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Abstract

This note considers the characteristics required of a planar
admittance-sheet terminator with coplanar conducting flanges.
This admittance sheet terminates an infinitely wide parallel-plate
transmission line. The sheet (plus flanges) is sloped at some
arbitrary angle with respect to the transmission line. The re-
. quired surface current density on the admittance sheet is com-
pared to that on a distributed LR termination (using the incident
» electric field for the calculation); this is used for choosing a
good value for the surface inductance. Sloping the termination
makes the required current for an ideal termination more quickly
approach its late-~time (or low-frequency) value which should be a
@% useful feature in realizing good quality distributed terminations.
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I, Introduction

In an carlier notel we introduccd the concept of an admit-
tance sheet as a distributed termination for a TEM transmission
line. 1In appropriate geometries the required characteristics of
such an admittance sheet to provide a perfect termination can be
determined from the solution of an electromagnetic boundary value
prokblem. However, the reguired surface admittance on the sheet
may not be completely realizable as passive lumped elements. A
first order approximation to the surface admittance uses series
inductance and resistance to give what we might call a distrib-
uted LR termination. While a distributed LR termination is not
in general a perfect termination it can match the ideal admittance
in both high and low frequency limits. The surface resistance is
chosen to match the low frequency limit of the ideal surface im-
pedance. The surface inductance is chosen to minimize the re-
flections for frequencies with wavelengths of the orxrder of the
cross-section dimensions of the transmission line. A convenient
way to choose the inductance is to calculate the ideal surface
current density on the ideal termination and compare it to the
surface current density associated with a step function electric
field on the distributed LR termination.

Another noteé has given a detailed calculation of the char-
acteristics of an ideal admittance sheet which terminates two
parallel plates and is perpendicular to the direction of inci-
dence of the TEM wave between the plates. Values for the surface
inductance in an LR terminatinn to approximate the ideal termina-
tion are also given.

The purpose of this note is to calculate some of the charac-
teristics of another typc of admittance sheet terminating two
parallel plates and the inductance and resistance values of the
corresponding distributed LR termination. Specifically we con-
sider the case of a sloped planar admittance sheet connecting the
edges of semi~infinite perfectly conducting plates. As illus-
trated in figure 1A we also include perfectly conducting flanges
(semi-infinite) connected to the edges of the parallel plates and
coplanar with the admittance sheet. This allows us to calculate
the currents on the admittance shecet as a boundary value problem
with a plane boundary.

1. Capt Carl E. Baum, Sensor and Simulation Note 53, Admittance
Sheets for Terminating High-Frequency Transmission Lines, April
1968.

2. R. W. Latham and K. S. H. Lee, Sensor and Simulation Note 68,
Termination of Two Parallel Semi-Infinite Plates by a Matched Ad-
mittance Sheet, January 1869.
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From the calculations in this note we find some of the ef-
fects associated with sloping the termination. These include how
the parameters of the approximating LR termination sh:uld change
and how closely the ideal surface current is approximated by the
§urface current associated with the incident electric field driv-
1ng_the approximate LR termination. While some practical cases
of interest do not have the conducting flanges the calculations
of the present note should apply at least qualitatively to such
cases. Also the results of this note can be compared with the
results in reference 2.

One of the reasons for considering a sloped termination is
to make the incident wave arrive at the terminator at different
times over the surface of the terminator. The reflections are
then somewhat dispersed in time, or from another viewpoint the
incident wave is not reflected directly back from the termination
but is reflected at some other angle so that the reflected wava
can in turn be reincident on the termination after reflecting ofr
a conducting plane. The present boundary wvalue problem does not
calculate the reflections from an LR termination so this effecct
is not observed. Perhaps future notes can consider some idecalized
geometries in which such reflections can be calculated.

