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Abstract.

This note considers the response characteristics of a cir-
cular flush-plate dipole in non-conducting media. This sensor
is a circular plate coplanar with a conducting plane, but iso-
lated from it by a narrow slot. The current through the resis-
tive load across the slot is proportional to a component of the
displacement current density at low frequencies. The response
characteristics of this sensor are calculated using cylindrical
vector eigenfunction expansions. These calculations include the
dependence of the sensor response on both frequency and the di-
rection of wave incidence.

Foreword

The calculations in this note have a form similar to those
in a previous note concerning a spherical dipole. For conven-
ience the figures are grouped together after the summary and be-
fore the appendices. Appendix E was written by Mr. Joe Martinez
of Dikewood and we would like to thank him for the numerical
calculations and thank him and Sgt. Richard T. Clark of AFWL for
the graphs.
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I. Introduction

Of the various types of electromagnetic sensors there is
one type which responds to a component of the total current den-
sity or, if the medium conductivity is zero, a component of the
displacement current density, D. This sensor is characterized

by a geometric parameter, its equivalent area.l A previous note?

has considered the frequency response characteristics of one
such device, a slotited hollow sphere. The purpose of this note
is to consider anothexr geometry of this type of sensor.

In this note we consider a sensor which might be termed a
circular flush-plate dipole. This sensor is a part of a con-
ducting plane and we analyze its performance using vector eigen-
function expansions in cylindrical coordinates. The analysis is
similar to that for the spherical dipole in reference 2.

The sensor gecmetry is shown in figure 1. It is basically
a circular disk of radius ¥j centered in a hole of radius Y3 in
a conducting ground plane. Both disk and ground plane are as-
sumed infinitely thin and perfectly conducting. As shown in
figure 1 we have cartesian (x, y, 2), cylindrical (¥, ¢, z), and
spherical (r, 8, ¢} coordinates related as

i
I

X

¥ cos(¢) » ¥y = ¥ sin{¢)

li
it

z r cos{8) . ¥ r sin(8) (1)

The disk is defined by z = 0, 0 <'¥ < ¥; and the conducting
plane by z = 0, ¥ > ¥2; the slot is defined by Y] < ¥ < ¥Y3. The
nominal slot center is given by ¥ = a which we define by

e

_l=e-a. ‘{‘_2_
a -~ ! a

pio

= a2 ’
wlwz = a (2)

m
o

so that a is the geometric mean of ¥j and ¥2. b is a lengh as-
sumed small compared to a, so that for b << a the slot width is
tpproximately 2b. Note that as'b > 0

‘Pl=a-b+0(b2), “!2=a+b+0(b2) (3)

e Cépt Carl E. Baum, Sensor and Simulation Note 38, Parameters
‘'or Some Electrically-Small Electromagnetic Sensors, March 1967.

'« Capt Carl E. Baum, Sensor and Simulation Note 91, The Single-
:ap Hollow Spherical Dipole in Non-Conducting Media, July 1969.
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The reason for this choice of the gap center will appear later
as a convenient definition in the admittance calculations. We
also have

sinh(g) = —3a (4)

The sensor gap, or slot in the conducting plane, is assumed
resistively loaded uniformly in ¢ to preserve symmetry about the
z axis. 1In practice this might be several cable inputs uniformly
spaced around the gap and bringing the signals with equal delays
to one common point. Such cables would be located in positions
where they would not significantly affect the sensor response;
they are not considered in this note.

In this note we consider the response of such a dipole to a
plane wave incident on one side of the conducting plane (say
z > 0); this includes the reflection of the plane wave by the
conducting plane. Both sides of the conducting plane are as-
sumed to be semi-infinite uniform isotropic and homogeneous me-
dia, and for the numerical results the media on both sides are
taken as having the same parameters with zero conductivity. The
sensor has an equivalent area of ngz which at low frequencies
relates the vertical component of D or the total current density
(including the reflection from the z = 0 plane) to the current
from the sensor.

Note that we take the media on both sides of the z = 0
plane as identical and infinite in extent. Practically this may
typically mean that if the 2z = 0 plane is a conducting ground
plane on the earth's surface, then there is a hollowed-out vol-
ume below the sensor which is sufficiently large that the volume
boundaries negligibly distort the fields near the sensor. Also
the volume is assumed lossy enough that energy radiated from the
sensor toward negative z is absorbed and not reflected back into
the sensor. There are other geometries for the lower medium
that one might consider such as a coaxial TEM transmission line3,4
or a hemispherical cavity with lossy walls.>5 In this note, how-
ever, we take the lower medium as semi-infinite and consider the

3. H. Levine and C. H. Papas, Theory of the Circular Diffrac-
tion Antenna, J. Appl. Phys., vol. 22, no. 1, Jan. 1951, pp. 29-
43.

4. G. I. Cohn and G. T. Flesher, Theoretical Radiation Pattern
and Impedance of a Flush-Mounted Coaxial Aperture, Proc. Natl.
Electronics Conf., vol. 14, 1958, pp. 150-168.

5. J. R, Wait, A Low~Frequency Annular-Slot Antenna, J. Res.
NlBlSl’ VOl- 60’ nO. l’ Jano 1958I pp' 59-640
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receiving characteristics of the sensor. One should note that
with both upper and lower media the same the sensor might not be
strictly considered an electric dipole since as one drives it a
dipole field is not produced if both positive and negative z are
included. However, since we are only considering the sensor
from the viewpoint of its response to incident fields on one
side of the conducting plane and the sensor can be considered to
have an electric dipole moment when one considers the conducting
plane and only one side of this plane (z > 0) because of its
far-field characteristics as a radiating antenna, then we still
characterize the sensor as an electric dipole.

In outline this note first considers the expansion of elec-
tromagnetic fields into cylindrical vector eigenfunctions. These
are then used to expand plane waves in cylindrical coordinates.
Then the short circuit current from the sensor is calculated,
including the effect of the angle of incidence of an incident
plane wave. The sensor admittance is then calculated for b << a
by assuming a guasi=-static electric field distribution in the
slot. Finally these results are combined to give the sensor re-
sponse to an incident plane wave for various resistive loads on
the sensor output.

II. Electromagnetic Fields in Cylindrical Coordinates

Consider a linear, homogeneous, isotropic medium with scalar
permittivity =, permeability u, and conductivity ¢. We have
propagation constantsb

k = /=iwu{o + iwe)
(5)
vy = vsu(o + sg)

and a wave impedance

- \/_sH = /[ _Luu
Z = G + se G + 1WE (6)

where s is the Laplace transform variable which is taken as iuw

for frequency-domain analysis. The radian freguency is w and i
is the unit imaginary. We include ¢ in the analysis for gener-
ality but set it to zero for the numerical results.

With time harmonic fields and el«t suppressed Maxwell's
equations are

6. All units are rationalized MKSA.



vV x B = -iuB ' VxH=3+ iud
(7)
V E =0, v o« B = 0
and the constitutive relations plus Ohm's law are
-> -> -> -> -> ->
"B = pH , D = gE , J = gE (8)

Assume no charge (p = 0) or source currents in the medium of in-
terest away from the boundaries giving vector wave eguations as

7% + kB =7, 72 o+ kW =% (9)

‘Note that both E and H now have zero divergence away from the
boundaries of the medium.

In cylindrical coordinates the solution of the scalar wave
equation
727 + k%1 = 0 (10)

can be written as a linear combination of functions of the form?

~1K281 (og (no))

(2) ey - pl(2)

T n,5y00) 2 F 70 (k¥g e |sin(né)] (1)
with

2 2 _

Cl . c2 -1 (12)

where Féz)(kW;z) is one of the cylindrical Bessel functions
JTn(k¥z2), ¥Yn(k¥za), HAL) (k¥z2), HL2) (k¥zp) for 2 =1, 2, 3, 4 in
that order. The third argument of T is listed as e or o (mean-
ing even or odd) and corresponds to using cos(n¢) or sin(n¢g) re-
spectively. We only consider n as an integer for our cases of
interest so that the solutions apply for all ¢ around a complete
circle. On the other hand g can take on any value, including
complex values, although we will only be using real values.

