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Abstract

This note considers some of the
of a simulator in which a capacitive

performance characteristics
pulse generator symmetrically.

drives a long circular cylinder above and parallel to a ground
or water surface. This simulator is considered according to its
capability for simulating an incident pulse plane wave which has
basically one polarity including a non-zero complete time inte-
gral. Special cases of series resistive loading and termination
to the ground or water surface are considered using a transmis-
sion-line model of the structure which applies for sufficiently
low frequencies; the pulse waveforms resulting from this model
are compared for the early-time results with the more accurate

* early-time results obtained by considering the pulse generator
and the nearby portions of the simulator as a radiating antenna.

..- .—— — — ..- .--,. --------



. .
‘i

I. Introduction

In simulating the nuclear electromagnetic
is a case of interest in which the EMP is very
space plane wave incident on a qround or water

pulse (EMP) there
nearly a free
surface where some

s~stem-of interest is located. ‘The EMP simulator for such a case
might take various approaches to simulating such an incident
plane wave. One possible approach consists of a radiating elec-
tric dipole antenna in which a capacitive pulse generator is
switched into what is basically a long cylindrical antenna. If
one is sufficiently far away from such a pulsed antenna then the
incident fields can locally approximate an incident plane wave
as long as one is considering frequencies high enough that the
corresponding wavelengths are short compared to the radius of
curvature of the incident spherical wave, which is also the dis-
tance from the radiating antenna. One can also use asymptotic
far field expressions to calculate the fields provided the ob-
server is sufficiently far from the antenna compared to the an-
tenna dimensions. However, in the far field limit such a pulse-
radiating dipole in which the voltage is switched onto the an-
tenna and held there for very late times has a significant lim-
itation in that the radiated pulse has no frequency content at
zero frequency; equivalently, such a pulse-radiating antenna has
a zero complete time integral which also means that the radiated
pulse is not unipolar. 1,2 If one wishes to simulate an incident
plane wave with a frequency content which does not significantly ●
roll off down to rather low frequencies then the pulse-radiating
electric dipole has a significant low-frequency limitation.

This low-frequency problem can be overcome by supplementing
the high-frequency characteristics of a radiating electric di-
pole with the low-frequency characteristics of some more appro-
priate simulator structure which is large enough to place low-
frequency fields all over the site of interest on a quasi static
basis. This structure should be large enough to avoid signifi-
cant coupling between the system and simulator structure beyond
the coupling of a free field to the system. These types of sim-
ulators, combining radiating antenna concepts for high frequen-
cies with static concepts for low frequencies (all in one simu-
lator) might be termed hybrid simulators. One such simulator

1. Capt Carl E. 13aum, Sensor and Simulation Note 65, Some Limit-
ing Low-Frequency Characteristics of a Pulse-Radiating Antennal
October 1968.

2. Capt Carl E. Baum, Sensor and Simulation Note 69, Design of
a Pulse-Radiating Dipole Antenna as Related to High-Frequency
and Low-Frequency Limits, January 1969.
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has been considered in a previous note3 in which the large struc-
ture over the site is made a half toroid which is connected to
the ground surface and is a direct continuation of the pulser
region from which high frequencies are radiated. For these hy-
brid types of simulators the pulser region might be various
things such as a bicone structure, a distributed source with a
bicone electric field distribution, or perhaps an even larger
distributed source launching a more planar wave, somewhat di-
rected at the site being tested. One of the general requirements
on these hybrid simulators is that the large simulator structure
for the distribution of the low-frequency fields does not inter-
fere with the high-frequency performance by introducing unwanted
reflections of the high frequencies; this might be achieved by
the shape and sparseness of the structure and by the distribution
of appropriate impedances around the structure. The toroidal
structure (or TORUS) mentioned above is a possible approach to
this hybrid simulator design and it has many desirable features.
In this note we consider a different hybrid design which has some
(but not all) of the desirable features of the toroidal design.
It may also have some advantages of operational convenience in
certain conditions of difficult simulator deployment.

The type of simulator considered in this note uses a capac-
itive pulse generator switched into a long cylindrical structure.
While it can be considered a radiating electric dipole at early
times or high frequencies, itiis not considered as a radiating
antenna but as a quasi static field generator at low frequencies.
Basically at low frequencies we have a near field situation; here
we are concerned about positions which are close to the simulator
compared to the overall simulator dimensions. A further feature
of this kind of simulator is that the long cylindrical structure
is placed parallel to and near the ground or water surface. Thu S
the interaction of the simulator structure with the ground or
water is part of the simulator performance characteristics.

This topic is of particular interest because some simulators
of this general geometry already exist; such as the ones sup-
ported by telephone poles and sometimes called “longwires.”
Furtherm~re it-may be desirable to construct
this general class of simulators which might
of support and deployment.

larger-versions of
rely on other means

II. Geometry of Simulator

The simulator of interest is sketched in figure 1. It con-
sists of a capacitive pulse generator connected to two cylinders

3. Ca~t Carl E. Baum, Sensor and Simulation Note 94, Some Con-
4.

siderations Concerning a Simulator
Toroid Joined to a Ground or Water

with the Geometry of a Half
Surface, November 1969.
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of length h and radius b and aligned as one cylinder on a common
axis . These cylinders are aligned parallel to the ground or
water surface (assumed flat for the present discussion) and the
cylinder axis is at a perpendicular distance a from this surface.

The cylinders are assumed to be loaded with some impedance
per unit length A(z), as yet unspecified, and may (or may not)
have a termination impedance 21 at each far end of the simulator
structure (z = ~h) connecting the simulator structure to the
lower medium. The generator is assumed to have a capacitance Cg
and charged to an initial voltage Vo, producing an initial elec-
tric field near the generator with polarity as indicated in fig-
ure 1. Of course, another alternative is to charge the two ends
of the simulator structure ,toopposite potentials and then dis-
charge them through a switch in place of the full generator.
However, the charging time should then be long compared to the
longest times of interest to get the desired transient signal.
Of course the low-frequency electric fields will be greatly in-
creased and one may be concerned in some cases with nonlinear
effects. One might modify A(z) and/or Z1 to better accommodate
the charging networks involved. If there is only a switch in
place of the generator then one can consider the transient prob-
lem (changes after the switch closes) by making the generator
source impedance zero which corresponds to making Cg infinite.

For coordinates we choose a cartesian (x, y, z) system cen-
tered on the ground or water surface with the z axis parallel to
the cylinder axis. The x axis is also parallel to this surface
and the y axis points up into the air. The cylinder axis is
then just (x, y) = (O, a) and the generator is located at (x, y,
z) = (O, a, O). In the next section we also use some coordinates
based on the pulser before converting over to the coordinates as
above.

As mentioned before we are only considering positions close
to the simulator structure compared to h and this will be impor-
tant for the low-frequency performance of the simulator. Also
emphasis is given to positions on the ground or water surface,
or better to positions with Iy/ << a. The simulator is then
considered in its ability to simulate a plane wave incid,ent on
the ground or water surface with a particular direction of inci-
dence and polarization by looking at the “fields at various posi-
tions on the ground or water surface. The lower medium is also
assumed to have uniform electrical parameters.

