc) sin(61) + O (ka)2

where the equivalent area of the sensor is

A = 3na2eq

or as a vector

so that we can write as ka + O
.

I(Tr/2)= -(a + ius)i.
()

● ~eq + O (ka)2lnc ;=;

(65)

(66)

(67)

(68)

For convenience we def-ine a short circuit current transfer
function as

so that as ka + O
frequency angular

we have T -+sin(81) which is the ideal low-
dependence of the sensor. Then we have
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Some special values for the Legendre functions are~6

(O for n + m odd

P:(o) =

h

n+m

(-1) 2 (n+m -1):: ~orn+meven
n -m)!!

.

giving

where the second index above the sununation siqn

(71)

P;(cos(el)) (72)

is the increment
which is added to the value of n to obtain th= next value of n
for the summation. Here only odd n result. For convenience
define

For 6 = 7T\2an”dodd n this

For our present case of

1
5.( (’,3 ~;

P:(COS(61))P; (’6)”
(ka)2

[ 1
kah~’) (ka) ‘

(73)

is

n !?.. i

[ 1

P:(cos(O1))
‘“-1):! (ka)’ kah~’) (ka) ‘

(74)

interest just call this Tn so that the
short ci~cuit curzent transfer function can be w~itten as

w,’
T(6i) = z

Tn

n=1

Note that as ka + O we have T + T1 ~ sin(61).

(75)

.

●
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The short circuit current transfer function is ~lotted in
figure 4 as a function of ka with o = O. Note thak-~e plot
T/sin(61) for several values of 01. This is so that all the curves
tend to one for low frequency and we can observe-at what frequency
(i.e. what ka) they start to spread from one another, For compar-
ison T1 from equation 74 is included. T1 will be used Iat-e-rin
calculating some of the sensor response functions. In figure 4
the magnitude and phase of T/sin(@l) are plotted. For-convenience
the phase is plotted as arg(T) - ka which corresponds to multiply-
ing T by e-~ka. This is the same type of display as used in ref-
erence 2. Note that the magnitude of T/sin(61) peaks up slightly
at around ka = .7. Also, between ka = 1 and ka = 2 the response
functions for various values of 61 begin to spread apart; some ka
roughly between 1 and 2 can then be considered the upper frequency
for which the sen-sormaintains a respotiseproportional to sin{61)
which can be considered the ideal angular dependence of the sensor.
This range of ka is also where the frequency response (for the
short circuit current) starts to fall off for higher frequencies.

T1/sin(81) is a useful function to use for some of the later
re-sponse function calculations because it is the first term in the
expansion of T/sin(@~) and because it has no dependence on 61.
The Hankel function for n = 1 is just

h~2) (ka) =
[

_l

“1
~+ L e-ika

(ka)2

Then T1 is just

and we also have

-i

[

—=

(ka)2 kah~2)(ka)
1’

Tle-ika -1

‘~
= [1 + ika - (ka)2]

T1/sin(61) has a peak magnitude of
ka = I/a ‘ .707.

ikae

1 -1-ika - (ka)2

25
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v, Admittances

Now consider the admittances when the sensor is driven at the
gap. AS illustrated in figure 5 the loop gap is centered on
e = 7r/2and has an angular width of 2$.. There is a voltage VqaP
uniformly distributed around the gap. Associated with Vgap+there
are three surface curzent densities which are parallel to eo.
These are Jsext, Jsintl and Jsc and are associated respectively
with fields ext-e-rnalto the sphere, fields internal to the sphere,
and currents into the cables or other transmission lines loading
the gap. Taking the conventions for the directions of these cur-
rents as indicated in figure 5 we have three admittances to definer
namely .

-r .

*S’ lJ

mt s.mt Jc
Y. ‘ 2~a v Y z 2na vlnt - ? ext r Yc z 2na ~ (79)

gap gap gap

In normalized form we also define

yint s zYint

For the numerical
fine a normalized

r ‘e~t= “e~t r y~ = ‘Yc

calculations we take a = 0, as before.
cable conductance as

(80)

Also de-

(81)

where Zc is the net cable impedance (resistive) loading the gap.
Since we have o = O for the numerical calculations then rc > 0 for
such calculations and rc is a constant which we can specify—para-
rnetrically.