7. J. A. Stratton, Electromagnetic Theory, McGraw Hill, 1941,
section 7.2.



Note then that {3 is a double valued function of %] and we must
specify which value we are using for a given calculation.

Similar to Stratton (reference 7, section 7.3) we define
three sets of solutions to the vector wave eguation (as in equa-
tions 9) as

£ 9% (0,2,

%) (n,g,,%)

> (2) e, _ 1 (%) e, >
0 e, 2 g v [ 5,92 s
89 n,0,% = Lo x &8 (0,8

where Ez is a unit vector in the z direction (and similarly for
other unit vectors). These vector wave functions have some fur-
ther relationships as

5 (0,20, = Her® a2, 0] %3, = 1% (n,2,,8) x 3,
= ’]Jé v x ﬁ(ﬂ,) (n,Clri)
(14)
8 (n,0,,8) = ;l?' vx 7 (1% @0, 008 ]

= ] >(L) e (L) e, >
Wk—z)- L (n:?;lro) + T (n'r’l'o)ez

All three of these sets of vector eigenfunctions satisfy the
vectgr wave equation as written in equations 9. Howyever the N
and M functions have zero divergence while for the L functions
we have

- Thus in this note we uge only the N and M functions for the

field expansions; the L functions are included in cases of source
currents and charges present in the medium.
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Writing out these vegtor eigenfunctions we have for the
vector components of the L functions

(2) e, _ ) (%) e

L (n,Cl,o) = gTETT T (nrclro)
(2) e, _ 1 3 (2) e

L¢ (n!‘:lro) = k—"' ‘f¢ (nl‘:lro) | (16)
(2) e ) (L) e

Lz (nrclro) T Tkz T (n,Cl,o)

which can be expanded as

(%) T ~1k2%) (cos (ng)
Ly ' (n,55,0) = 5,F ) (k¥55)e Isin(n¢)§
(2) e Fél)(kW;z) -ikzgy -sin(n¢) (17
Ly (nigeg) = —xg—— ¢ %cos(n¢)
-ikzg
(2) ey _ . (%) %251 (cos !
L, (n,Cl,o) = =1z,F (kwcz)e %s;n(n )

where a prime used with a Bessel function indicates differentia-
tion with respect to the argument of the Bessel function being
cons;dered For the M functions we have the components

(2) e, _ 1 23 () e

M\y (nlcllo) = kw —acb T (n'Clro)
(%) e, _ _ ) (2) e

M¢ (anlro) = TTRYY T (anlro) (18)
(2) e, _

MZ (anl,o) 0

which can be expanded as



Féz)(k¥c2) -ikzg,

(2) ey _ {-Sin(n¢)}
My " (n,59/0) = ~—=x3 e lcos(n¢) |
(2) e, _ g2 =1k28) | cos (né)) (13)
My" T (nByag) = =5 F 7 (k¥g,)e sin(n¢)]
M(Z)(n,cl.o) =0

For the N functions we have the components

2
(2) e, _ 3 (2) e
NW (nrclro) = 3 (K kz T (anl:o)
2 |
() ey _ 1 _3 (2) e
No o (MeZyrg) = k¥ skmyas T (Befysg) (20)

N(R)(n
Z

2
150D [1 * -—3-—5]T‘2’(n.cl,§) =20 (0, ,9)

3 (kz)

which can be expanded as

' kzzg
(2) e, _ _ (2) ~1k2% (cos (ng)
Ny " (ne8y,g) = =15,5,F 7" (k¥gy)e {51n(n¢)%
(%}
F "' (k¥g,) ~ikzg :
(L) ey, _ _ 2 1 _{=sin(n¢)) (21)
N¢ (n,gy,5) = -igy 3 e Ricos (né) |

~1k223 cos (ne))
lsin(né)|

(L) e 25 (2%)
Nz (n, Clro) C F (k‘i’C e

Next we have some orthogonality relationships for these
vector eigenfunctions on the circle 0 < ¢ < 2m. If the n index
or the § index differs between any two of these vector eigen-
functions (including two of the same kind)} then the§e two func-
tions are orthogonal. Likewise any combinaticn of L with M or M
with N is orthogonal. For n and § the same we have the relations



27 :
>(2) e >(2') e
L (n,z,,-) * L (n,z1, )ao
gm l'o l'o

-ikz (g +2]) : o
= [Lxs, Jlme P e ) ey p ) v )
- 2,51 [PV v, thp ) (kvzgy) (22)
(1c¥)

N.:. nv nv.
4\. ZANV Ab;nH‘Mv . Z.AN VAH:NH..~MVQG

IMWNAnH+nwV

= [lxs 1T nmnmmﬁpv_Awfn vap V.Aw@nmv
n? P (2) (L")
T (evg )P ) (kwgy) (23)

2T (0
[T 8 e, - 80 gy, S as

-ikz (g,+zy) ' '
=ls, Ire P eryege,ear ) vy r ) vy
2 . :
+ 22232 - 7 5sd FiM vz r ) (kvgy) (24)

- -4 Lo (2)] ()" ey
= [1 £, l(=i)me 5,8184F " (k¥g)F Y ) (kygy)



2
12 n | (2) (L")
+ iz ; + zy |F (k¥z ) F (k¥z1) (25)
[ 1 (ky)z l] n 2'"n 2

where %' and ¢] are used in the second function in place of £
and 7] respectively and where

NS (26)

The Kronecker delta function is defined by

1l for n, =n,
8 = (27)
0 for ny # n,

With expressions for the N and M functions we can expand an
electric field with zero divergence in the form

=k }E:Sla epE® (n,2,,8) + 8 (eFH) (n,z,8 {} :

n=o

} (28)
dz,

where Eo is some convenient constant with dimensions of volts
per meter. Note that the dimensionless constants «p and Bp are
both in general functions of z31 (or equivalently z2) which can
take on complex values; sc we may wish to lntegrate over some
range of 73 or 75 in the complex plane; this is just indicated
in equation 28 by an indefinite integral over 71 or 2. Alter-~
natively we may only need particular discrete 3 and thus no in-
tegral of this type. Note that we can also sum over & and over
even and odd functions, but in the calculations in this note we
w111*not nged such summations. Compare eguatiops 7 and 8 relat-
ing E and H to the relations between the M and ¥ functions as in
equations 13 and 14, and note that we can find H from E by
replacing

> (L) e i (L)
M (n Py > 7 N (nrcl O
(29)

*(2) {n, Cl O) - ‘JZ; EE(Q‘) (n:leg)

giving an 5 corresponding to equation 28 as

10



E :?: az
> _ . To =(2) e =(2) e 1
H=14 n=o.[%an(cl)N (Rr5yrg)+8, (5N (n'cl'o)!

% (30)

dCz

Similarly an expansion for H can be converted to one for & by
substituting

#x(2)

ﬁ(z)(n,Cl,z) + =iZN (n'cl's)

(31)

8 (n,20,2) » -128Y (a2,

While we have considered these vector eigenfunctions from
the point-of view of expanding divergenceless eleciric and mag-
netic fields they can also be used (including the L functions)
for appropriate fields without zero divergence. These functions
can also be used for other quantities satisfying the vector and
scalar wave equations, such as vector and scalar potentials and
Hertz vectors.