III. Early -Time or High-Frequency Performance

The initial wave radiated from
of the simulator structure near the
by the presence of the lower medium

5
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lower medium. For early times we can consider the pulser and
nearby portions of the simulator as a radiating antenna in order
to calculate the fields incident on the ground or water surface.
In figure 2 we show a spherical coordinate system which we use
for this calculation. This spherical coordinate system is cen-
tered on the pulser and uses the axis of the simulator structure
“(x,y) = (0, a) as its axis of symmetry. The spherical coordi-
nates (r, 6, $) are related to the cartesian coordinates (x, y,
z) as4

x = r sin(e) sin(+)

Y -a= -r sin(e) cos($)

z = r COS(8)

or

r2 2+(y-a)2+z2=x

1/2
tan(e) = *[x* + (y - a)21

(1)

(2)

tan($) = - *

We also have unit vectors for the spherical and cartesian coor-
dinates related as

+
er = sin(6) sin~$) :X - sin(6) Cos($) ~y + Cos(e) ‘z

..’

+
= COS(e) sin($) =x - COs(6) cos($) ~y - sin(e) :2 (3)

‘6

+

‘o= COS(+) :x + sin($) :Y

or

4. All units are rationalized MKSA.
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+
ex

= sin(0) sin($) ~r + cOs (e) sin($) ~~ + COS ($) z
4

+

‘Y
=-sin(0) COS ($) ~r - cos (0) cos ($) :6 + sin($) :$ (4)

+
ez = cos (f))lr - sin($) Z6

Now for the early-time portion of the waveform we assume
that the pulse generator is driving a symmetrical bicone (ref. 2)
or a distributed source arranged to give a bicone like wave. 5
Provided the rise time of the wave (zero to peak) is less than
the clear time from the ends of the bicone or equivalent distrib-
uted source we can simply calculate the pea$ radia$ed fields.
Let these peak fields at each (r, 0, +) be El and HL and define .

Since we are concerned here with a bicone wave we can let

(5)

(6)

where we have chosen the polarity such that 31 is in the posi-
tive 0 direction. The generator charge voltage is V. and its
capacitance is Cg which is assumed large enough that there is
negligible voltage decay during the rise time. The peak field
magnitudes are related as

‘1 1 ‘1
‘1 = r sin(6) ‘ ‘1 = ~r sin(0)

where VI is given (from ref. 2) as

2 +4>)][1
and where the impedance of free space is

(7)

.-’

(8)

5* Capt Carl E. Baurn,Sensor and Simulation Note S4, The Dis-
tributed Source for Launching Spherical Waves, May 1969.
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The angle 90 is a parameter of the bicone or equivalent distrib-
uted source and we restrict e. < 9 < m - 90 for the above con-
siderations. Note that the bicone clear time is also a function
of 0 (and also r if one is close to the generator) . Typically
VI might be half of V. corresponding to a bicone impedance of
roughly 120 Q and a 60 of about .7 radians. This parameter (O.)
can be varied to optimize simulator design. As e. is decreased
then the range of 0 for which equations 7 apply is increased,
but at the same time VI is decreased if V. is held constant.
Since we will get different angles of incidence and polarization
by varying 0 and @ for a given observer (as well as rotating ez
with respect to a fixed observer position) then some flexibility
in e is needed in the design of the high-frequency wave launcher.
This problem is avoided in the design of the simulator with tor-
oidal geometry because the observer is approximately on the
equator of the high-frequency wave launcher.

In reference 3 we discussed the high-frequency and low-
frequency characteristics of a plane wave of fixed polarization
incident on a uniform semi-infinite conducting dielectric. At
low frequencies the only remaining fields are an electric field
normal to the surface and a magnetic field parallel to the sur-
face; the electric field is just twice the normal component of
the incident electric field and the magnetic field is just twice
the horizontal portion of the incident magnetic field, both in
magnitude and direction. We wish to see how closely this char-
acteristic is approximated by this simulator.

For this simulator we consider various positions on the
ground to get various polarizations and directions of incidenc:.
From a high-frequency viewpoint the direction of incidence is er
~nd by considering various positions on the xl z plane we find
er can vary }n direction to cover 2Trsteradians except that we
do not want er to be too nearly parallel to the ground or water
surface because 8 approaches too close to O or n and/or the po-
sition of observation is too far from th$ simulator for the
present analysis to be valid. Likewise ee has a similar wide
variation over the ground or water surface under the simulator
structure. Note that by choosing some x, z combination for the
observation position and by appropriately orienting the+simulator
axis above the surface (i.e. choosing the direction of ez) any
direction of incidence and polarization can be chosen subject to
the limitation of getting too far from the center of-the simu-
lator. In order to orient the simulator with respect to the ob-

9

servation position first choose the direction of incidence; for
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a given a
generator
such that

this fixes 4x2 + z~ and the direction of the pulse
from the observation position. Next orient the z axis
the polarization is fixed as desired.

AnotQer sim~le way to look at+this+ques$ion is to fix a and
then fix er and eg (and thus also e$ = er x ee) in space at the
observation position to fix >he direction of incidence and
izati~n respectively. +olar-With er and a we have r and /x
Take e~ and project it on the ground or water surface; this pro-
jection is normal to the z axis, thus fixing the d>rection of
the z axis if the polarity is included along with ee.

For later use in comparing the early-time to the low-fre-
quency performance we have the vertical component of the peak
incident electric field (in the y direction) as

q = (iil ● ~y)ey = -cos(8) COS(+) E :ly
n

(10)

The horizontal component of the peak incident magnetic field has
only an x component given by

Including the peak field magnitudes from equations

(11)

7 gives

$1=- Cot(e) Cos($) +
r ‘ley

n

(12)

iil = Csc(e) Cos(+) q +
r ~ ‘x

P

where r is found from equations 2. This
a simple dependence as was found for the
oidal ~eometrv discussed in reference 3.

in general is not such
simulator with a tor-
However, for the spe-

cial c~se tha~ on the y = 0 plane if also x = O (making @ = 0)
we have

fil Cos(a) ~ -g=-
a ly

n X=o
y=o
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i-j

P

and the

‘1

=lV1;.—
a.zx0

X=o
y=o

(13)

magnitudes of the incident fields from equations 7 become

‘1 1
~7~

=— ,
a ‘1

.—
‘Zoa (14)

X.o X=o

giving a somewhat simpler dependence. Note that along (x, y) =
(0, 0) the incident field magnitudes are constant as long as 6
is restricted such that the bicone field distribution in equa-
tions 7 applies to the peak incident fields.

Another convenient form for equations 7 is found by using
cartesian coordinates as

-1/2

‘1
= V1[X2 + (Y- a)21

(15)

‘1 2 2
-1/2

Hl=~[x+Q’-a)l

which can be readily applied to the y = O plane where th$se peak
magnitudes only depend o~ x. The vertical component of El and
horizontal component of HI as in equations 12 are likewise

-1/2
~1 =~(y-a)[x2 + (Y- a)21 %gyn

.