A. Boundaxy Conditions at Gap in Sphere

Here we use approximately the same quasi static approxi-
mation for the electric field distribution in the gap as was used
in references 1 and 2. Defining

i
.,

.

we have

(82)
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()-wJ2fd -‘e ~=a = a$o E VO

with

(83)

(84)

This field distribution has the proper form of sinqularitv at
the edges of the gap, considering the-as~umption of a p;rfectl~
conducting spherical shell of–zero thickness. The presence of
cable confections across the gap will of course dis~ort this field
somewhat near the connections. However, of the various choices
for the gap field one might choose the above choice seems to be a
reasonable one. Note that we assume *O << 1 for these calculations.
Later we change to another fie-lddistribution fE which closely ap-
proximates ffifor small v. This other distribution will be more
convenient for the evaluation of a certain integral.

B. Internal Admittance

To calculate the int-ernaladmittance we expand the fields
inside the sphere in.terms of the spherical vector wave functions.
The boundary conditions at-r = a are taken as independent of $ so
that m = O for the wave functions. There are.thxee+non zero field
components : E~, He, I&$. The f-i-eldsare finite at Y = 6 so that
the spherical Bessel functions of the first kind are used. The
fields are then expanded as

02

ii. ‘(L)(n, O, e)mt = % z ~n~
n=o

(85)

where El is some constant with dimensions volts/meter. The non
zero components of–the spherical vector wave functions for m = O
from equations 12 and 25 are
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‘g)(n,O,e)
‘$

N(!) (n,O,e)r

N~L) (n,O,e)

The
tions 83

‘6 -

-f(]) (kr)
dP; (cos(e))

-f(k) (kr)P~(cos (6))
n d8 = n

f(L) (kr)n
n(n 1)

kr PO(cos (6))n

[
krf(k) (kr)]’

n

boundary conditions for
and 84.- Writing out Eo

co ~kajn(ka)]‘
=

‘1 ~ an kalL=d n=o

Eg
on

P1
r-l

[
krf~i)(kr)l‘ ~I(~OS(0) )

kr n .

on r = a are
r = a gives

(coS(e))

Multiplying both sides by P~(cos (6)) sin(6) , integrating
from ~-to m, and using the brthogonality of the Legendre
givesJ-J

integral

(cos(8))sin(6)d6

—

.

(87)

over @
Eunctions

[kajn(ka)l’ 2n(n + A)

= ‘lan ka 2ni-1
(88)

a convenient

l\

sinz($)] (89)

17. Ref. 6, eqn. 8.14.13.
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A, ~ +----’0[,- (~)21-’’2,1- ,2/’2,:(,,.$=An

o

Then let L = ~\~o to give

(90)

(91)

Since the form of f; is only approximate we take An instead of LA
to calculate the coefficients. This integral is treated in ap-
pendix A. Using the approximation good for small to we then have
for our coefficients

‘& -2n+l ka
an = aE 2n(n + 1) ~kajn(ka)] , An

1

In obtaining the result of equation 91 f~r An the–approxima-
tion sin($) = ~ was used for small ~. This is eq~ivalent–to alter-
ing slightly the field distribution f; to one which we call fE.
To see this let ~o~ = sin(l))in equation 91 giving

I
arcsin(+o)

An=~
TJ$o -arcsin(~o) [’ - (s?:”’)2~’/2

I
TT/2

=—
;0

fEp~(sin(+)) cos(+)d+
-’r/2

where we have defined

[+ - (sy))21-1’2cos(v)

Io for 1$1 ~ arcsin(+o)

29
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for l+] < arcsin(~o)

(94)
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The voltage across the gap
fE) by the integral

is

94

given from equation 83 (except using

* J
lT/2

V. = fEad~
‘o -lT/2

(95)