II. Boundary Value Proklem

Now consider the boundary valuc problem which we will use to
calculate the surface current density associated with the ideal
admittance sheet. As illustrated in figure 1B the coordinates
for the calculation are established with z = 0 as the plane of
the admittance sheet and perfectly conducting flanges. In this
problem we are concerned with the ficlds for z » 0 and the asso-

ciated surface currents on the z = 0 plane. Note that we have a
two=dimenrsianal problem since our geomehbry and the incident fields
are assumed independent of y. On the z =-0 planc the admittance
sheet occupies the region G0 - x - d where?3
h
= — 1
d sin(§ (1)

Note that & is the angle at which the admittance sheet and flanges
are sloped with respect to the parallel plates as shown 1a figure
1A where we restrict 0 <« 7 - =,

There are actually two scts of cocrdinates. TFirst there are
the coordinates of the obscrver where bthe fields and current den-
sities are to be calculated. These are the cartesian coordinates
(x, y, 2z) and cylindrical coordinates (¥, u, =-y) related by

3. All units are rationalizcd MESA.
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The second set of coordinates involves the position on the admit-
tance sheet and the position of the observer with respect to this
other position on the admittance sheet. This position on the ad-
mittance sheet is needed as an integration variable in calculating
the fields and surface current densities. We use x' for the co-

ordinate on the admittance sheet instead of x. With this we have
the cylindrical coordinates of the observer (with respect to (x,

z) = (x', 0)) as (¥', ¢', -y) given by
X =-x' =VY¥'" cos(¢")
(3)
z = Y¥' gin(¢')

See figure 1B for an illustration of these coordinate systems.

Another coordinate we use is ¢ shown in figure 1A. The two
parallel plates are at ¢ = 0 and ¢ = h. We use { to indicate po-
sitions on the admittance sheet in terms of the perpendicular
distance from one of the plates (extended). For z = 0 I is re-
lated to x as

X = sin(&)x (4)

Y
i
oy

For purposes of normalization we sometimes use, for positions on
the z = 0 plane,

a = = sin(§&) (5)

o
|
Qi %

3
h

In setting up the boundary value problem we need to specify
the tangential electric field on the admittance sheet as that
given by the incident electric field. The incident wave is spec-
ified in the time domain as a step-function plane wave of the

form
> >
—-> > r.e3
E, = E e,u -
inc o 1 c
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where

u
_ 1
O, c = ~ (7)

1
o /goeo

and where Ey is a convenient constant of dimepsions V/m. The
unit vectors for the coordinates are written ey, ey, etc. The
three unit vectors for the incident wave (as in equation 6) can
be written in terms of coordinate unit vectors as

e, = sin(§)e_ - (£)e

e; = sin(§ €, cos (& e,

- -

ey = & (8)
&y = cos(£)&, + sin(g)e

ey = cos(&:)ex sin(&le,

These unit vectors for the incident wave are related by

-)-x-)—_—)- +X+__+ T o (9)
€1%€y = &3 €785 = &1 €378 T &y

For use with the step function we have the relation

f-g3 = x cos{E) + z sin{g) (10)

On the admittance sheet the tangential electric field for
0 < x < d is given by

- >
E = (E.
S inc
z=

= Equ(t - 2 cos(£)) L -8 08, + (€-C )8 )
= Eou<t - g cos(g)) sin{;)éx (1L}
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Thus the tangential electric field on the source has only an x
component. Since we will be integrating over this field we use
x' for the coordinate and also write the x component of the elec-
tric field on the whole 2z = 0 plane as

B, = E, sin(f)u(t - x cos(£)) [u(x') - ulx' - d)] (12)

Having the tangential field on the z = 0 plane with only an
X component and only a function of x' and t we can write the ex-
pressions for the fields for z > 0 using the results of a pre-
vious note.4 From reference 4 equations 39 through 43 we have

E =—fm?§<_*e' §_i—n.._<£.)_.dx' (13)
X _, ot o¢ Y
© 3E!
= X v cos{d') '
EZ = '/:oo TE * eO(b _\F—r——— ax (14)
© SEQ dx'!
CBy = ZOHy = ./;ou —B—E—- * hO -\F-r— (15)
where
5 -1/2
_ 1l ctffct v
%oy T T F ?T[<WT> - lJ afe - =) (16)
2 -1/2
_1ljl/ct L
Bg = F[(WT) - l} afe - &) (17)

and where % indicates the convolution integral with respect to
time. While we are not going to explicitly calculate and graph
these field components we will use the expressions for the mag-
netic field to calculate the surface current density on the z = 0
plane associated with this magnetic field.