2
-1/2 -1

=Z(y - a) [x + (Y - a)2 + 22] [X2 + (y - a)2] Vl~y

-1/2 ~
fil = -(y - a)[x2 + (y-a)21

P
‘lex

(16)

=-(y - a) [X2 + (y
-1 VI +

-a)2] ~ex
o

11



For the special case of y = O (the ground or water su~face) these
all become

‘1

‘1

-1/2 ‘
= [X2 + a2] vl

y=o

-1/2 vl
= [X2 + a2]

y=o ~

(17)

2 -1/2 2 -1
= -za[x + a2 + 22] [x + a2] Vl=y

y=o

-1 V1 +
= a[x2 + a2] ~ ex

o
y=o

Besides the initial peaks of the fields the rise time char-
acteristics of the pulse are another early-time consideration.
These are affected by the design of the pulse generator combined
with the bicone or distributed source (or other high-frequency
wave-launcher characteristics) . The rise-time characteristics
are not considered in this note.

Iv. Low-Frequency Performance

Now consider the performance of this cylindrical simulator
in the low-frequency limit. Suppose we want to simulate an
electromagnetic plane wave incident on the ground or water sur-
face and of the form

● a
‘nc= ‘+ -% f ‘inc=t“+ -=% ’18)

where we assume that E2(t) = O for t < 0 and that E2(t) has a
positive peak given by

‘1 = max E2(t) (19)
o<t<m-.

12
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thereby relating the peak of the waveform to th-eearly-time peak
discussed in the previous section. Assume that E2(t) is basically
a one-sided pulse with a finite non-zero time integral out to
times large compared to times of interest; let this integral be
defined as

J
03

o= ‘1E2(t)dt : Elteff = ~ teff + O
0 0

(20)

where teff is a characteristic time for the incident plane wave.-——
The speed of light is

1c= (21)
/lJozo

The un$t vectors in equationsl$ give the Qirection of
tion (cl), the el$ctric field direction (ee), and the
field direction (eh); these are related by

A -b A A A -b -b +

propaga-
magnetic

‘lxee=eh ’
exe=e

e h 1’ ‘hxel=ee (22)

Note that the polarization (~e) and direction of incidence (:1)
are assumed time independent.

3’or the simulator under consideration we take some refe~-
ence point for an observer on the ground or water surface (the
Y = O plane) , chosen to give the desired direction of incidence
and polarization for the early-time fields as discussed in the
previous section. Considering just this reference point we set

+_ + _i- +_
‘1 =s e =e ❑ ;‘h @

(23)
r’ e e’

Of c~urse as one moves away from this reference point ~r,
+
ee ,

and e$ change in general, changing the early-time direction of
incidence and polarization. However, if one only considers small
position variations near the reference point the variation of di-
rection of incidence and polarization will also be small.

In simulating the incident plane wave as in equations 18 at
the position of the observer on the y = O plane we now try to
make the low-frequency content of the simulator waveform at the
observer match what would be produced by an incident plane wave
with a direction of incidence and polarization already fixed to
match the early-time simulator performance. At low frequencies
the resultant field from an incident plane wave at the surface

13
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1/2
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o [

2ZX Zx FI
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ez J
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ii
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o -J2;23
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+. .

2 2COS($)
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-1/2
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water medium. Consider frequencies with corresponding wave-
lengths much larger than a so that one can use transmission-line
approximations to describe the fields in the simulator for dis-
tances much closer to the structure than h and not too near the
ends (z = +h) or middle (z = O) of the simulator. Note that the
magnetic f~eld near z = O can still be estimated this way be-
cause the current on the structure at these low frequencies will
be continuous through z = O. For a given frequency the fields
and currents in the ground are affected by o in the sense of a
skin depth in the lower medium and by the geometry of–the simu-
lator, i.e. a cylinder above and parallel to a semi-infinitely
conducting half space.

In this note we consider two special limiting cases to shed
some light on the low-frequency performance of the simulator.
First we consider the case of o = @ so that y = O is a perfectly
conducting plane. Second we consider o finite (but non-zero)
and let the frequency go to zero. Strictly speaking the second
case represents the low-frequency limit since o is in general
finite. However for a lower medium with sufficiently high o
then at frequencies low enough for the current and charge on the
structure to have nearly reached their low-frequency asymptotic
values the skin depth in the lower medium may still be less than
a. For such high o cases the limit of o + ~ is still meaningful,
although as u + O the finite o case eventually applies.

Case 1: Large Conductivity for Lower Medium

If we set a = coand consider the low-frequency performance
of the simulator we can use an image calculation whereby the
Y = O plane is a symmetry plane in a-transmission line consist-
~na of-two cylinders. In another note we have considered
imfiedance an~ field distribution for
acteristic impedance of the two

Zw=zf
09

where

f =
9

For large

arccosh
1
n

L

a/b we have, as a/b +

wire

+ (
co

I

this geometry.6 The
system is

2
1/’2

);-l )]

the
char-

(25)

(26)

6. Lt Carl E. Baum, Sensor and Simulation Note 27, Impedances
and Field Distributions for Symmetrical Two Wire and Four Wire
Transmission Line Simulators, October 1966.
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(27)

The characteristic impedance of a single cylinder over the y = O
plane is just Zm/2. However for two such transmission lines
dr’iven in series by the pulse generator the factor of two re-
enters making Z~ the appropriate characteristic impedance for
the simulator geometry. Note that Z~ does not include any series
impedance A(z) in the cylindrical conductors; this will be added
later. A(z) is assumed even in z so that the simulator is sym-
metric about z = O and the two transmission lines {z > 0 and
z < O) are identical and the series combination can be considered
as a single transmission line for calculational purposes.

Here we are concerned with relating the electric and mag-
enetic fields to the voltage and current on the simulator struc-

ture. Again from reference 6 we have the electric field on the
z axis with only a y component as

E v=-
Y X’o 2(a -b) ‘e

y=o

where

f =
,e [1

1/2

2 ;-~=

ii
3+1

arccosh ~ b [12:-1
w—g;+l

(28)

1/2

(29)

and where V is a function of z and is the potential on the struc-
ture at z minus the potential at -z. V/2 is defined as the po-
tential difference between the simulator structure and the y = O
plane (perfectly conducting) at fixed z. Thus taking the two
halves of the simulator in series to give an effective transmis-
sion line driven by the ‘pulser makes V(z) the voltage along the
transmission line where we consider z positive for later trans-
mission-line calculations of voltages and currents.

16



another form we haveIn

E
Y

of constant

-1/2
=.

+[a2 - b21X=o 9

For other positions on a plane
erence 6)

-1/2
E = - --#[a2 - b2]
Y :

9

a+-y
+

x2+(a+y)2

(30)

z we have (from ref-

IJ+;;:y)21
(31)

. ,-

Ex=- *[a2-b21-’’’ 4x2+( :+y)2- x 2
9 X2+ (a-y)

On the y = O plane these become

-1/2
E

a2
~[a2 - b2] —

Y=-~fg x2+a 2

E = ox

Compare this distribution of Ev on the y =

(32)

O plane with that de-
sired from an incident plane wave in equations 24 (chosen to
match the initial fields to reach the observer) . NJote that
these distributions are not the same on the y = O plane. As a
special cdse one might look at z = O so that Ey for an incident
plane wave is zero. Atz= O the transmission-line approxima-
tion for EY does not apply and Ey is zero for all time because
of s~etry in z.