Substituting from equation sin(+) we have

v

J
1 -~/2

gap [l _ ~21 ~L
‘m . -1

field distribution is

V. =

this

-gap

still exactlyThus consistei~t-with
as the gap voltage. The angular gap half wi~th is arcsin(~o)

vgap
for

this distribution and is very nearly @o for–small ~. We thus take
fE as the field distribution across the gap instead of-the simpler
form given

The su~face current
mittance is take~ at e =

density
n/2 for

associated with the internal
convenience so that we have

ad-

(97)Js . -Hint=

int $ ~=a

From

From

Note

equations 85 we then have

(98)

equation 71 we then have

(99)

that only odd n contribute to this sum.

equations 79 and 80 the normalized admitt-anteinternalFrom
is then
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2naZ ~
‘v

gap ‘int
‘int (100)

Substituting for an gives

kajn{ka)

~kaj=(ka)] ‘
P~(0)An (101)

From

where

appendix A, equation A21, we

(102)

F is a hypergeometric function given

(103)

(a)q is a Pochhammer symbo118 definedand where

(u)o

(a)q

Note that

by

1

(104)

a(cl+l)(CI+2)● “” (u+-q-l) for ,Lr2,”9”q.

the series in equation 103 has only a finite number of
terms giving a polynomial function of ~o. This is convenient for
the numerical calculations. The normalized internal admittance
can then be written as.

kajn(ka)

[kajn(ka)] ‘
n+l n

‘int

kajn(ka)
(105)~; 3; ‘~) tkajn(ka)]’

18. Ref. 6, eqn. 6.1.22.
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The asymptotic properties of this series for large n are treat-e-d
in appendix B.

The normalized internal admittance is plotted in figure 6 as
a function of ka with u = O for several values of $.. Note that
yint has only an imaginary part. For convenience yint/ka is
plotted in figure 6; yint-/ka is an imaginary function for real ka
which we are using. AS ka +-O yin-t-\katends to a constant; the
numerically determined coefficients are listed in table 1.

*O
‘int
lka

.001 14.22
01 9.62
“.1 5.10

Table 1. Asymptotic form of yint for small ka

As one would expect for small ka this admittance represents a
capacitance. As ka is increased yint has singularities correspond-
ing to the ze~os of [kajil(ka)]‘. The first two singularities oc-
cur at ka x 20~44 and ka = 4.9730

c. External Admittance

The calculation of the external admittance follows the
same development as the internal admittance. ‘Thefields outside
the sphere are expanded as outward propagating waves in the forms

~.o

(106)

‘Theonly difference on the boundary r = a between these fields and
those of equations 85 is the replacement of jn(ka) by h~2) (ka).
Analogous to equation 92 we then have the expansion coeff-icients
given by

vgap
6— =
n. aE

1

where only odd n are of interest.

(107)



The surface current
mittance is taken at 6 =

density associated with the external ad-
n/2 gi;ing

J = Hext
‘ext 0 r=a

e=T/2

W.2‘1
z--

79

(108)=-

equations external isand 80 the normalizedFrom

‘ext

admittance

kah~2) (ka)‘fl
= ~ (-i).

n=1
2n+ 1 P:(0)An(n + 1) n

(109)

[
kah~2) (ka)l‘

-1

Or, substituting for An we have

kah~2)(ka)

[1

2
-#& P:(O) F

n-l-l
Yext

.4

= J“J(-i)l
n=l

This series

L J.t -i

(110)

Very similar to the one in equation 105 and its
asymptotic properties for large n are treated in appendix B.

is

The normalized external admittance is plotted in figure 7 as
a function of ka with o = O for several values of-~o. In this
figure the real and imaginary parts of yext are plo~ted, again in
the form yext/ka which tends to a constant for small ka; the
merically det-ermined coefficients are listed in table 2.

nu-.-
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‘extIJo mi---
.001 17.36
.01 12.75
.1 8.04

~ab~e. 2. Asymptotic form of~ ext_for small ka

yext is also a capacitance for small ka. Not-ethat as ka is in-
c~eased yex~ does not have singularities as was the case with yillt.