III. Vector Plane Waves in Cylindrical Coordinates

Having the general forms of the electromagnetic field ex-
pansions in cylindrical coordinates we go on to consider plane
waves of the form

Y -> ' ,
F oz FOE e‘li'r (32)

where U is some unit vector independent of the coordinates and
the propagation vector is

o> _ ->
k =k e (33)

where 31 is the direction of propagation of the waye. This
plane wave is shown in figure 2A at some position r with a fixgd
polarization for purposes of illustration. The three vectors E,
H, and e] are mutually perpendicular and related by

E = zH x El (34)

Starting with El we define two more unit vectors 32 and 33
so that all 3 are mutually orthogonal. Referring to figure 2B

11



the direction of 31 is described by €31 and ¢] in a spherical_co-
grdinate system with respect to the cartesian unit vecters (ex,
gyr €z). Let ez be parallel to the same plane as bgth ez and
el. Then e3 is parallel to the x, y plane., Since e2 and_e3 are
mutually orthogonal and both orthogonal to el, and since E and H
are both orthogonal to el, then e2 and e3 can be ysed ip some
linear combination to describe the directions of E and H. Thus
we consider planpe waveg as in equation 32 for which u is taken
as alternately e; and ej.

These unit vectors form a right handed system with the re-
lations

r-SRVEL S o - +x->!-> (35
& X &y =e3 ., . ey x ez =e ., ey X & = & )

Note that+§2 is chosen such that for 0 < 61 < m/2 the polar
angle of e2 (as in figure 2B) is m/2 - 61. In terms of the car-
tesian unit vectors we have '

El sin(el)cos(cpl)'éx + sin(el)sin(cbl).éy + cos(el).éz

32 = —cos(el)cos(cbl)-éx - cos(el)sin(¢l)gy + sin(el)-éz
(36}
¢, = sin(¢))e, - cos(cpl)‘éy
Cartesian and cylindrical coordinates are related by
X = V¥ cos(o) , y = ¥ sin(¢) ] (37)
The cartesian and cylindrical unit vectors are related by
ZX = cos(ci))-é'\F - sin(¢)3¢
(38}
EY = sin(¢)3w + cos(¢)3¢
or
gy = cos(d)e, + sin(¢)2y
(39)
5¢ = —sin(¢)3x + cos(¢)gy

12
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where ;z is common to both cartesian and cylindrical systems.
Substitute for the cartesian unit vectors in eguations 36 from
equations 38 and use some trigonometric identities to give

El sin(el)cos(¢-¢l)'éw - sin(el)sin(¢-¢l)-é¢ + cos(el)éz

0¥
]

2 -cos(?l)cos(¢-¢l)gw + cos(el)sin(¢-¢l)3¢ + sin(el)-éz
(40)

(LR
]

3 = -sin(¢=¢;)8, - cos(¢-¢l)g¢

For our sensor configuration (figure l) we are interested
in an incident wave of the form

_->.-'> E -,-P.-P
% ) > iker > o 333 iker (41)

\ e.e H. =
inc o 2 ’ ine Z

> , > > .
Thus we need ege~1iR*r and 23e-ik*T in terms of the cylindrical
vector eigenfunctions discussed in the previous section.  Other
polarizations of the incident wave could also be considered but
due to the symmetry of the sensor about the z axis only the ver-
tical electric field component produces any signal in the sensor
and this field compenent is only assoclated with the polariza-
tion as in equations 41. As a further simplification, since the
sensor geometry is independent of ¢ we set ¢1 = 0 without loss
of generality.

To expand these vector plane waves we first observe

> -> > -> -> ->
ke r =Xkr o e, = k[WeW c e + ze, * el]

kasin(el) cos(¢) + kz cos(el) (42)
Now set

5, = cos(8,) . 5, = sin(8,) | (43)
and assume thét Z2 # 0. Then we can write

_iT 2 -ik¥z,cos(¢) =-ikzz
e ik-r _ e 2 e 1l (44)

13



n=0

and
-> . - . - -
e, = -;l cos(¢)ew + ;l s;n(¢)e¢ + ;zez
(45)
ey = -sin(¢)ey ~ cos(¢)'e’¢
Now we have the expansion®
-ichzcos(¢) :f: .n
e = (2 - an,o](-l) Jn(kTCZ) cos (no) (46)

Our task is now simply to identify the above expressions
with the vector eigenfunctions developed in section II. The
wave function components of interest are

-ikz;l
-i:lchﬁ(k¥c2)e cos (né)

N‘{Sl) (n, ;l r)

Jn(kWCZ) 'ikZCl

(L . .
N (n,z,,e) = iz, —g— ¢ n sin(n¢)
¢ 1 1 kY (47)
~ikzz
N (n,z .0 = 225 (kvzde b cos(ng)
and
J_(k¥z,) +=ikzz
Mél)(n.cl.e) = -_E_E?_E_ e 1 n sin{n¢)
-ikzg
it (n,5y,e) = —o,30 (k¥ey)e T cos(no) (48)

(1) =
M, (nrcl,e) = 0

8. Abramowitz and Stegun, ed., Handbook of Mathematical Func-
tions, AMS 55, National Bureau of Standards, 1964, egns. 9.1l.44
and 9.1.45.
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Note that by our choice of 71 in equation 43 then the z depend-
ence of the plane waves as in equation 45 matches that of the
yector eigenfunctions. This lgaves the Y and ¢ dependence. Now
e3 has no z component so that Hjpc (eguations 41) has no z com-
ponent and can only be expanded with M functions. Thl§ implies
(from equations 31) that Ejpe can only be expanded in N func-
tions. For the electric field expansion we then ldentlfy the z
component of e2 in equations 45 plus the expansion in equatlon
46 with Nz in equations 47 to glve

B -'kz;
-ikZ z ;1 N o} ) Tt 1 PN
e e =z [2 - 5 ](-l) J _(k¥z,);e cosn D)
2, 2 &= n 27y
= 1 - ~1) 2y (D)
Cz et [2 Gn,o] (-1i) z (n,Cl,e) (49)
v <> >

Since the M functions cannot be included in eze~ik°'r the only
expansion choice available for the electric field as in egqua-
tions 41 is

‘ o>
‘ '-E). = E 'é -ik

R

(50)
> =ikeT _ 1 > (1) :
e e . = =— [2 - sn,ol(—i)“n (n,gq,e)

Then making the transformation from the electric field to the
associated magnetic field as indicated in equations 29 gives the
magnetic field in eguations 41 as

(51)

N -
'é3e‘1k r . %._ Z (2 - 6 _] (-1) i () (n, 3, ,e)
2 n=o '

As a check one can expand the ¥ and ¢ components of the right
side of equations 50 and by use of trigonometric identities and
recurrence relations for the Bessel functions manipulate the
series into the forms given by equations 44 through 46. We do
. not record these manipulatiomns .here but note that they do check

15



equations 50. Equations 51 follow by a simple transformation
(as in equations 29) from eguations 50.

For the results of egquations 50 and 51 we have set ¢3 = 0.
However the results can be easily generalized to include ¢1 # 0O
by making a coordinate rotation by replacing ¢ everywhere by
¢ - ¢1. (Note the combination ¢_ - 41 throughout equations 40.)
Alternatively both even and odd N and M functions could be used
in the expansions.

e
The expansion of plane waves of the form Ele'lk'r would be
another generalization of the present rgsulgs, allowing any u in
equation 32 as a linear combination of el, e2, and e3. This
form of plane wave would apply_to the case of source currents
and charges in the medium and L functions would be included in
the expansion.

IV. Short Circuit Current

Having expanded plane waves in cylindrical coordinates we
go on to consider the short circuit current from the sensor.
For these calculations we short out the slot in the sensor at
all ¢ so that the problem becomes one of considering the surface
current on the perfectly conducting x, y plane as shown in fig-
ure 3. The incident plane wave has its propagation vector k
pointing at an angle 8] with respect to the z dgirection; the re-
flected plane wave has its propagation vector kre pointing at an
angle m™ -~ 0] with respect to the z direction. For convenience
we define another angle

'
el

T - 61 ’ (52)

so that for our incident wave from equations 43

5y = cos(el) = -cos(ei)
(53)

cz = sin(el)- 51n(61)

Then ei is the angle of the incident and reflected wave propaga-
tion with respect to the negative x axis as shown in figure 3.
Note that we only consider ©/2 < 61 < Tor 0 < 8] < 7/2 for
these calculations.