The magnetic field in our transmission-line model for the
simulator on the z axis with only an x component is given by

Hx I
I

\:C=o
= 2(a - b) ‘gfe

-1/2
= #a2 - b2] (33)

17



where I is the current in the cylindrical structure as shown in
figu~e 1; I is a function of z. For other positions on a plane
of constant z we have

-1/2
H* = ~[a2 - b2]

-1/2
H’ +[a2 - b2]
Y

On the y = O plane these

a

{

a+y a-y 1
22 2+x +(a+y) x2+(a-y)2i

(34)

become

-1/2
Elx= ~[a2 - b2] a2

~2+a2

(35)

H
Y=

o

Comparing this distribution with that in equation 24 on the y = O
plane note that the x dependence is the same. Also if I atilow
frequencies is not a function of z there is the same z depend-
ence. of course there is a restriction on the early-time results
used to define an incident plane wave that 60 < 6 < T - 00 (or
perhaps even more restricted) so that the form of the incident
fields used at early times is valid.

Case 2: Small Conductivity for Lower Medium

If the conductivity o of the lower medium is low enough
that for low frequencies of interest the skin depth is large
compared to a then we have a second limiting case. As long as
the electric field for y < 0 is negligible compared to that for
y > ()we can use the results of equations 31 to describe the
electric field distribution for y > 0 in the transmission-line
approximation. This requires that the ground conductivity not
be so low that the currents in the ground are associated with a
significant electric field. Roughly this requires that the ef-
fective impedances associated with the lower medium be small
compared to both Z~ and the termination impedance.

On the other hand the magnetic field distribution. ~t low
frequencies is significantly changed by a low ground or water
conductivity. If the skin depth is large compared to a then the
magnetic field near the simulator (distances comparable to a or
less) is just given on a plane of constant z by
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-1/2 ~
;1 = I +

2rr sin(6) ‘+
= >[x2 + (a - y)2]

‘+
(36)

or

~4=1
Z7 Xza-:y)s+(a

(37)

~;=I
27 X2 x 2+(a -y)

This is just the magnetic field for a current at (x, y) = (O, a) ,
the current in the ground being on the average far away from the
observer compared to a. On the y = O plane we have

(38)

H’=1 x
Y z2+a2x

Note that we use primes for the fields for this small u case to
differentiate the results from the large o case.

Comparing equations 38 and 35 note for b << a that Hi is
just half of Hx (for the same I) on the y = O plane. An H“’is
also introduced whereas Hy = O on the y = O plane. xNote t at
these two cases of large and small o are limiting cases of what
happens at low frequencies of interest. In practical situations
one may often be in a transition region between these two cases
for low frequencies of interest.

B. Low-Frequency Performance for Unterminated Simulator

Now let 21 = @ where the termination impedance 21 is at two
positions z = +h as shown in figure 1. With the generator as-
sumed to be a ~apacitance Ca switched onto the simulator at t = O,
and with no impedances to r&nove charge from the
times of interest then the simulator capacitance
the problem. The simulator capacitance per unit

E
c’=:

9

antenna in late
Ca dominates
length is

(39)
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where co is the perrnittivity of free space and the total simu-
later capacitance is just

(40)

where fg is found in equations 26 and 27. Note that C’ is de-
fined per unit length of the two ends of the simulator (z > 0
and z < O) considered in series as a single transmission line;
this C’ is consistent with 2* in equation 25.

With 21 = ~ then in the low-frequency limit there is no cur-
rent and no electric field in the lower medium while the simulator
is charged and there is electric field above the ground. Thus Ca
should be accurately represented by equation 40 in the limit as
a/h + O. Note that fringing electric fields near z = O and
z = +h have been neglected in calculating this capacitance; these
frin~ing fields will slightly increase Ca.

Define a capacitance parameter as

c,
Ci=l++ (41)

9

With V. as the initial volts on the generator the volts on the
transmission line in the late time limit are

(42)

where z has been taken positive for V and where the result comes
from charge conservation. Note that VCO is not a function of z.
The late-time voltage of the simulator with respect to the y = O
plane is +Vm/2 for z > 0 and -Vm/2 for z < 0. Substituting V~
for V in equations 32 gives the late-time electric field distri-
bution on the y = O plane as

I.-L Vm -1/2
E

z=-
Y z #a2 - “] ~2a: a2

9

EX=O

20
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where lzl/z accounts for the change in electric field polarity
at z = O. In equations 24 we give a characteristic of the elec-
tric field waveform for a desired incident plane wave in which
the complete time integral of the waveform is finite and non-
zero. The electric field waveform associated with this untermi-
nated and non-decaying simulator has an infinite complete time
integral (in the limiting case) implying a much larger low-fre-
quency content for sufficiently small frequency. Depending on
the magnitude of u the late-time electric field could be compa-
rable to the desired transient electric field and for hiqh-level
simulation one might be

The initial charge

Q. Og=Vc

The late-time charge on

concerned with nonlinear effects:

on the generator is

the simulator is

on

Qa = Vaca = ‘aLY#ca=c +-c V.
a 9

where this is the charge for z > O; for z < 0 the charge
This charge is the complete time integral of the current

(44)

(45)

is -Qco.
leavina

the pulser. Now Q~ is uniformly distributed over O < z < h, “
neglecting fringe electric fields near z = O and z = h. Thu S
the complete time integral of the current is

(46)

where I is taken positive in the +Z direction; IzI is used to
make this result apply for -h < z < h. Note that I is continuous
through z = O so that this can be used for the magnetic field
near z = o.

Consider as a first case that the lower medium conductivity
is arbitrarily large so that we set u = ~. Equations 34 relate
the current and magnetic field, in the transmission-line approxi-
mation; equations 35 give the simpler results for the magnetic
field on the y = O plane. The low-frequency content of the mag-
netic field is just the complete time integral of the time do-
main waveform. From equations 35 and 46 we then have on the
Y = O plane
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J
m -1/’2

Hx dt = #[a2 - b2] ~2a2 z[~ . ~],=
o +a

(47)

J

lx
EIydt=O

o

Now”to match the desired cimplete time integral to simulate an
incident plane wave as in equations 24 we have on the y = O
plane the requirement

1/2 *
Q. = #[a2 - b2] [x + a21“2[1 - q]-’* (48)

o

showing that for given @t a, and b then Qa (and thus Qo) must be
changed as the simulator is moved to make the observer be at a
certain (x, z). Equation 20 relates the waveform peak to a
characteristic time teff for the desired plane wave. Equations
17 give this peak on the y = O plane as a function of x and z.
These give for equation 48

Q. = #[a2 - b2j“2[1 - y]-’+ .eff

Solving for teff and using equation 45 for Q= gives

t eff =
~[a2

-1/2
- b2]

[
1-

V.
—
‘1

Cac

Ca+c
9

(49)

(50)

For fixed a, b, h, Cg~ and Vo/Vl (equation 8) then teff is only
a function of z, and if we restrict \zl << h (i.e. keep near the
middle of the simulator) then the dependence on z is small.
Note that the horizontal component of the magnetic field is in
the x direction at both early times and low freq~encies, allow-
ing one to match the desired characteristics of Hinc in both
limits.