,
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VI. Fzequericy Respor.seCharacteristics

Now that we have the short circuit current and the admittances
in suitably normalized forms we combine these results to calculate
the frequency response characteristics. First def-inea response
function including only the admittances as

Yc
Ry :.

-1
= [1 + ‘C(yint ‘-ye~~)]

‘int&yext+ ‘c
(112)

This is plotted as a function of ka in figures 8 and 9 for two
values of $0 (.01 and .1) with o = 0. For each graph several val-
ues of rc are used. Not-e-for rc > 0 that Ry has zeros at the sin-
gularities Of”yint. .AS one would expect decreasing rc maintains
R as a flat response characteristic out to Larger values of ka
Kw ich represents higher frequency response.

Including the short circuit=current transfer function from
equation 75 we have the response function

T-(61)

R(el) :
-1‘(cl) [1 + rc(Yint + ‘ext)]

TRY = s~n(el)

Another convenient, but somewhat artificial response function is
given by

‘1 ‘1 -1
‘~ ‘“”-sin(~lj ‘Ry = sin(~l)[l + rc(Yint + Yext)l (113)

This last ‘response
sion for T(el) and

function uses only the first term in the expan-
is independent of 61.

and 11 we have RI Dlotted as a function of ka. In figures 10
for two values of ~. (.01 and .1) a~d”several values of rc. Note
that the factor T1/=in(61) peaks up the frequency response in the
vicinity of ka = 1, partially compensating for the rolloff with

J

an upper frequency response

frequency associated with R,,.

imum
Based on RI
value of ka

)Rll =>

we define
for which
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‘Thisvalue of ka is plotted as a function of rc in figure 12 for
two values of jbo. Frequency response is increased by increasing
+0 and by decreasing rc. It may not be desirable to decrease rc
too far because as Kc + O no power is delivered. to the output.

In figures 13 and 14 we have plotted R as a function of ka
with G = o for various values of 61 with $0 = .1 foP two specific
values of rc. ‘Thesetwo values a~e rc = .1327 and rc ‘ .2654
which correspond to Zc = 50 Q and Zc = 100 Q respectively if the
media inside and outside the sphere are assumed to have the same
constitutive parameters as free space so that the wave impedance
is

z SW = 37’6.7 Q
“o

(115)

Using RI as an average of R to remove the dependence on eI, the
frequency responses for these two cases as defined by equation 114
a~e giv~n by ka = .60 and ka ~ ●30 for Zc = -50Q and Zc = loo Q
respectively.

-J
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VII. Summary

In this ncte we have develcped frequency and angular respcnse
curves for the hollow spherical dipole with a uniformly resistively
loaded equatorial slot. For these calculations the media inside
and outside the sphere weue assumed to have the same permitt-ivity
and permeability and zero conductivity. For lGW frequencies the

response cf this kind Gf sensor is proportional to one ccmponent

cf the displacement current density (which is also called the time
rate of change of the displacement vector) .

As an extension of the present calculations cne might consider
the case that–the external medium was a linear conducting medium.
In this case if the resistance due tc the signal cable leading (Zc)
were small ccmpared tc the resistance loading due to the conduct-
ing medium? then for low frequencies this sensor would have a re-

sponse proportional to the total current density (conduction plus
displacement) in the external medium.

Perhaps the design considered in this note can be extended to
the case of several slots arcund the sphere at different values Gf–
0. This would be a multi-gap spherical dipc~e analogcus t-cthe
multi-gap cylindrical loop. Another extension of the present cal-
culations Wculd be to lGGpS with spherical geometries. Perhaps

some of these and related tcpics can be considered in future notes.

#---
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FIGURE 1. SINGLE-GAP HOLLOW SPHERICAL DIPOLE
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A. PLANE WAVE WITH FIXED POLARIZATION
..

,?---

~!72);A~~ IN
THE SAME PLANE,

4

ey

? // 4$. “-
%“ +“;

i r~

$, UNIT VECTORS FOR PLANE WAVES

FIGURE 2.VECTOR PLANE WAVES IN SPHERICALCOORDINATES
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FIGURE 3. PLANE WAVE INCIDENT’ON SPHERE:
Cf?oss-SECTION VIEW WITH +1=0
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Appendix A: Calculation of An

In equation 91 we have a function which expressed as an

(Al)

integral given by
.