4. Capt Carl E. Baum, Sensor and Simulation Note 66, A Simplified
Two-Dimensional Model for the Fields Above the Distributed-Source
Surface Transmission Line, December 1968.



III. Currents Produced by Incident Electric Field in an
Inductive-Resistive Termination

For comparison with the surface current density associated
with an ideal admittance-sheet termination we first consider the
surface current density associated with a termination whose sur-
face impedance is given by the series combination of a resistance
Rg and an inductance Lg. The surface admittance of this LR sheet
is then

-1

Yé = [SLS + RS] (18)

where s is the Laplace transform variable (with respect to time).
Now for 0 < x < d the incident electric field on the termination
from equation 11 has only an x component given by

S
X

= i -2
E = E, SLn(E)u(t = cos(i)) (19)
Associated with this electric field and the surface admittance in
equation 18 there is a surface current density for 0 < x < d with
only an x component given by

(t-Foon 2] 2

g =2 |1 -e Su(t—’c—‘cos(a)) (20)

Note that we are not including any reflections, etc. in calculat-
ing Jgg:; this surface current density is used for compsarison with
the surface current density on an ideal admittance sheet to see
how close the two can be brought to having the same amplitude and
time history.

Now as t » © we want Jgy * Eg/%Zp to terminate the parallel
plate transmission line at late times (or low frequencies). Note
that for low frequencies the magnetic field for z > 0 will be
negligible compared to the magnetic field between the parallel
plates. Thus we constrain

Rs z ZO sin (&) {21)

For convenience define



=
=
bjl ON

- S _ 1 _s .
ts ~ R_ 7 sin Z_ ! Js
s o)

Hi

I (22)
O @] o}

so that the normalized surface current density associated with
the LR terminator and incident electric field is

R - - . S _ }i
3 ] = |1 - e u(t 3 cos(€)> (23)

For convenience we define two normalized retarded times for
use with surface current densities on the z = 0 plane as

TZ = ct - XCCOS(g) = %E - cot (&)
- s - o009 o
and
Tﬁ - ¢t - XhCOS(£> = %E ~ o cot (&) (25)

The first normalized retarded time (equation 24) will be used
when we are only considering the effects associated with the end
of the admittance sheet at x = 0. The second normalized retarded
time will be used when the effects associated with both ends of
the admittance sheet are included.

Corresponding to the two normalized retarded times we define
two characteristic times as

als

(26)

ot
1
Q [vy

thE

Also define two dimensionless parameters related to the surface
inductance as



B8 :-.t_s.=E.EE= 1 E_E_S_
z ot T R sin(&) T ZO
(27)
B '—'.t—s=_c.fli= 1 _C_L_S_
h ~ th h Rs sin(£) h Zo
Then jso (for 0 < x < d) can be written in the two forms as
*
-z
BC
jS =11 - e u(TE) (28)
o
and
*
_h
8h
Jg = |1 - e jultf) (29)
o)

These are the forms we will use for later comparison.

IV. Currents Asscociated with Ideal Termination

In equation 12 we have the tangential electric field on the
admittance sheet; note that it can be split into two terms as

Ej = Eg sin(i)u(t - EL cos(&))u(x‘)
(30)
By = -E, sin(§)u(t - X cos(®))ulx' - )
where
E! = EJ + E} (31)

Note that we will normally think of £ in the range 0 < £ < m/2.
For positions near x = 0 theleffect of Ei will be noticed first
in time with the effect of E, coming in later.
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A, Effect of the end of the admittance sheet at x = 0

Now ccnsider the effect of Ej. The results will apply for
times before any effects associated with the end of the admit-
tance sheet at x = d (or gz = h) can propagate to the position of
interest on the admittance sheet. We need the surface current
density on the z = 0 plane associated with Ei. We get this from
the magnetic field in equation 15. Defining normalized surface
current densities as