The expansion of the incident wave is given in equations 50

and 51. To obtain the reflected wave we merely replace 6] by
7 - 83 which replaces {3 by =-%1 giving the reflected wave as

16
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-> - l_ - 3 =(1) -
Bre = B 55 Ly 127 8,00 1) (n, -5y se)
(54)
- Y 12 = 6 _1(-1)%%) (n,-z. ,e)
re Z T, & n,o R
this gives é total field distribufion as
B = = -l—- V - - n
E = Einc + Ere E, 5y Lt [2 - 6, J1(-1)
'[ﬁ(l) (n,Cl,e) + ﬁ(l) (nr‘clre):l
(55)
BeB, +f_ =0l > o (a®
~ Yinc re 2z g, & n,ol (71

. i[ﬁ(l)(nrcl,e) + ﬁ(l)(n,-cl,eﬂ

Since the sensor is part of the conducting plane which of course
reflects an incident wave we use the fields in equations 55 as
our definition of the fields to which the sensor must respond;
response functions will be normalized in terms of these fields.

Note in equation 47 that Ny and Ny are odd in g3 so*tha%
tangential E is zero on the %, y plane as required. At r = 0,
which is at the center of the sensor, the only E field component
is Ez which from equations 47 and 55 is

-> \ - _ , ->
= 2Eoc2ez = 2Eo s:.n(el)ez = 2Eo s;n(ei)ez (56)

The total current density in the medium at =20 (Just above the
X, ¥ plane) is

- . ->e
- = (o + iwe)E
r=0

3 > >
=0

. . ->
t‘ = 2(c + lwe)Eo Sln(el)ez (57)

This will be used in defining the low-frequency sensitivity of
the sensor.
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The surface current density on the x, y plane is

F =g &, +J_¢ (58)
s Sy ¥ s¢ o}
where
J = =H = 2 Eg }?: [2 - & ](-i)n_lJ'(kT ycos (ne)
Sy ® z=0+ Z n=o n,0 n ta)c0s
(59)
E J_(k¥z.,)
3 =H = -2 2 [2 - 6 1(- -3yl 2—2- n sin(no)
56 w.z-o+ 2 &= k t2

]

The total current crossing Y

a (outward) on the z = 0 plane is
just '

2T Eo
- = s
I = aJ£ JSW d¢ = 41ma 7 1Jo(kaC2)

Y=a

, Eo .
~idra 7 Jl(ka 51n(el)) (60)

As ka - 0 we have

Eo 3
I = -i27a T ka sin(el) + 0({ka)™)

—Zwaz(a + ime)Eo sin(el) + O((ka)3)

q%Z(c + le)E sin(8 )} + O0((ka) ) (61}

where the equivalent area of the sensor is

‘A = ma? (62)
eq

or as a vector

18



= ta‘e (63)
so that we can write as ka = 0

I=-(0+ iwe)E 2 Keq + o((ka)3) (64)

Thus the short circuit current from the sensor is proportional

to the total current density (equation 57) at low frequencies.

For the case that ¢ = 0, which we use for the graphs, the total
current density is just the displacement current density.

Note that the sensor slot is for ¥ < Y < ¥ and a is the
geometric mean of Y1 and ¥2. The above results for the short
circuit current then assume that the slot is narrow compared to
a. This implies that the distance b which characterizes the
slot in equations 2 through 4 is restricted by b << a.

For convenience we define a short circuit transfer function
as ' '

1

T(e g [-2Aeq(c + iwe)Eg sin(el)]‘ I

= 2 . _ 2 . '
= R sm{e J, (ka sin(6,)) = K& sin(el) J, (ka sin(8]))
- (65)

so that as ka + 0 we have T - 1. The deviation of T from 1 as
ka increases then shows for warious 61 the departure of the
short circuit current from its ideal dependence.

We also define a special short circuit transfer function as

= T(n/2) = & 7, (xa) (66)

T xa

1

This transfer function applies to the case of a plane wave prop-
agating parallel to the %, y plane and is a special case of in-
terest. It is used for some of the later response fun?tion cal-
culations when we want to consider only one value of 9j.

The short circuit current transfer function is plotted in

flgure 4 as a function of ka sin(91) with o = 0. For conven-
ience the phase is plotted as arg(T) - ka Sln(el) which
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-ikasin(ei)

corresponds to multiplying T by e . The reason for
this is that in the time domain the wave reaches the sensor slot
before it reaches the regerence point for the fields, i.e. the
center of the sensor or r = 0. This phase shift references the
phase to the first arrival of the fields at some position around
the sensor gap. Note that the magnitude of T starts rolling off
for ka sin(8{) > 1 and has zeros correspondlng to the positive
zeros of J] (not 1nclud1ng ka 51n(8 } = 0); the first such zero
occurring at ka 31n(81) = 3,83. Also note that the phase jumps
by m at each of the zeros of T. As a convention we add m to the
phase on g01ng through a zero in the direction of increasing

ka sin(6]). This makes the phase oscillate around some finite
negative value for large ka 51n(61) We keep this definition of
prhase for cases which later use T or T] as part of various re-
sponse functions for the sensor.

V. Admittances

Now consider the admittances when the sensor is driven at
the gap, the annular slot in the %, ¥y plane described by
¥1 < ¥ < ¥2. As shown in figure 5 there is a voltage Vgap uni-
formly distributed around the gap. Associatgd with Vgap there
are 3 surface current densities parallel to ey. These are Jg¢,
Jgyr and Jgg and are associated respectively with currents into
cables or other transmission lines loading the gap, with fields
above the conducting plane (z > 0}, and fields below the con-
ducting plane (z < 0). Taking the conventions for these surface
current densities as indicated in figure 5 we define three ad-
mittances as

J s S
Y = 27a u %

© Vgap gap gap

(67)

Note that for our case of interest Y = Yy because of the iden-
tical geometries above and below the X, y plane. Thus we define
a single normalized admittance as

Ya = 2¥Y = ZY.Q, (68)

The total normalized admittance associated with the fields both
above and below the x, y plane is just 2y,;. If in some other
problem the geometry of the region below the ground plane were
changed, then another admittance besides y; would be needed.

_ Also define a normalized cable conductance as
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NlN

:l =
Yo = F ¢ (69)

c c

where Zo is the net cable impedance (resistive) loading the gap.
Since we use ¢ = 0 in the numerical results then ro > 0 for
these calculations and we can specify r¢ parametrically.

A. Boundary Conditions at Annular Slot

- As in reference 2 and a few other previous notes we find
the sensor admittance by specifying a quasi=-static electric
field distribution in the gap. Again the gap width ¥3 - ¥31 is
assumed small compared to the characteristic sensor dimension a.
This field distribution is written as

1
E = v
w!z=o b “gap

£ (70)

E

where £fg is a normalized distribution function subject to the
condition

o y
1 £.ay = & 2fcw=1 (71)
b E 'S\y E

o 1l

Actually fg is non zero only in the range ¥ < V¥ < ¥2. For
later use we introduce the normalized cylindrical radius

_ v 1

and another variable £ for use in defining positions in the
sensor gap as

b
=z
£ = a In(v) = % ln(é) ’ v =e?
(73)
b
- 2t
dv _ b _b a
v——;dg, d\)—ae dg

Back in equations 2 we defined the annular slot in terms of
¥, In terms of v we define .
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12 <3
W

Vi °

WIH'G

= 2
=e vy 2 gm= e (74)
Note now that in terms of v the slot is defined by vi < v < v3;
in terms of § it is defined by -1 < § < 1. 1In terms of these

new variables the normalization condition on the electric field
distribution function becomes