/

1
1=—
?T

[1

-1

An
L

This function appears in the coefficients of the f-ieldexpansions
used to calculate the internal and external admittances of the .

sensor. The purpose of-this appendix is to calculate this integral.

% =

Rearrange 3.sthis

J.
o

[1
L

J
1

-i-

0

-1A-l J-

o

giving
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‘1
o

Now we have a
~~LA,2A

11
(

——

[1 - &2]2 2

special case of

.

hypergeometric function

L & .4 i

< 1.

gi.ving

0,=
v-

2 r

cJ- 6,

U+l

v=c)j- 6-;

and

.

1A. Ref. 6r eqn. 15.4.23.

2A. Ref. 9, p. 53.
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This then gives

.

pi-v l-m;
T’ 2

(A8)

(A9)

The hypergeometric function is given by

(A1O)

wheze the Pochhammer symbo13A is defined by

(U). = 1

(Cdq = cY,(Ct+l}(a+2) *“” (o<i-q-

and provided a is not

‘o’).=w
Then we have the

a negative integer

integral

1)

or zero

(A12)

I

./

3A. Ref. 6, eqn. 6.1.22.
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This leaves us with the integral (in which we let E = ~~) as

1

1
2- +-

1
2-)

where B is the well known beta function and we need Re[A] > 0.

Recombining these terms gives

(PJ4)

‘2

and then

(-Wq(’-rv)q
(’+ aq

(A15)

(A16)

This result for El is very similar to a formula in a standard
reference~4A However, in the course of our present investigations
we found this formula to be in error, most likely through a mis-
print. This led us to do the above derivation to find the correct
formula. We would like to thank Prof. Fritz Oberhettinger of--
Oregon State University for our discussions with him on this
problem.

4A. A. Erdelyi, cd., Tables of Integral Transforms? Vol. 2,
McGraw Hill, 1954, p. 318, eqn. 3~.

55



—-- ——-..— —..—.—-- ______ c..= — --—._.: L______ :
—

-.. s. . . . . . . . __. = .._——_ . . .._ —___

..

In equations A2 and.A16 let

Then we have

Since (n+l)\2 is a positive integer we have

-*)=(-W:”)““”(+=‘-in”
22

This gives

n-i-l

An = (-1) 2 ( l-l-i-lT%-!TF-T’O$: )
Using equation 71 this can be written

(A.18)

(A20)

(A21) ,

Writing out the series we have
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An = P:(o)

n-l-l

q=o

{A22)

Note that since (n+l)/2 is a positive integer the series in equa~
tion A22 has only a finite number of terms, making An a polynomial
in ~o.
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Appendix B: Properties of Admittance Series for Large n

The most difficult parts of the sensor response functions to
calculate aue the internal and external admittances because of the
slow convtwgence of the series. In this appendix we consider
behavior of these se~ies for large n.

From equation 105 the normalized internal admittance is

and fzom equation 110 the normalized external admittance is

where from equation 71 we have

n-l-l

P:(o) = (-l) 2
n~~

(n-1)!!
for n odd

the

(Bl)

(B’)

(B3)

Define the individual terms in the summation for yint as yintn
and in the summation for yext as yextn so that equations B1 and B2
can be rewritten as

and

(B4)

(B5)

Define

‘1 ‘n’ - 2 > 0
(B6)

where nl and n2 are odd integers. Then write the normalized ad-
mittances as
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r-1,,2

x ‘int
11==1 n

A
intY.jn.~

‘ext

+-

+-

(B7)

A
ext

Then Aint and Aext arc
series with last

the errors
ylven by n

introduced by truncating the
are

two
terms ( t-erm5

written as

A.
Lnt = ‘intn

(B8}

Aext = ‘extn
‘A

In this appendix
the error terms for large n.