As a second case let the lower medium have finite a, small
enough for low frequencies of interest that the skin depth in
the lower medium is large compared to a and the results of equa-
tions 36 through 38 apply. Note that for this case as long as
the electric field in the lower medium can be neglected the re-

●
suits for the electric field are the same as for the G = OYcase
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in equations 42 and 43. For the magnetic field on the y = O
plane substitute from equations 38 into equation 46 to give (us-
ing primes for this low conductivity case)

J
co

~2a Z[,_l#]QaH; dt = 1
0 x +a

(51)

J
m

H; dt = 1 X2x [1- 4#]Q.
o T7F+a2

Note for b << a that the complete time integral of H: is just
one half the result for Hx in equations 47 and that H’ has a
non-zero complete time integral for x # O, \zl < h. If we con-
sider x = O then the complete time integral of H’ is zero. In
order to match the desired complete time integraf as in equa-
tions 24 let us just consider H~ giving the requirement on the
Y = O plane

Qm = 47T[X2+ a21“2[, - +]-’;
o

(52)

In terms of the characteristic time teff desired for the pulse
this result is

Solving for teff and substituting for Q. gives

t eff = +-[, - I_#],o+ J:9c

9

(54)

This result for finite a is approximately one half the result in
equation 50 for the o = @ case (for the same voltages and capac-
itances) .

Looking at the results for both large and small o we ob-
serve that it is quite possible to have a non-zero complete time
integral of the magnetic field waveform if the capacitive pulse
generator discharges into the simulator without letting the
charge decay across the generator at late times of interest.
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This is in sharp contrast to a pulse-radiating antenna as dis-
cussed in references 1 and 2 where we were concerned with the
radiated far fields. Here we have a near field problem for low
frequencies because the observer is close to the simulator com-
pared to h. This result is further altered by the presence of
the lower medium which changes the near field distribution but
keeps a non-zero complete time integral for the magnetic field.
On the other hand the electric field has a non-zero late time
limit implying an infinite complete time integral (or low-fre-
quency content in the limit of zero frequency). In this respect
the unterminated simulator gives more than desired at low fre-
quencies. Of course, for large enough times the charge on the
simulator will go to zero, if only so that the generator can be
recharged. Perhaps these times can be much larger than late
times of interest corresponding to frequencies much lower than
low frequencies of interest for a simulation test. On the other
hand the vastly increased low-frequency electric field may rep-
resent a severe overtest or even induce nonlinear effects at
high levels in some cases.

c. Low-Frequency Performance for Simulator with a
Termination which is Resistive at Low Frequencies

Having considered the case of 21 = ~ we
where 21 has a finite resistive value in the
In this case we have

J
a

Idt=Qo=VC
o 09

go on to the case
low-frequency limit.

(55)

i.e. the total charge on the generator passes through the simu-
lator structure, termination, and lower medium to completely
drain the generator in the late-time limit. Define a low-fre-
quency impedance per unit length for the simulator structure as

Ao(z) E lim A(z) > 0 (56)
fJJ+o

which we also assume to be finite, or at least to have integra-
ble singularities such that

I
h

R. : Ao(z)dz
o

(57)

is finite. Note A. is assumed non negative so that it is a pas- ●
sive resistance. Then the low-frequency voltage on the simulator,
neglecting low-frequency electric fields in the lower medium, is
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L_u J
h

2 : R+ I= p A(z’)dz’ Q.
z !

(58)

where we have defined

and where (as discussed before) V\2 is the voltage of the simu-
lator structure with respect to the lower medium. Again the im-
pedance of the lower medium has been assumed small enough that
it can be neglected.

Having the low-frequency current and voltage, next consider
the low-frequency fields. The low-frequency magnetic field
(which is the complete time integral) is considered first for

e

the case of a = w so that equations 34 and 35 apply. On the
Y = O plane for this high conductivity case we have

J
co -1/2

Hx dt = ~[a2 - b2j
a2

o X2 + a2 ‘o

(60)

J
co

Hydt=O
o

Matching the desired complete time integral as in equations 24
gives

1/2 z 1/2 ~
Q. = ~[a2 - b21 [x + a2] ~

o
(61)

Equation 20 relates the waveform peak to a characteristic time
teff for the desired plane wave, and equations 17 give this peak
on the y = O plane so that equation 61 becomes

1/2 VI
Q. = #[a2 - b2] ~ teff

o
(62)
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Solving for teff and substituting for Q. gives

~[~2 - b2]
-1/2 v

t = 2n
z SC

eff Ov 19
(63)

For fixed a, b~ Cg~ and Vo/Vl then teff is independent of the
coordinates on the y = O plane, provided the earlier restric-
tions on coordinate variation are met.

On the other hand for the finite a case for the lower me-
dium equations 36 through 38 apply. For the low-frequency mag-
netic field on the y = O plane we have (using primes for this
low conductivity case) from equation 38

(64)

J
Ca

~;dt=~ x
Ex2+a2Qo

o

Again note that the complete time integral of H+ is non-zero for
this finite a case. Considering only Hi in matching the desired
complete time integral in equation 24 on the y = O plane gives

(65)

Substituting for @ (as before) we have, in terms of the charac-
teristic time teff~

Q. = 41’i‘1~ teff
o

Solving for teff and substituting for Q. gives

v
t Qc
eff ‘kzov, g

(66)

(67)
A

This result is about one half of the result for the high a case
●

in equation 63.
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Assuming o is large enough that electric fields for y < 0
can be neglected compared to those for y > 0 then for both high
and low a cases for low frequencies we can use–equations 31,
32, and 58 to find the electric field above the y = O plane,
giving on the y = O plane

1
m -1/2~ 1 [a2-b2]

Eydt=-zw a2 {
J~2+a2 2 ~Rl + .h 1

A(z’)dz’ Q.
o 9

(68)

J

w
Ex dt = O

0

Matching the desired complete time integral on the y = O plane
from equations 24 gives

1/2 1/2 -1/2
‘fg[a2-b2]Qo=~ [x2+a2] [x2+a2+z2] /z[@

(69)

Comparing this result to equation 61 for the large O’case and to
equation 65 for the small a case! note the additional dependence
on the coordinates in equation 69. However there is also the
term involving the integral of A(z’) from z to h; this term can
be used (together with Rl) to make the Q. required from electric
field considerations approximate the Q. required from magnetic
field considerations (equation 61 or 65). Note that the electric
field result in equation 68 does not apply near z = O and z = ~h
as well as a z near which A(z) is so large as to make the inte-
gral of A(z’) change too abruptly.