2
a
B f fEd\’ = 1
V1
(75}
1 gs
fge” 4§ =1
-1
For this note we choose fg as
1 2 "1/2 3
=[1 - &9 e for [g] < 1
£g = (76)
0 for gl > 1

Substituting this definition in the second of equations 75 one
finds that the normalization condition is met. In terms of Vv
the distribution function is

-1/2

2
1 a 1
Fll [E ln(vq } 5 for vy < v < Vg
fE = {(77)
-0 for v < vl and for v > vz
Now as b/a - 0 we have
2 2
- b _ . _ b b
=1+ Beo(B)) . v =1-Bao(B)) (78)
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and for vy < v < v3 so that v - 1 = 0(b/a) we have

]
2 -1/2

{1 -[2 0 -] 4o )} L

This field distribution has the proper form of singularity at
the edges of the annular slot, assuming perfectly conducting
edges of zero thickness. The factor of 1/v makes the field de-
crease slightly going from the inside to the outside edge of the
slot which is not inappropriate for such a geometry. While
there is a simpler form for f£g in terms of v which still meets
these conditions (by dropping the 1/v and 0(b/a) terms in equa-
tion 79), we choose the form in equations 76 and 77 because it
is helpful in the solution of a certain integral over fg to be
encountered later. In addition this form goes to the simpler
form as b/a + 0, as do the slot edges in equations 78.

2 -1/2

Nvsren, ottt
<=

p|o

£, = %{1 -[% (v = 1) + of

(79)

L
Al
plo

B. Hankel Transforms

Later in this section we use Hankel transforms. For later
reference we have the Hankel transform pair as®

F(uz) ='J£ f(ul)(uluz)l/an(uluz)dul
(80)
£(u)) = jz‘ F(uz)(uluz)l/an(uluz)duz

where n is the order of the Hankel transform. Substituting the
first of equations 80 into the second gives the identity

_(°r° 1/2 1/2
f(ul) = j;./; f(u3)(u2u3) (uluz) J]_](uzu:s).:r]_](uluz)du:;du2
{(81)

9. Magnus, Oberhettinger, and Soni, Formulas and Theorems for
the Special Functions of Mathematical Physics, 3rd ed., Springer-
Verlag, New York, 1966, p. 397.
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Define
~1/2 -
gtup) =i r) , Gluy = w32y (82)
giving another form to equations 80 as
G(uz) = jr g(ul)ulJn(uluz)dul
o]
(83)
g(ul) = jr G(uz)uan(uluz)du2
o
and equation 81 takes the form
[--} -~
g(ul) = JE j: g(u3)u2u3Jn(u2u3)Jn(ulu2)du3du2 (84)

These Hankel transform relations have an important applica-
tion in that suitably well behaved functions, say £(ul) or gf{ui),
can be represented as integrals of other functions (their trans-
forms) times Bessel functions of the first kind with the inte~
gration limits 0 and <. ZXnowing that functions can be so repre-
sented will allow us to find an explicit expression for ya in
terms of £ using Hankel transforms.

C. Formulation of the Integral Expression for the
Admittance Associated with One Side of the Sensor

In solving for the sensor admittance we drive the slot uni-
formly in ¢ with only a ¥ component of the electric field. By
symmetry the only non zero field components are Ey, Ez, Hgy and
they are all independent of ¢. We only consider the fields
above the z = 0 plane in calculating ya. The components of the
vector wave functions of interest are

—ikz;l
—. '
lclcho(kWCZ)e

(1)
Ny""(0,2,,e)

-ikz;l
= 1clchl(kTC2)e
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(1)
N¢ (O,cl,e)

u
o

(85)
-ikzg
w0,z 00 = 225 (kyge T P
and
(1) =
M\y (olclle) = 0
-ikzg
uit (0,3, ,0) = —g,3l (kvg)e T
(86)

-ikZCl
5,9, (k¥5,)e

!
o

(1),
Mz (olclle)

Note that 7] and Z2 have definitions for these admittance calcu-
lations which are not the same as for the short circuit current
and plane wave calculations in previous sections.

For z > 0 the fields are expanded (as in equations 28 and
30) in the form

z2=Q____ o ___

_ ® > (1)
E = Elj; Al(CZ)N (O,Cl,e)dCz
(87)
- N (z %2 (0,7, ,e)dz
2 o 1'°2 r=1’ 2
Then Ey on the z = 0 plane is given by
Ewi = iElf Al(cz)clchl(chz)dcz (88)
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®
which is to match the Ey on the z = 0 plane as specified by the
field distribution discussed in section V A. Looking at equa-
tion 88 and comparing it to the Hankel transform relations in
section V B, note that Ey on 2z = 0 is set up as the Hankel trans-
form (of order one) of A1(z2) (with a few other terms) where Evy
is considered as a function of k¥. We then know that we can

have such an Aj(z2) because it is given through the Hankel trans-
form of Ey. This alsoc shows why the limits of zero and « are
chosen on the integrals in equations 87. E; is just a conveni-
ent constant with units velts/meter.

Note that g1 and Z2 are related by equation 12 and since we

are interested in a range for z2 of 0 < z3 < » then we have to
define which branch of the square root to use for z1. We define

this as
V1 - §§ for 0 <z, <1
= (89)

-chZ'- 1l forlcxg,

1

where the square rcots here have their standard positive defini~

tion. This choice assures that for all 73 being considered the |
vector wave functions for z > 0 represent either outward propa- .
gating or attenuating waves. Note that we are only considering

z2 on the positive real axis in equation 8% but it can be con-~

sidered a more general complex number provided the definition of

z1 is made in a manner consistent with this one.

The surface current density on the z = 0 plane (associate&
with the fields for z > 0) has only a Y component given by

E -]

. ljr

J = ~H = =i 53— A, (z,)5,7, (k¥z,)dz (80)
Sy o] z=0+ Z o 122772271 2 2

With this result we find the surface current density driven £from

the slot by setting = a and using the convention in figure 5
to give ‘
E; [
u ¥ Yea o]

We evaluate this surface current density at ¥ = a for convenience
under the assumption of a narrow slot (b << a) so that for wave-
lengths large compared to b the surface current density as in .
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A Y
equation 90 is approximately uniform across the gap. The nor-
malized admittance associated with the upper half space 'is then

Jsu El @
y. = 2maz 7 = i2ma T Jﬁ Al(cz)chl(kacz)dcz (92)
2 gap gap o

Now we need an expression for A1 (z2). Egquating the expres-
sions for the tangential electric field on the z = 0 plane from
equations 70 and 88 gives

Ey

JAENCRER N TEREER (93)

f, = ib
Vgap ©

E

This is a Hankel transform relation for Aj(z2) in terms of £fg.
For convenience define

E
‘ = 1
A,(5,) = ib =—— A, (3,)3% (94)
2 2
2 Vgap 1 1 :

so that equations 93 and 92 become

[-- ;2 ‘
ya = 27 %f Az(Cz) q Jl(kacz)dcz (96)
o]

This equation pair contains our solution.

Now take equation 95, change 32 to 2, multiply both sides
by k¥J1(k¥z2), and integrate over k¥ from 0 to « to give

jC fEkWJl(chz)d(kW) j; jr A2(Cé)kWCéJl(kWCé)Jl(Csz)dCéd(kW)

o
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where we have used the Hankel transform result of equation 84.
Now change from k¥ as an integration variable to v(= ¥/a) from
equation 72 giving

A, (g,) = (ka)zfo £,V (kavz,)dv (98)

This is an _explicit solution for A3(Z2) in terms of an integral
over £y which is given as a function of v in equation 77. Sub-
stituting this result for A2 into equation 96 gives an explicit
result for the normalized admittance as '

(-] (-] ;
_ a 2 2
Yy = 2T 5 (ka} JE j: fE EEle(kav;z)Jl(kacz)dczdv {99)

For convenience we write this last result as

y, =271 & (ka)zf £,VT dv (100)
Q
where
_ 7 52
r, = j; .C_l-Jl(kavcz)Jlma;z)dz;z (101)

We go on to consider some manipulations of Ij.