we consider the Individual terms the stuns

Consider the parts of the admittanceindividual term~ in
sums . Define an

n-i-lN=y (B9)

func-where only odd of interest. For the

1;

n > are 1

1

Iypergeometric
tion we have

(F- (F -N, N -
n+lFn
2’
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4
*

()(-N) N - *
CI~

Now this particular hypergeornetric function can be written as a
Jacobi polynomial using~B

F(-N, a+l+@-N; a.+l;x) = N: (a/B)(~ - 2x)
(a -I-l)N ‘N

(Bll)

which gives

The Jacobi polyfiomials can be written as2B

where binomial coefficients are given by

()N-I-u r(ld+-ci+l)= (N+u-q+l)
=

ql
q!I’(N+-u- q + 1) q:

()N+6 r(N+j31-1)
(q + f3+ l)N_q

N.-q ‘(N- q):r(q+~+l)= (N - q): “

(B12)

(B13)

‘Thehypergeornetric function of interest can then also be written

~B . Ref. 6, eqn. 15.4.6.

2B. Ref . 9, p. 211.

60



,,-
{

Note that the Jacobi polynomial in equation 1313

.

{‘-

(315)

is a Dolvnomi.al
function of both a and ~-a.swell as its argument; the’sa;e is true
of the hypergeomelxic function in equation B1l. The range of a
and ~ are often restricted to IY,> -1 and ~ > -1 in order to make
the weight functions integrable.s~ However we are not concerned
here with
Since the
as is the
for all a
sented in

With
nomial we
n) of the

the outhogonali~y properties of the JaGObi polynomials.
Jacobi polynomials are polynomial functions of a and 8,
hypeugeometric function, then both series are identical
and ,8. Thus 6 = -(3/2) is allowed fo~ the series repre-
equation B15.

the hypergeometric function represented as a Jacobi poly-
look at the asymptotic form for large N (implying large
Jacobi polynomials. AsN+~forO<~<~ wehave4B

(U,(3)
‘N

Set

(cos(~)) =
Cos [( )N -I-;(a+~+l) < - }(l+2a)1

[ (2)]%0+)-P
(TN)l/2 sin ~

giving

()3-—2+CI? (B16)

(B18)

4B. Ref. 9, p. 216.

(B17)

()LCos —2 [ 2 1“2 = [’ - “:1’/2
1 + cos(~)

3B. A. Erdely~, ed. ~ Higher Transcendental Functions, Vol. 2?
McGraw Hill, 1953, p. 168.
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Applying this to equation B12 for O < +0 < 1 gives as n + ~

(B19)

,.

Thus as n + w the envelope of Fn falls off proportional to n-(1/2).
Also note as ~. + 0 we have

-cost-24=2“0+‘(”o ‘T

(B20)

As a check Fn was calculated from equation B1O and the asymptotic
form in equation B19 was-observed to approach the calculated val-
ues for large n and for values of $0 used for the graphs.

Now turn to the Legendre function. As v + ~ for fixed p and
O < z < n we have5B

‘inw1i2cos[o+$’-f+@ +0(:1)
Thus as n + ~ and remembering that n is odd we have

(B21)

The gamma functions have an asymptotic form known as the Stirling
apProximation6B which has as v + ~

523. Ref. 6, eqn. 8.10.7.

.. .

...

6B. Ref. 6, eqn: 6.1.37.
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‘-2-(2 Ti)1/2[1 + O(V-l)]r(v) = e-v v (B23)

gives as
r

Applying this to the gamma functions in equation 3322
n+cu

..

O(n-l)]+

e

()n+; ln(n+2)
e ()(n+l)ln n-$

e [1 + o(n-l)]e-+

()(n+l)ln ~ + ~ ln(n+2) -
n-!——2

.

O(n-l)]exp

[

(n-i-l)~

1
+ O(n-2) + ~

n+x
O(n-L)lexp ln(n+2) -

.“J

Iexp ln[(n+2) 1/2] + O(n-l) \ [1 + O(n-l)l

we have

O(n-l)l

1/2[1 + o(n-l)]= n

Thus foz the Legendre function as n-+co

n-i-l

‘()

1’2 //2[1(-1) 2 :P:(o) = -+ O(n-l)l

(3325)

[1

2
P:(o) o(n-l)l+

-,
f’

.— - - —.— . i-
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Next are the Bessel functions. AS n + co we have
....