D. Some Further Comments on Low-Frequency Performance

As one can see there is a fair amount of flexibility in
choosing the simulator parameters such as a, bl h, Vo, Vl, and
C as well as the orientation of the simulator with respect to
Et e system under test. Appropriately choosing these parameters

one can vary the peak fields, direction of incidence, polariza-
tion, and low-frequency field characteristics. The type of
termination 21 and series impedance per unit length A(z) can
also be varie~ to change the-low-frequency field
for both electric and magnetic fields, including
ship to each other.
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One of the optional ways of operating such a simulator is
to replace the pulse generator with a switch, slowly charge the
two halves of the simulator structure with respect to each other,
and initiate the pulse by closing the switch at z = O. This
technique introduces certain features into the simulator. The
charging of the simulator structure requires charging through
some current paths connected to the simulator. Also Z1 cannot
bleed off charge during the charging period so that Z1 must have
a large magnitude at low frequencies. One might combine Z1 with
the charging system so that with equal and opposite charging at
each end the transient representation of Z1 might be a very
large resistance or perhaps a series RC network or some other
network which looks like a capacitance for low frequencies. Con-
sidering the waveform in the time domain one must have the charg-
ing time large compared to all times of interest if the transient
pulse is to be considered solely; in the frequency domain this
means that frequencies in the charging waveform be lower than
all frequencies of interest. Of course these considerations as-
sume linearity in the response of the system under test to the
applied waveform. However, if there are significant nonlinear
effects which are initiated or coupled to by the slow but large
fields in the charging period (particularly electric fields)
then this type of charging system does not give as good a simu-
lator as one with the generator at z = O so that the structure
is initially uncharged. Of course there are other deficiencies
which are generally associated with any simulator and ‘suchslow
time or low-frequency problems may be acceptable in some cases.

Note that if a switch is used to switch a charged simulator
structure this corresponds to making Cg infinite because trans-
iently the “generator” impedance is a short circuit (except for
some inductance and other high-frequency perturbations) . In ad-
dition there may be other capacitances introduced (say in ZI)
associated with the charging system. These capacitance changes
will have to be included in the equations of this section to
properly describe the performance of the simulator for low fre-
quencies of interest. Also there are appropriate changes in the
polarities so that V. represents the applied transient voltage
and
the

v.

for

the resulting fields are the transient fields or changes in
fields after the switch closes.

Transmission-Line Model

Having considered the early-time and low-frequency results
this simulator qeometry we now consider some approximate re-

sults for intermediate frequencies based on a transmission-line
model of the simulator. With b << a this model should apply for
radian frequencies u small compared to c\a. In the time domain
this should apply for pulses with pulse widths large compared to
a/c except for early times of the order of a/c and less after
the initial signal reaches the observer.

28



, c

For the transmission-line calculations of this section we
only consider the case of infinite conductivity for the lower
medium so that we do not have to include an impedance per unit
length for the lower medium as part of the equivalent transmis-
sion line. Perhaps in future notes the finite ground conductiv-
ity could be included, or perhaps even a more complete wave so-
lution for the simulator

In figure 3 we show
lent transmission line.

geometry could be developed.

the simulator represented as an equiva-
Defining

(70)

z’(c) = 2fl(z)

we have L as the coordinate, Zt as the termination impedance,
and Z’ as the impedance per unit length added to the transmis-
sion line. The equivalent transmission line is formed by con-
sidering the two halves of the simulator (z > 0 and z < O) in
series, together with the constraint that A be even in z. The
current I(z) is on both sides of the line with opposit-e direc-
tions, and V(L) is the voltage on the line (between opposite
sides) .

For the present calculations we take the generator as
charged capacitor and switch which we represent as a capacitance
Cg in series with a voltage source Vou(t) in the time domain or
Vo/s in the Laplace transform domain. For the time varying
voltages, currents, fields, etc. we use a tilde - to indicate
the Laplace transform (one or two sided) of the quantity with
respect to time and s for the Laplace transform variable. The
inductance and capacitance per unit length are

ljr=~f
09

(71)

&
c’ = f

where fg is given in equations 26 and 27 and where M. and co are
the permeability and permittivity, respectively, of free space.
The speed of light is
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(72)

and the characteristic impedance of the transmission line, with-
out including Z’, is just-

which is the same as in equation 25. Note
tion of the transmission line in figure 3B
z’.

The local propagation constant on the

(73)

an incremental sec-
including L’, C’ , and

transmission line is

Y = [(sL’ + Z’)sC’]L/2 = Y
0[’ + $11’2

(74)

where

Y. =

The local

m-r=:

impedance is

z
[
SL ‘ + z’ ‘/2=

Sc ‘ 1 = ‘.[’ + %11’2

(75)

(76)

The transmission-line equations in terms of Laplace trans-
formed variables are

(77)

These give a wave equation (Laplace transformed) for ~ as

a2i—- Scf(z’ +sL’)i=O
a<2
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or

(79)

Note that C’ is in~epend~nt of C to give this last result.
After solving for V and I equations 26 through 35 can be used to
find the Laplace transforms of the fields, with restrictions as
noted previously. Taking inverse transforms gives the pulse
waveforms, also with certain limitations noted previously.

A previous note7 considers a radiating electric dipole as
an approximate transmission line of constant inductance and ca-
pacitance per unit length. In that case one needed a time de-
rivative of a volume integral of the current to obtain the radi-
ated fields at far distances. This implied certain features for
the waveform which do not appear in the present calculations be-
cause here the observer is very close to the current. The cur-
rent and voltage are found in the same ways in both cases; the
fields are obtained differently. In the present case L’ and C’
are independent of L because of the fixed ratio a/b for all
Izl < h; in the case of the radiating cylindrical dipole of say
constant radius the inductance and capacitance per unit length
do vary with distance and using them as constants is only an ap-
proximation. Of course for the present transmission-line model
of the cylinder ove~ a ground or water surface the results are
limited to only apply for radian frequencies u small compared to
c/a, and for positions with IzI < h. Also positions should not
be near to z = +h for both electric and magnetic fields, or near
z = O for elect~ic fields.

In this section we consider the waveforms using the trans-
mission-line model first for a special case of resistive L(L)
with Z~ = ~, and second for A = O with !Zt= z~. Finally there
is some comparison of the early-time results from the transmis-
sion-line model with the more accurate early-time results dis-
cussed in section 111.

A.

Let

Unterminated Transmission Line with Special Form
of Nonuniform Resist~ve Loadina

‘t-

7. Capt Carl E.
Loaded Radiating

Baum, Sensor
Dipole Based

the Antenna, April 1969.

(80)

and Simulation Note 81, Resistively
on a Transmission Line Model for
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and consider the special case of nonuniform resistive loading
used in section IV of reference 7. This case is defined by sub-
stituting

into equation 78 to give

a25—- 2yo g - Sc’z’l?= o
a~2

Then try a solution for & in the form

(81)

(82)

(83)

so that ~ is split into a function of L times a function of s.
Equations 81 and 83 define a special form for I as an outgoing
wave on the simulator. The equation for f(~) 1s

which can be solved for Z’ to give

which has the form

Z’=~+R’s~lf

(84)

(85)

(86)

For this type of solution for ~ then Z’ is the series combina-
tion of a resistance per unit length R’ and a capacitance length
product C“.