D. Manipulation of T3

This integral '] is considered in reference 3 and we follow
a similar derivation to manipulate it into a more convenient
form. Starting with a form of the well known addition theorem
for cylindrical Bessel functions (ref. 8 egns. 9.1.79 and 9.1.5)
we have as a special case

Jn(kavcz)Jn(kacz) cos (nBg)

nz-m

Jo(pcz)

-, [2 - Gn'o]Jn(kavcz)Jn(kacz) cos (nR) (102)
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where

ka g (103)

o)
m

and

1/2

2.2y cos(B8)] (104)

q [l + v

The square root is defined as pesitive for v real. Multiply
both sides of equation 102 by cos(8) and integrate over
0 < B < 27 giving

‘ 1 am :
7, v )3 (katy) = 37 [° 9, (08,) cos(mas (105)

As a special case of a result of Watsonl0 we have ancther
integral as

® 52 . e7iP
»[: I3y a4y = 1 % (106)

where the definition of 7] is as in equation 89. Then we can
evaluate I';] using equations 105 and 106 as

*@ 7
_ 2
I‘l = f ™ Jl(ka\n;z)Jl(kaz;z)clz;2
o 1l
= o — J_(pg cos Bdz
27 o ;l o o} 2 2

27 _-ip
i e
3 j; 5 cos(B8)dB

10. G. N. Watson, A Treatise on the Theory of Bessel Functions,
2nd ed., Cambridge, 1966, p. 416, egn. 13.47(4).
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. T _=ip
- i j; = — cos(g)ag (107)

This result can also be derived from an expansion of (l/p)e~iP
found in another reference.ll

There is another result for I'1; in which '] is expanded in
an infinite series of spherical Bessel functions. However this
expansion is not directly used for our present results and it is
presented in appendix A for completeness.

For convenience we define an integral related to I3 as

2T e-ip
I', = =-i27nkal', = kaJr cos(B)d8
2 1 A
2T e-ikaq T e—ikaq
= f — cos {B)d4B = Zf —_— cos (B)dB (108)

where g is defined in egquation 104. The normalized admittance
now has the form

-]
kaj; fE\)I'zdv (109)

o

y, = 1

Next we go on to consider I3.
E. Manipulation of I3

Now expand the exponential in equation 108 in a power ser-
ies (an absolutely convergent cne) as

[-2)

: .. \n
e-ikag _ Z (_‘Il?].fi)._ g (110)
n=o *

Substituting this series in eguation 108 and interchanging sum-
mation and integration gives

IT. Reference 9, p. 487.
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(= 1ka)

I’2 = - ni n (111)
. n=0
where
2T
A, = 4[ qn-l cos(B8)d8
o
n-1
22T 2 2
= J{ [1 + v = 2v cos(B)] cos (B)dB (112)
o)
For convenience define
n = l-n
= 2
(113)
Q = qz =1+ v% - 2y cos (B)
giving another form for Ap as
2T _
A, = f Q" " cos(B)dB (114)

o

Now expand Q-0 for n # 0, -1, =2, se¢+ in the forml2,13,14

:E: cg(cos(B))vA for |v| < 1
-1 A=0

y™2n ;z: cg(cas(ﬁi))v'A for |v| > 1
=0

12. Reference 9, pp. 218-224.

13. A. Erdelyi, ed., Higher Transcendental Functions, vol. 2,
McGraw Hill, 1953, pp. 174-178.

14. A. Erdelyi, ed., Higher Transcendental Functions, vol 1,
McGraw Hill, 1953, pp. 175-177.
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' where the functions CJ are called Gegenbauer or ultraspherical
polynomials. For n = 0 we have simply

Q. =1 (11le6)

For n = 0 the ultraspherical polynomials need a special defini-
tion to make them not identically zero and this definition is
inconsistent with egquation 115. ©Note also that the range of A
is often restricted to n > -1/2 in order to make the weight
functions integrable. We allow n < -1/2 since we do not need
the integrability of the weight functions for our present pur-
poses. We also have the useful representation of the ultra-
spherical polynomials for n # 0 as

n (n),c(n))\_,c
C, (cos(g)) = E T = o7 cos((A - 2T)B) (117)

T=0

where the Pochhammer symbol is given by

(g =1
(n), = n(n + Ly(n+2) ¢« (n+1t-1) fort=1, 2, «-+
(118}
= I{n + 1)
- T TIn

Note that n can even be a negative integer if the T functions
are not used. The expansion in equation 117 is derived in ref-
erence 14 using the expansion in equation 115 as the definition
of the ultraspherical polynomials. Provided the Pochhammer sym-
bols are used in the derivation instead of T functionsthen n can
be a negative integer and the derivation still applies.

Now Ap for n # 1 (or n # 0) can be rewritten as

[-:]

n,n EOF v <1

A = : (113)
v-A+n-l =

= for [v] > 1
=3 n,A
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where

[£3]

27 )
N s JZ CQ(cos(B)) cos (B)deB (120)

while for n = 1 (or n # 0) we have

Al =0 . (121)

Substituting the expansion of CR as in equation 117 into the in-
tegral in equation 120 the only contribution comes f£rom the
terms for which A - 21 = %1 due to the orthogonality of the
trigonometric functions over the interval 0 < 8 < 27. Thus we
have the result -

2 2 2 2
T - + for A odd
- _ A+Lly, (A=1 A=l A+l
B =y (SR EE (R (122)
0 for )\ even
Since only odd )\ contribute let
A =20+ 1 | (123)
and define a new coefficient for integer 2 as
(l-n) (l-n)
n,t - 7 "n,A (Z+1) 12t (2+1) 121
so0 that we have the result for n # 1 as
/ [=-]
T :Z: B, 4 VL gor [v] < 1
) =0
An =< ‘ (125)
[=-]
n-22-2
‘\ﬁ ~ Bn,s ¥ for |v| > 1
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If equations 121, 124, and 125 are substituted into eguation 11l
then I'y will be expanded as a doubly infinite series in ka and v.

F. Expansion of ya

With the last results for T2 we substitute them into equa-
tion 109 to obtain

o0

. n
ya = ika Z ——2——-( ;ka), Qn (126)
n=Q

where we have defined
@ =& er £_vA_dv (127)
n b o E""n

and where Ap is given by egquations 121, 124, and 125.

Now recall the change of variable from e@uaﬁions 73

A_‘b‘
o

v =e? |, av = g 2 at (128)

and the distribution function £ for the electric field in the
slot (-1 < § < 1) from equation 76 as

b
-1/2 -2
[1 - £2] e? for |g] <1
£ = (129)

Al

0 for |&| > 1

Substituting these in egquation 127 gives for n # 1

0

1 ®
a 28+2 a n-24%-1
, E ﬂBnlz{E l; £V dv + 5-]2 £V dv}

[ o)
n

=0

2 o b

=1/2 ={28+2)%
E “Bn,l{% J‘ [1-52] e? ag
e B o
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o

1 b
-1l/2 -=(22+1-n)
* %f [1-5°] e ® da}

o)

-]

:E: 1 5. ~1/2 -2(22+2)5
= Bn,l f [1-£7] e ag
o o .