..

.
(B26)

and

=- ~[1 -i-O(n-l)]

Now we can consider the terms in the sums for
admittances. AS n + @ we have.

.
r

Cos 1(N +)arcc0sk2”o

(B27)

the normalized

3

()

-—
-f-On 2

1
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(B28)

This last result is also the asymptotic form for yext for large
n. Thus the individual terms in the sums fall off li~e n-3/2 for
large n.

Equation B8 gives the truncation error in stopping the ad-
mittance sums at n = nl. Define an upper bound for these errors
by

Al ~max(lAint r lAextl) (B29)

Usinq the asymptotic form developed in equation B28 we can give an
approximate value for Al by setting the cosine to one and summing
the magnitude of the dominant term giving

‘1 ‘

Replacing

‘1 =

which

4ka[l - $~]’’2[&]1’2

the sum by an integral

n.n
2

we have

J
co -?

1
z v’ dv

‘2

=

for

[
4ka 1

sma11

r

(B30)

(B31)

$0 is

1/2

11
4ka 2 (B32)

@on.’

Actually this is a rather large overestimate of the truncation er-
ror since the cosine function alternates in sign and it was re-
placed by one.
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Appendix C: Numerical Techniques for Computer Calculations
Joe P. Martinezf Dikewood

The numerical resuits plotted in figures 4 and 6 through 14
were calculated using the Control Data Corporation 6600 Computer
in the Air Force”Weapons Laboratory at Kirtland AFB.

The calculations fo-r—theshozt-ci~cuit current transfer func-
tion and the admittances included the use of the spherical Bessel
functions. These functions were computed by using both forward
and backward recurrence techniques. During the initial attempts
at producing th-eBessel functions of the fixst kind, the jn(ka),
machine round-off error was encountered with the use of the f-or-
waud recurrence relationship as well as by series representation.
Backward recurrence was found to be cm.esolution in overcoming
this problem. In using this technique where N is the largest
order desired? the (N + 6)th funckion is set equal to zero, the
(FT+ 5)th function is set equal to 1(1-~~,and the recurrence rela-
tionship!

~-1+1

‘n-l (ka) = ~a jn(ka) - jn+l(ka)

is then used to det-e-rminethe functions to n = 1. A ratio of
exact value to the calculated value at n = 1 is taken and all
calculated values to n = N are multi~lied bv this ratio. The

(cl)

the
the

Bessel functions of the second kind~’-~n(ka); are calculated by
finding the first two orders and then applying the recurrence re-
lationship

yn+l(ka) = ~yn(ka) - yn_l(ka) (C2)

By comparing the values produced by these methods against
tables fcund in handbooks~ it was determined that accuracy to eight
significant figures was obtained over the range of n and ka used in
the computations for this note.

Legendre functions of order 1 are used in the calculations of
equation 72. These were calculated by computing the functions of
degzee 1 and 2 and then applying the recurrence f~mula

(C3)

where x = cOs(ej.). Results obtained by this method were compared
with handbook tables and with calculations done by series repre-
sentations and back-ward recurrence. These values were found to be
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accurate to eight significant figures for the range of n used in
the computations.

While performing the calculations for the short-circuit cur-
rent transfer function (equation 72) it was determined that the
series was a rapidly converging one and that it–met the ratio test
for convergence. This meant that an upper bound on.the absolute
error could be expressed as~c

l=jJ2
&<

lad - Jad
(C4)

where.a~ is the last term included in the s-ummation. As explained

J.

#---
\

in Section IV, only
tion. The relative

the odd-numbered n are included in Lhe &umma-
error will then be

(C5)

In the calculations, E was set at .001. The number of terms nec-
essary to satisfy this criterion varied with ka, the larger values
requiring more terms. Generally the error criterion was satisfied
in fewer than 100 orders (50 terms) .