Z H
= . °2Y
js - B
1 o
o=0+
(32)
Z H
- _ o0V
jS2 ) Eo
o=T=
we have for x > 0
. _ _sin) [ _ox'
]Sl = —'ﬂ,——f (S(t S COS(&))
o]

jo = - ii%iél'/. a(t - gL cos (¢) ]
2 0
5 ~1/2
£ _ ' dx!'
* {(X—f v -l} fe + B ESE (34)

Performing the convolution integrals gives

11



* 5 -1/2
. _ _ sin(%) (ct - x' cos(i)) -1
jsl m [x = x"|
o

u(ct - x' cos(g) - |x - x']) TEQ%LETT (35)
and
oo -1/2
sin (%) ct - x' cos(§)
352 - m }r [( -x + x' ) - l]
o
ulct - x' cos(gE) + x - x'") Eiﬁé—g (36)

With the chosen sign convention Jjgj and jg, are taken positive in
the +x direction.

For convenience define

- Cct

TR e

Consider first jgp which we can write as

ct+x
. T+cos (%) -1/2
Jg. = 7 'S—l‘%ﬁ‘)‘ u (ct+x) / [(ct—X'cos(r;))2 - (X‘-X)21 dx'
2 Q
-x -1
l+cos (&)
= - E%%ii)_ u(t-1) / [—sinz(c’,)X'2
C
5 -1/2
+ 2% (l+Tcos (§))x' + x°(1°-1)] ax’ (38)

12




From a standard referenced we have

T-1
, “XI¥cos (6)
sinz(i)i--l-Tcos(E)
: - _ Sin(&)u(r-1) “l__ .rcsin X
352 T sin (&) T+cos (&)
o

_ _u(rt=1)qm _ . [L+tcos (&)

=T Tz arcsm[mﬂ

- _u(rt-1) l+Ttcos (&)

= — arccos[?;angET—J (39)

Thus we have the surface current density on the z = 0 plane for
x < 0 and for a semi-infinite admittance sheet, i.e. including
only Ej. We will later use this result to find the surface cur-
rent density on the admittance sheet associated with Ej.

Now consider jgj3 which we can write as

X

sin(f) ' 2 2. TL/2
3 = - 2 u(ct-xcos(&)) [{(ct-x'cos(§))° - (x'-x)°] dx'
Sy .
o
X1
= - Ei%ié)u(T*COS(S)) jﬂ [—sinz(E)X'2
Xq '
i 2 2 -1/2
+ 2x(l-Tcos(§)) + x"(1°-1)] dx' (40)

where the limits on the integral are

5. H. B. Dwight, Tables of Integrals and Other Mathematical
Data, 4th ed., Macmillan, 1965, egn. 380.00L.
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X, = ct + X = x Tl
1 1 + cosl(g) 1 + cos(s)
(41)
3 X - ct = : 1 -1
X, = max[O, T cos(E)} = max[O, 1= cos(E)]

Thus we have two cases to consider. Note we restrict 0 < ¢ < n/2.

First let cos(f) < T < 1 so that using reference 5 jsl can
be written as

- _ Sin(f)u(t-cos(§)) -1
s, ﬂ sin(g)

3

T+

Xl+cosi§i

—sinz(g);i'- + l-tcos (£)
* arcsin T=Gos ()

1-1
Xl-cosigi

= -u(t-cos(f)) (42)

This result applies for all 1 < 1. Second let 7 > 1 giving

% T+1
2 %! l+cos(s)
: sin(g)ulr-1) -1 _ [—sin (£)§—+l-rcos(€)]
Jsl = - = STR(E) arcsin TR D)
o
= -l z arcsin[l-rcosm]‘
T 2 T-cos (&)
= 1 ‘1-tcos (&)
= -U(T-l)ll - = arccosL_COS }l (43)

We can write one equation, combining the results of eguations 42
and 43, to give a result valid for all 1 as