=0

1 ,. ~1/2 -?(22+l-n)
* jptl-a ] e @ g | (130)
(o]

Define a function as

1

-1/2 |
X (a) f 1 - £ e®% ar (131)
Q

This function can also be written aslS
' _ 7
X(a) = ZII (@) + Lo(a)] | (132)

where Io is a modified Bessel function and Lo is a modified
Struve function, both of zero order. The series and asymptotic
expansions of X(a) are treated in appendix B. With this func-
tion we can write for n # 1

= b b - )
2, = ;i; BnIQ}X(- 2(22 + 2)) + X(- 2(2L + 1 - n)) (133)

while for n = 1 equation 121 gives

f, =0 (134)

15, I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Ser-
ies, and Products, Academic Press, 1965, p. 322, 'egqn. 3.387(5).
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Summarizing we have a solution for the normalized admittance .
associated with one side of the z = 0 plane as

[+=]

. (-ika) ™
Yp = ka2 2y T
[= -]
fg (=B ' _b - g
2 B, 4 X(= 2(22+2)) + x(- 2(22+1-n)){ for n # 1
Q_ =
(135}
] for n =1
<l-n) (l-n)
B, =2 ' ¢ /ga1\ 2 /g
n,4%

(2+1) 12!

The behavior of these series for large £ and n are treated in
appendices C and D respectively.

The normalized admittance is plotted in figure 6 as a func- .
tion of ka with ¢ = 0 for several values of b/a. Remember for
small b/a the slot width is very nearly 2b. For convenience
this normalized admittance is plotted in the form ya/ka. As
ka - 0 ya/ka tends to a constant, i.e. iflg; the numerically de-
termined coefficients are listed in table 1.

b Ja
a ika
.001 15.36
.0l 10.76
.1 6.16
Table 1. Asymptotic form of Yint for small ka

For small ka this admittance represents a capacitance.
G. Behavior of y; for Small ka

From equation 135 note that as ka - 0 we have, since these
series are convergent and Q2] = 0,

;1%:
n
[\

=q_ + o((ka)?) , (136) .
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The term Qo is given from equations 127 through 129 as

1 1l 5 fl/z
Qo = = A [1 - §°] Aods (137)
where from equation 112
T 5 -1/2 ‘ '
Ao = Zf [l + v = 2v ¢os(B)] cos (B)dB (138)
o)
Now let
8 =1 - 28", cos(B) = 2 sin(8') - 1 (139)
giving
' n/2 2
- 2 sin“(g')y = 1 '
Ao 4[ > > 73 dg
o [(L + v)° = 4v 8in“(B")]
- %{[1 - %]K(m) - E(m); (140)

where K and E are complete elliptic integrals and are functions
of the parameter m given by

-2
- -1/2 1l/2 -2
m oz 4v(l + V)%= [“ . } = [cosh(% g)] (141)
and where the complementary parameter is
2 2
- _ 11l = _ £ b
ml = 1 ms= [m] = [tanh(f a-)] (142)

For small m; with |E| < 1 (and thus small b/a) we havel6

16. H. B. Dwight, Table of Integrals and Other Mathematical
Data, 4th ed., Macmillan, 1965, egns. 777.3 and 774.2.
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K(m) = ln(—]4_75)[1 +omp)]

m

Em) =1 + O(ml)
(143)
2 4
m o= (52) +o((z2) )
so that as b/a + 0 equation 140 becomes
A = %{[l+0(ml)]ln(—i7f) -2+ o<xﬁl)}
m
1 i
2 2
= 2[1 - -]z:g-g + o((gg) )]{[1 + o((sg) ):lln(-l-%]— 2) - 2}
| 2
- 231n(T-§-T 2) - 2} - g-g}ln(Tg—r 2) - z} + o((gg-) 1n(:§b-))
(144)

Next substitute this result into equation 137 noting that
terms odd in § give no contribution. Thus as b/a +» 0 we have

D
"

1 -1/2 1l -1/2
2L e im(gplas + 2am(s §) - o) neeh s

+ 0((b/a)?1n(a/b))

2 1n(2) + 2§1n(a 5) - 2% + 0((b/a)%1n(a/b))

2)1n(16 &) - 2}[1 +'0((b/a)2)] (145)

I7. Reference 16, egn. 863.41.
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This result can be compared with table 1 to give an indication
of the accuracy of this firsi term in the asymptotic expansion
for small b/a. Note that the results rely on the form of fgp
chosen in equation 76. In fact for b/a = .1 this result differs
by less than one part in 103 from the result determined by sum-
. ming the series for {g. For small b/a this choice of fg should
be quite accurate since as b/a » 0 fg goes to the known solution
for the case of an infinitely long straight slot in a conducting
sheet of zero thickness at w = 0. For b/a > 0, but still small,
there may be some small erroxr in fg. The presence of signal
cables connecting across the slot will of course further alter
the field distribution in the slot.

Now as w - 0 the admittance associated with the space above
the 2z = 0 plane has the asymptotic form (from eguations 68 and
135)

s 3
Y, = iuwC, + 0((ka)~) (146)
where ¢ = 0 is assumed. This capacitance is just
_ ika _
Cu = m Qo = eaQo (147)

If the lower half space is the same as the upper half space then
the sensor capacitance is just 2Cy or 2eaflg.

VI. Prequency Response Characteristics

With the short circuit current and admittances calculated
in normalized forms we go on to consider some frequency response
characteristics of the sensor. PFirst define a response function
including only the admittances as

4 g
- c c - -1
R = = [1 + 2r_y,]

= (148)
Y Yc + Yu + Yz Yc + Zya

This is plotted as a function of ka in figures 7 and 8 for two
values of b/a (.01 and .l) with ¢ = 0. For each graph there are
several values of rc. As ka ~ 0 we have Ry » 1. As rc is de-
creased Ry is maintained as a flat response characteristic out
to larger values of ka.

, Including the short circuit current transfer function from
equation 65 we have the response function
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-1

R(8}) = T(8))R, = T(8])[1 + 2r y,] (149)

Another convenient response function uses the short circuit cur-~
rent transfer function for only one value of 61 as in equation
66 with 6] = /2. This response function is defined as

-1

R T,R_ = Tl[l + 2rcya] (150)

1 1y

Figures 9 and 10 have R] plotted as a function of ka for
two values of b/a (.0l and .l) and several values of zc.

Based on R] we define an upper freguency response as the
minimum positive value of ka for which

= — (151)

This value of ka is plotted as a function of ro in figure 1l for
two values of b/a. Frequency response is increased by increas-
ing b/a and by decreasing rc.

Figures 12 and 13 show R plotted as a function of ka with
o = 0 for various values of 6] with b/a = .l for two specific
values of re. These two values are rq¢ = .1327 and re¢ = .2654
which correspond to Zc = 50 @ and Z¢ = 100 Q respectively if the
media both above and kelow the z = 0 plane are assumed to have
the same constitutive parameters as free space so that the wave
impedance is

Z = 2y = 376.7 Q (152)

Using R] so as to pick a specific ei of /2, the frequency re-
sponses for these two cases as defined by equation 151 are given
by ka = .33 and ka = .17 for Zc = 50 Q@ and Zg = 100 & respec-
tively.

VII. Summar

In this note we have developed equations and curves for the
response of a flush circular plate dipole with a uniformly re-
gistively loaded slot as a function of frequency and the angle
of incidence of the incident electromagnetic wave. For low fre-
quencies the response of this sensor is propertional to a compo-
nent of the displacement current density (or total current den-~
sity if the medium is conducting).
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The present calculations consider the case that both upper
and lower media are semi infinite half spaces. An extension to
the present calculations would be to put finite boundaries on
the lower medium and/or to divide the lower medium into two or
more distinct medi; with different electrical properties.

Note that the sensor slot has been assumed small in this
note to allow the use of simple quasi static approximations of
the electric field in the sensor slot for wavelengths large com-
pared to the slot width. Perhaps some future notes could con-
sider detailed static solutions for this geometry, even for b/a
not small. Such solutions could be used for accurate calcula-
tions of equivalent area and capacitance of the sensor.
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FIGURE |. CIRCULAR FLUSH-PLATE DIPOLE
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A. PLANE WAVE WITH FIXED POLARIZATION

€, €5, &, ARE IN
THE SAME PLANE.
‘e',,E;,E; ARE IN
THE SAME PLANE.