The calculation of the yint and yext sums (equations 105 and
110) were handled in a different manneu than that of the T sum due
to their slow convergence. The behavior of the expressions involv-
ing the spherical Bessel functions and the hypergeometric function
were studied separately to determine how the numerical calculations
could be made.

It was shown in appendix B that, as n + ~

kajn(ka)
ka

~kajn(ka)] ‘ + n + 1

and

kah(2)(ka)

[
kah~2) (ka)]‘ + - %

(C6)

(C7)

lC ● W. Kaplan, Advanced Calculus, Addison-Wesley, 1952, pp. 328,
329.
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Numerical calculations were made in order to determine at what
point the asymptotic forms of these expressions could be used with
minimum 10ss of accuracy. It was desirable to switch to the as-
ymptotic form at some point to avoid round-off nurnexical errors
due to the extremely small magnitude of the jn(ka) at large n. It
was found that at n = 10/ka/ + 30 the asymptotic forms may be used,
with a relative error of .03% at ka = l-o introd~~ed in the terms.
Of course, as n gets larger this error will diminish with each
term.

In performing the numerical calculations for the hypergeo-
metric function of equations 105 and 110 it was found that numer-
ical round-off error was introduced after the sum of equation 103
was carried to a large number of terms, the number depending on
~c);situationGoing to double precision on the computer great=ly improved

~ as now the number of usable values was doubled.
Butr the round-off–errors” were still introduced before the yint
and yeyt sums-could be completed. AS was mentioned in appendix B,
th-easymptotic form (equation B19) approaches Fn for large n. So
it was decided to switch to this form just-before the numerical
errors start-e-dto be significant. Table Cl is a summary of the
pertinent values which occur immediately before the switch-over
points.

Relative
n+l

(
$0 ~ F -~,~;~;$~

)

Asymptotic Absolute Difference
Formula Difference (Percent)

. 001 24999 055569 .055816 .000246 .443453
01 3199 ;093564 093394 .000170 ,182042
:1 319 .095720 :096555 .000835 .872;26

Table Cl. Values of the hypergeornetric function
one term before the switch-ov-er point

??owthat methods have been established to calculate the terms
involving the Bessel functions and the hypergeometric function,
the calcu3.ation of the yint and yext sums may proceed. At some nl
a switch to the asymptotic forms of equations C6 and C7 takes
place, so that equation 105 becomes

(C8)

}
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(’- Similarly, equation 110 becomes

r

??,

+ ka

.

(C9)

Since the switch-over occurs when n > 10lkal +--30,and the largest
value of ka used in these calculatiofis was 10.0, all changeovers
to-the asymptotic forms will take place by n > 131. It was found
to be convenient to calculate the sums, with ~~ka factored out,
from n = 201 to OJ (n odd) first, and then include these values in
the calculations later. Since ka can be factored out from the
last part of the summation, these values may be used with any ka.
The next problem was that of determining how fav n should be car-
ried. This was done numerically by running the sums out progres-
sively further to larger n and noting the relative change. The
sums for all ~. were carried t-on = 100001 and it was noted that
they were still.changing about 1 part in 1000, or .1%. It was
further noted that there were peaks and minimums occurring as the
sum progressed, forming a diminishing envelope converging at some
number. The last few maxima and minima were then taken and the
value to which they were converging was extrapolated to 5 signifi-
cant digits. Table C2 gives these values. The relative error in
the sum is then in the order of .05%. This error is, of course,
multiplied by nka when the sums are used in the admittance
calculations.

. 001
01

:1

‘f 2
(i~ka)-~ x ‘int

n=201 n

‘r 2
(inks)-l E ‘ext

n=’201 n

1.0987 X 10o 1.1013 x 100
-8.6355 X 10-’ -8.6605 X 10-’
-2.0147 X 10-3 -2.0234 X 10-3

Table C2. Values to which admittance sums converge
from n = 201, with inks factored out

Most of the other numerical calculations performed f-orthe
graphs in this note are straight forward and no explanation is
required.
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