14



u(t - 1)
m

1 - cos(i)} (44)

arccos[ T = COS(E)

j = -u(T - cos(&)) +
S1

Now the surface current density (in the +x direction) re-
quired on an ideal admittance sheet is given by

- H (45)
z=0~ Y|z=0+

S Y

Thus for times beiore the effect of the end of tne admittance
sheet at x = 4 is seen we have a surface current density of the
form

=

— o -— 2
Js —-E—{u(r cos(&)) + jsl} (46)

o

From this we define a normalized surface current density for
X > 0 as

= u(t - cos(&)) + jS
3 1

.
1

u(t - 1) 1 - 1t cos(§)
—— arccos[ T oo5 (T J (47)

In terms of the normalized retarded time TZ appropriate to this
case we have

T = %E = sin(g)rz + cos (&) (48)
giving
. B
j53 = % u(TZ -1 ;igizfi))arccos{Sln(g) Tgc cos(g)} (49)
Note the interesting limiting case for small & as
lim jJ = u(T¥*) (50)

£50 S4 z

15



where ¢ is kept a constant in taking the limit. Note in this
limit that x - «. Another interesting limit is the case for
large TZ which is given by

lim 3 =1—% (51)
T+ 3

Note that this limit is not 1; an additional term associated with
the end of the admittance sheet at x = d is needed to make the
limit 1.

In figure 2 we have Jg3 plotted as a function of % for var-
ious values of & in the range 0 < 2g/m < 1. Note that as £ -+ 0
the jg3 waveforms shift toward the left and top of the graphs.
Basically this means that for small & the undesirable features of
js3 shift to earlier times or higher frequencies. Also for small
£ the late time asymptote shifts up toward 1. Now one could de-
fine an ideal jg3 as a unit step function; then one would only
need Rg to make Jg, the same as js3. Since jg3 is not a step
function we can choocse By (and thus Lg) in equatlons 27 and 28 1in
a manner which makes jso best approx1mate js3 in some sense. In
flgure 2 we have included jsgo for various values of B; for com-
parison with js3. Then for a given value of £ one can choose a
value of By which makes the LR termination "best" approximate the
regquired termination as given by Js3. Note that these results
only include the effects associated with one end of the admittance
sheet. We now go on to consider the case with both ends included.

B. Effects of both ends of the admittance sheet

The effect of including Ez in calculating the surface cur-
rent den51t1es can be easily obtained from the results for Ej by
noting that E) can be obtained from El by a change in sign, a
shift in x by an amount &, and a time delay d cos({)/c. The re-
sults for jsj and 352 can then be used by replacing ct by ct =~
d cos(£) and replacing |x| by |[x - d|. Then on the ideal admit-
tance sheet we have a surface current density from equation 45
for 0 < x < d given by

E

o . .
J. = =—=lu{t - cos(&)) + j + 3! } (52)
s ZO[ Sy 9

where jg, is obtained from jg, with the substitution mentioned
above as

., _u(t' - 1) [
J = ————————— 3rccos
S Tr

1+ 1" cos(L)
' + cos(g) ] (53)

16
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where

, - ct = d co: '
oo SRR -y (54)

In normalized form we define

jS ul(rt - cos(I})) + jS + 3!

4 1 S2

j . (55)

i
o
+
(]

In terms of the normalized retarded time Tﬁ and o« (from equation
5) we have (for 0 < x < d)

v = S8 e Blox s Xcos(o)] = HRLL x4 cos (o) (56)
v _Ct -dcos(§) _ _h [ X _d 1
' = T = T == TR + h cos (&) o cos (&)
- Sin(8) . _ cos (£)
=1r—= Th 5 (57)
In terms of Tg we can write
_ asin(&)-1*cos (&)
3 =1 u{tr -~ « L cosfi)) arccos h
Sy T h sin (<) TF
h
(l-u)sin(i)+T*cos(§)'
1 49y i¥cos (&) h
+ -ﬁ_- u(Tffl (l a) W ) arCCOS{ T ]
h
(58)
Note that for small { we have
lim 3 = u(t1X) (59)
£+0 Sy h