Noting (as in reference 7) that C“ represents an infinite
impedance at zero frequency which prevents the maximum charge
from spreading out on the simulator and thus reduces the com-

● plete time integral of I, we choose the capacitive impedance in
equations 85 and 86 as zero (or C’ ‘ = ~); this implies

33



(87)

so that f is a linear fu~ction of G. In order to match the
boundary condition t~at I = O at L = h without introducing a
second solution for I we then set

f(h) = O , f(o) = 1 (88)

The second condition is just to normalize f(c). This gives

f(c) =l-; (89)

From equations 85 and 70 we then have

2zm
z’(c) =R’ (~)=_ [1hl

.&-l

(90)

This specifies A(z) as a resistance per unit length which has a
certain z dependence and is proportional to Z~ which can be
found from equations 25 and 26.

With this special form of A(z) the transmission-line model
gives a current

and a voltage (from equations 77)

t(<) = +&l+ - ~)+ +-YJ i(o)

The simulator impedance as seen by the generator is then

V(o) =za5————— &[yoh + 1] = Z. + &
:(0) a a

(91)

(92)

(93)
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where C= is just C’h as in equation 40. Note that Z= is just
the series combination of a resistance and a capacitance. The
generator impedance is just

z 1
9 ‘z

9

~(0) is then

v v
i(o) =

[
:[zg + Za]-l = $&+

“%%+z-1-’=$
The current on the transmission

1

1

-1
—+zm
Sc a

1
-1

F

line is now

and the voltage is

jzJ+-w+ie-9
v(z) = V. ~ ~ s+?

i+ - “(’ - &)]/-w-
~e

ac
si— —

h

(94)

(95)

(96)

(97)

Note for s + O (low frequencies) we have

i(z) = >>[, -~]+ .(., .vo;a;9c [, -~]+ 0(s,
m 9

(98)
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which agrees with the previous result for an unterminated simu-
lator in equations 45 and 46. Also for s + O we have

JzJl ‘g~%l+o(s)l=vo ~ -&-C +C[l+o(s)l:(Z) = V. ~ as
a 9

(99)

which agrees with the previous result for an unterminated simu-
lator in equation 42. Setting s = iu we have the frequency con-
tent of the current and voltage waveforms. Using dimensional
factors these can be converted to the frequency content of-the
fields using equations 26 through 35.

Now go on to consider the time-domain waveforms. Define a
normalized retarded time as

T -Q-44h.h (100)

The current is then

(101)

and the voltage is

These have initial discontinuities given by

1im ,(Z, S:[, - q]
Th+()+ m

(102)

(103)

J-( M]lim V(2)=V0 ~ 1- ~
Th+o+
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showing that the transmission-line model with the present par-
ticular choice of A(z) gives an initial step discontinuity with
a magnitude for V and I (and thus also for ~he fields) which

large and
103 which
istics of
become

falls off linearly with IzI, going to zero for z = +h. Of course
the transmission-line model is not-accurate for fre@encies too

this imposes limitations on the results of equations
should be regarded as giving the early-time character-
the transmission-line solutions. At late time I and V

1im
~ +Cn
h

I(z) =

v(z) =

which agree with
99.

0

V.

low-frequency results of

(104)

equations 98 and

Equations 101 and 102 give a step rise followed by an ex-
ponential approach to the final value of the waveform with time
constant h\(cu) . In the case of the current (or magnetic field)
the waveform is a simple exponential decay after a step rise, a
rather convenient result. Using the results of equations 100
through 104 for I and V together with equations 25 through 35
for relating the fields to I and V gives the time-domain wave-
forms for the fields in terms of the various simulator param-
eters. Of course, note that the early-time results for times of
the order of a/c and less are not accurate.

B. Terminated Transmission Line with no Resistive Loading

As another interesting case let

A(z)

(105)
Zm

T’ ‘t “ Zm

This defines zero resistive loading along the transmission line
and a termination of the transmission line in its characteristic
impedance. The simulator impedance as seen by the generator is
then
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(106)

The current and vultage have the forms~ in terms of LapLace
transforms

v AM.
i(z) =~+e c

m

(107)

El&L
JzJlc

V(z) =Vo ~ s+f3e

where lzl/z is included to allow for the change of the electric
field polarity at z = O and where

B%&- (108)

This result
a delay for
generator.

i(z) =

9

is simply a resistive-capacitive decay together with
propagation down the transmission line away from the
NOW for s + O (low frequencies) we have

v
+[1 + 0(s)1 = Vocg[l + 0(s)1

Cn

(109)

v#l#[l + 0(s)] El[l + 0(s)]t(z) = = Vocgzm z

which agree with the results of equations 55 and 58 provided 2R1
is taken equal to Z~. Again setting s = iu in equations 107

gives the frequency content of the current and voltage waveforms.
Also using equations 25 through 35 one can convert these results
to results for the fields.

Define a normalized retarded time for this case as

‘9 ‘. (t - y]

:C [t -&]
‘9

(110)



In the time domain the current and voltage are

v ‘T
I(z) =~e g u(Tg)

m

(111)

M e-’g~(~ )v(z) = V. z
9

These have initial discontinuities given by

v
1im I(z) =:

~ +0+ w
9

Mlim V(z) = V- .

(112)

u .4

Note that
tude with
age go to
equations

Note
out series resistive I.oadinq th-a-tboth current and voltage are

this initial discontinuity does not decrease in magni-
increasing 121. For late times both current and volt-
zero in agreement with the low-frequency results in
109.

for this case of a terminated transmission line with-

conveniently step rises foliowed by simple exponential decays to
zero. Equations 111 together with equations 25 through 35 give
the time-domain waveforms for the fields. Again the early-time
results for times of the order of a/c and less are not accurate.
Note that the half length h of the simulator structure does not
enter into these results, except insofar as h must be large
enough for the results to be accurate.

c. Comparison of Early -Time Results from Transmission-
Line Model to More Accurate Early-Time Results

The transmission-line model gives the early-time results in
equations 103 and 112 for the two cases of impedance distribu-
tion discussed i.nsections V A and V B respectively, when equa-
tions 25 through 35 are used to find the fields. Consider here
the early time results from equations 17 in section III which
give the incident–waveform peak on the y = O Elane as
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-1/2 ~ 2 -1 +
= -za[x2+a2+z2] [x +a ]

‘Ley
y=o

(113)

-1 VI +
= a[x2+a2] ~ ex

y=o
o

where these are the electric field normal to the y = O plane and
the magnetic field parallel to the y = O plane. Since we are
considering the case of infinitely large conductivity for the
lower medium then we have unity reflection coefficients for the
initial peak fields and we define the resultant field components
on the y = O plane, corresponding to the initial peak fields in
equations 113, as

-1/2 2 -J-1 +
= -2za[x2+a2+z2] [x +a ] ‘ley

Ii.z 2?i1

p y=o

(114)

-1 vl += 2a[x2+a2] ~ ex
o

Note that, as discussed in section 111, the early-time results
are based on considering the pulse generator and nearby portions
of the simulator structure as a radiating antenna. Since a
bicone-like wave has been assumed to get the above results then
only small z can be used in the above expressions where such
results are accurate if the rise time is small enough. For con-
venience we will then
line results at z = O

30 =6
Z=o

make a comparison with the transmission-
where equations 114 reduce to

(115)
-1 vl ~

ii = 2a[x2+a2] ~ ex
o

Z=o o
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Now consider the early-time transmission-line results on
the y = O plane at z = O. First at z = O the results of equa-
tions 103 and 112 become the same giving

v
I(0) =;

m
(116)

The voltage V(z) is indeterminate at z = O; this is associated
with the limitations in the transmission-line model for calcu-
lating the electric field near z = O. Clearly by symmetry the y
component of the electric field is zero for
Thus we concentrate on the magnetic field.
and 1“16the initial magnetic field at z = O

all times at z = O.
From equations 35
on the y = O plane

from the transmission-line model is

-1/2
~[a2-b2]

a2 ( ~im ~(o)~g

x2+a2 lTh+O+ I
x

2=0

Et
o

-1/2
‘o 1— –[a2-b2]

a2
Zm IT ~2+a2 ‘x

. .