18



where o is kept a constant in taking the limit. Note that in
this limit we also have d - ®» and ¥ - «, Also we have the limit-
ing case Zor large tf as

lim j =1 (60)
T£+w 4

Comparing this result to that in equation 51, note that including
both ends of the admittance sheet makes the late time limit 1, a
contribution of &/m coming from the end at x = d. - -

In figures 3 through 9 jgg4 is plotted as a function of H
for various values of § ranging from 7/2 down to .0l 7w/2, and for
various values of o (= z/h) with 0 < o < 1. Note that as & -~ 0
all the jg4 waveforms tend toward unit step functions, i.e. they
rise close to unity sooner. However also note that as £ + 0 the
influence of the end of the admittance sheet at x = d appears
later and later in time after the initial rise. As & =+ 0 a pla-
teau of 1 - §/7m is rapidly approached by js4 (like js3 in equa-
tion 51). The rest of the rise of jgg4 to 1 occurs after the ar-
rival of the signal from x = d; on the last several of the fig-
ures this remaining portion of Lhe rise of Jg4 has not begun
(except at o = 1) in the time scale of the graphs.

Also included in figures 3 through 9 are curves of jso (from

equation 29) as a function of tf, for various values of Bp.

These are for comparison with jsy4. The value of Bp needed to
make jso best approximate js4 (in some sense) decreases as £ - 0.
For any given value of £ one can try to pick some value of B8h
which makes jso best approximate jsg over the entire admittance
sheet (0 < a < 1), or one might even make Bp take on different

values at different positions on the admittance sheet.

V. Summary

In this note we have considered the effect of sloping a dis-
tributed termination plus conducting flanges at the end of an in-
finitely wide parallel-plate transmission line. While we are
mainly interested in a case without flanges, the present results
should apply in a qualitative manner. Note that as £ + 0 the
present case with flanges tends to a case in which there are no
flanges (in the limit), i.e. one flange merges with one of the
transmission-line boundaries and the other tends toward an exten-
sion of the other transmission-line boundary, thereby tending
toward a continuous ground plans.

One of the advantages to be gained in sloping the termina-
tion is that the reguired current in the termination more guickly

19



approaches (for a step-function incident wave) the late-time lim-
iting current. Roughly speaking this occurs because the disturb-
ance from the end. of one of the parallel plates can reach a typ-
ical position on the termination more quickly after the arrival
of the incident wave at that position. There is some contribu-
tion from the end of the termination reached last by the incident
wave but as & - 0 this contribution is small. As § -~ 0 the re-
quired value of By - 0 also. Since Lg is proportional to Bnsin(g)
for a given h, then as £ -+ 0 we also have Lg -+ 0, reducing the
required surface inductance in the termination.

We would like to thank Sgt. Richard T. Clark and A2C Robert
N. Marks of AFWL and Mr. Joce P. Martinez of Dikewcod fcr the nu-

merical calculations and graphs.
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B. SCALES OF A CHANGED TO SHOW LATE - TIME BEHAVIOR

FIGURE 6. SURFACE CURRENT DENSITY INCLUDING BOTH ENDS OF THE

ADMITTANCE SHEET: 2§/ 7 =i
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. B. SCALES OF A CHANGED TO SHOW LATE-TIME BEHAVIOR
FIGURE 7. SURFACE CURRENT DENSITY INCLUDING BOTH ENDS OF THE

ADMITTANCE SHEET: 2§/7=.05
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B. SCALES OF A CHANGED TO SHOW LATE-TIME BEHAVIOR

FIGURE 8. SURFACE CURRENT DENSITY INCLUDING BOTH ENDS OF THE
ADMITTANCE SHEET: 2§/ 7 =02
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. ) 3. SCALES OF A CHANGED TO SHOW LATE-TIME BEHAVIOR
FIGURE 9. SURFACE CURRENT DENSITY INCLUDING BOTH ENDS OF THE
ADMITTANCE SHEET: 2§/ =0
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