(117)

macmetic field from the transmission-line modelNote that this
has the same x de~endence as the radiating antenna results in
equation 115 for the initial peak magnetic field.

One possible choice in designing such a simulator might
to try to match the initial peak magnetic field on (y, z) =

O) in amplitude as given by the two results in equations

be

115(0,
and li7. res~lts this way implies “Matching the two

‘1—=
V.

z -1/2
~ ~[a2-b2]
Zw 21T

-1/2
&[a2-b2] (118)

Y

as b/a + O this becomesand

‘1 2
—=
V. ()&+O(:)

9

(119)
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Substituting for fg from equation 26 and VI.\VO from equation 8
gives

As b/a + O this becomes, using”equations 27 and 120,

e. = 2 .17Xot[gs + 4:1]

b3
(())6.=:+0=

(120)

This implies small 00 for small b/a.

An alternate approach to matching the early-time results
for the radiating generator and antenna to the transmission line
results would be to match the corresponding impedances. From
reference 2 the pulse impedance of a bicone (as used in section
III) is

Setting this equal to 20 gives

+ &&’)]=fg (123)
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which with equation 26 gives

++

where we
b/a + O

60 =

For small
tion 120,

/1 .
\1/’2

\

-1

(sin(8n))2 )
u

trigonometric

1/2
\

a

identity. 8

1/2\

Then we have

(124)

as

(125)

b/a equation 123 gives nearly the same result as equa-
so that matching early-time fields on (x, y) = (O, 0)

and matching impedances give approximately the same results for
small b/a.

As we have seen, matching peak fields or impedances between
the more accurate early-time results and the transmission-line
results requires that 50 be a small angle for small b/a; 50 is
that angle defining the biconic section containing the ‘generator,
or the angle defining an equivalent distributed source with a bi-
cone electric field distribution. However, making 00 small (or
Zb large) makes V1/Vo small and thus decreases El (the peak radi-
ated field) for a given V. (generator voltage) . Thus one may
not want to match the generator to the simulator structure in a
manner given by equation 120 or 123 as discussed in this section.
The early-time fields then might not smoothly match to the expo-
nential decay as in equations 101 and 111. Of course such match-
ing may not be the most important consideration and one may be
more concerned with just the high-frequency or early-time per-
formance (section III) and the low-frequency performance (sec-
tion IV). Note also that the present comparison is made using a
bicone-type wave launcher for the early-time peak fields. One
may wish to use some other type of pulse radiator which gives
some different peak field distribution as a function of 5 and/or
~; this might be achieved by some special antenna shaping or a
special source field distribution on a distributed source.

8. M. Abramowitz and I. A. Stegun, cd., Handbook of Mathematical
Functions, AMS 55, National Bureau of Standards, 1964, eqn.
4.3.22.
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One should note that since the transmission-line results of
this section are for the resultant fields they do not compare
directly to the incident wave. For an infinite conductivity of
the lower medium the resultant $ields need to be+twice the ap-
propriate components (vertical E and horizontal H) of the as-
sumed incident plane wave being simulated. Of course the lower
medium actually has finite conductivity making the reflection
characteristics at the y = O plane frequency dependent so that
the resultant fields on the y = O plane will not in general have
the same waveform as the incident wave. For the simulator then
the matching of early-time results to the rest of the waveform
may not be best met by the simple resulting exponential waveform
in this section. The ratio VI/Vo may be somewhat different for
an “optimum” .match in such a case.

VI. Summary

In this note we have discussed various features of a simu-
lator consisting of a pulse generator driving a cylindrical
structure above and parallel. to a ground or water surface. Here
we have been concerned with the fields produced near the ground
surface and how they simulate an incident plane wave. The con-
siderations have included matching the early-time and low-fre-
quency characteristics of an incident pulse plane wave with a
non-zero time integral out to times beyond any times of interest.
Only positions near the simulator structure are considered so
that the low-frequency performance can be considered from a two-
dimensional calculation. using transmission-line theory the
waveforms produced by the simulator are considered for the case
that a,/cis small compared to the pulse width. The early-time
results from the transmission-line calculation are then compared
with the more accurate early-time results based on the generator
and nearby simulator structure being a radiating antenna.

In general we have seen that it is quite possible to simu-
late the early-time and low-frequency characteristics of an in-
cident plane wave if the simulator is resistively terminated to
the ground or water surface. Even if it is not so terminated
the inclusion of series resistive loading can still give a smooth
resulting waveform, except in this case if the magnetic field has
a non-zero complete time integral then the electric field has a
non-zero late-time limit which implies a frequency content which
blows up as the frequency goes to zero. An alternate way to use
such a simulator is to replace the generator by a switch and
charge the two halves of the simulator with respect to each
other, the transient being initiated by switch closure. For the
transient. waveform one can just consider Cg = a and VO as the
negative of the charging voltage for the present results to ap-
ply so long as the charging network is isolated from the simu-
lator by a sufficiently large impedance and the charging is done
smoothly over a time much larger than characteristic times of
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interest for the
careful to avoid
under test which
tem response beta
Similar comments
with large electr

transient waveform. However one should be
any nonlinear effects in coupling to the system
could make the charging significant in the sys-
,use of the large low-frequency electric field.
apply to the case of–an unt-erminated simulator
ic fields at late times of interest and beyond.

For a thorough understanding of this simulator geometry and
the variations achievable in the waveform and frequency content
there are many problems yet to be considered. Perhaps more com-
plete wave solutions of the geometry of a perfectly conducting
cylinder (or perhaps even a finitely conducting cylinder) over a
finitely conducting dielectric half space could be worked out.
Using such a ‘modal expansion, or even just the dominant quasi-
TEM mode, the.effect of the ground or water conductivity of any
value could be included, at least for radian frequencies u small
compared to c/a. In addition one might look at other types of
geometries in the immediate vicinity of the pulse generator or
switch near z = O as well as various types of distributed sources
for generators, or even distributed switches for the case of the
simulator geometry being charged from the ground or water sur-
face. Various forms of A(z) could be investigated as well as
various forms of Z1 which could include charging networks to see
their effects in time and frequency domains.
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