B. UNIT VECTORS FOR PLANE WAVES

FIGURE 2. VECTOR PLANE WAVES IN CYLINDRICAL COORDINATES

43



Hine AND He, ARE
POINTING OUT OF THE PAGE.
y IS POINTING

- INTO THE PAGE.

-l
Einc

#Z

't

FIGURE 3. INCIDENT AND SCATTERED PLANE WAVES AT
CONDUCTING PLANE: CROSS SECTION VIEW
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Appendix A: Expansion of '] in Spherical Bessel Functions

In equation 107 we have the integral

. T _-ip
r, = ‘71? f ep cos (B)dR (A1)
: o}

where from equations 103 and 104

172

2 - 2v cos(8)] (A2)

p = kal[l + v

and where we have 0 < V. Define

v_ 2 min[l, v]
, (A3)
v, max([l, v]
giving the relation
v_v, v A (A4)

Then we have from an addition theorem for spherical Bessel func-
tionsld,2A,3A :

e 1P

=-41 : (2)
P~ =" F Z (2n + 1)j (kav_)h "' (kav )P (cos(B)) (a5)

n=o0

where Pp is a Legendre polynomial.

To obtain the expansion for I'; multiply both sides of equa-
tion A5 by cos(B) and integrate over 0 < 8 < T giving
[=-]
= E . (2)
r,== Ly (2n + l)Dnjn(kav_)hn (kav ) (a6)

l1A. Reference 9, p. 1l07.

2A. Morse and Feshbach: Methods of Theoretical Physics, McGraw
Hill, 1953, p. l4és6. '

3A. Reference 8, egns. 10.1.45 and 10.1.46.
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where

T 1
D =f P (cos(8)) cos<e)d3=f
Q

o
n n . Pn(ce.) —— da (A7)

l - a2

For n even Pp(a) is even in o and the integral is zero. For n
odd and given by

n=2n"+1 (A8)

we havedA,5A

E (20%)(28' *+ 2). _n__ (2n)i(n’ + 2)1
n 2n'+1 \n n' + 1 42n +1 (n.!)z((n. + 1)1)2

o
[}

4

(n -~ 2)!inl!
M= D@ F I)TT

T (2n' = 1)1l (2n" + 1)!!
(2n") 11 (2n" + 2) 11

2 \
- T ni! \
< am T l)[(n - 1}11] (29) ‘I.

where the double factorial function is defined by

=T

(2n}t! = (2n)(2n = 2) *** (4) (2) (even)
(2n - 1)!1 2 (2n - 1) (2n = 3) <+« (3) (1) (odd)
(A10)
otl = (-1)1t =1
For T] we then have
r. o= S¢ an s [ nil ]2 i (kav )h{?) (kav.) (A11)
17 &+ Dm- DIt Jptkav.ing av,

4A. Reference 8, egn. 22.13.7.

SA. A. Erdelyi, ed., Tables of Integral Transforms, vol. 2,
McGraw Hill, 1954, p. 276, egn. 16.2(5). . .

56



In another form we have some special values of the Legendre

functions (using ref. 8 definitions) as

0 for n + n'' odd

Pp (00 = n+n'' (A12)
-3 vy o
(-1) ¢ (n(: 2 n")}i!! for n + m even
giving
@®,2 5
= 2n + 1 1 . (2)
Iy = Zl nin + 1) [Pn(O)] 3 (kav_Yh " (kav ) - (al3)
n=
e .
54, A : T ) . - A |
.1 ] “ Bl -:.’.}
o e N - /o' 25/'5
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Appendix B: Representations for X(a)

In equations 131 and 132 we have the function

1 -1/2
X(a) = f -4 e*® ag = Zir (o) + L_()] (B1)
o

This function has a series expansion which can be found by set-~
ting

& = sin(é) , df = cos(d)ds ‘(B2)

giVinng'ZB

X(a)

/2 X =Lt /2 . .
Jf 3sind) g5 o D O Jf [sin($)1*’ as
o T Yo

L'=0

(B3)

i

VE!
—
T
e il

21=0 [r(% + 1)]2

' In another form this series can be written as

«, 2 [ @,2 R '
X(a) = % :E: —— 4 :S: — (B4)
S () et
QY as
- 24" < 22 '+1
X(a) = X -—ii-——77-+ & (B5)
2 gi=o ((22")11) ;2;; ((22' + l)!!)2

where the double factorial notation is defined in equations AlO.
These series expansions are absolutely convergent for all o.
They can also be found from the series for Io and Lo by addition.3B

1B. Reference 16, egn. 858.44.
2B. Reference 8, egn. 6.1.18.

3B. Reference 8, egns. 9.6.10 and 12.2.1.
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For large |a| we can use asymptotic expansions for X(a) to
helT characterize the behavior of the function. First we have
)

as + » with |arg(a)| < m/2 the results4B,358
I (o) = & {1 S o(a‘z)}
© VaTa
. .
= = %1 + o(a'l)f
Y210
(B6)
21 (3) (a0 |
. 2 A -22 =22
Lo(a) = Io(a) - FE{ 7T o + O(a )
L¥=0
(o}
-2 {1 + O(a‘lﬂ
Ve T To)
and thus

3

X(a) ﬂIo(a) - é + O(a

)
= \/%E ea{l + %E + o(a‘z)%

-\ ea{l + o(a’l){ (B7)

This can be used for large positive a¢ (a + +=) in computation.

Next as |a| - = with |arg(-a)| < m/2 we use the relations

Io(a) = Io(-a) , Lo(a) = -Lo(-a) (B8)

4B. Reference 8, egns. 9.7.1 and 12.2.6.

5B. Reference 9, p. ll5.
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so that we can use equations B6 with ¢ replaced by -¢ and appro- .
priate changes in sign. Thus as |a| + « with |arg{-c)]| < 7/2 we
have

-a
_ e _ 1 -2
Tole) = 21 - gz + 0”2
(B9)
22l () (2en)
Lo(@) = -I_(a) - %a{ :E: T R Y )I
2S

and -

X(a) = SII (@) + L ()]

(3) (221

2 1=1
{ }E: A a2 . o(a722")}

4'=0

N

|
i
Rl

grt=1
= - ég :E: (28 = 1)1112 a~2%' 4 O(a‘ZQ")}

=3y (B10)

"
1
|
+
o
e

This can be used for large negative ¢ (¢ + =-»} in computation.
This result can also be obtained by a direct asymptotic expan-
sion of the integral in equation Bl.
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Appendix C: Behavior of {ip Series for Large 2%

Consider some of the features of {(n. From equation 135

Z Bn’zgx(-g(zuz)) + x(-§(2z+1-n))} for n # 1

2=0
Qn =

0 for n=1 (C1)

l-n l-n
(_5_)z+1(—7_)2 (”)z+1(”)z
n, =2 TIF) 121 =2 ED

where we have, as in equation 113,

ns it (c2)

‘ In calculating Qn there are two cases to consider.

'Case l: n odd

In this case n is a negative integer or zero. In calculat-
ing Bp,4 we have the Pochhammer symbols

‘”)z (n) (n+l) e+¢ (n+2-1)

(=1)% (=n) (~n=1) +e+ (-n-2+1)

L (-n)!

= (-l) z_n_z)l

n
T
'—l
i'
]

(C3)

6l



(N)gpq = (M) (M+L) =oe (n+L)

[}
—
1
s
L

Note for & > 1 - n that (n)g = 0 and for 2 > -n that (n)g+1 = O.
Thus the sum over 2% truncates giving

n-3
T :
2: [ -_(2g+2)) + x(-§(2£+l-nﬂ] (C4)

Thus for any given odd n there are only a finite number of terms
needed to calculate {in. Note that if we use the convention

that if the upper limit on the summation is less than the lower
limit the sum shall be taken egqual to zerc, then this sum gives
Q1 = 0 as reguired.

Case 2: n even

In this case the sum over 2 does not terminate. The Poch-
hammer symbols have the form

(n) (n+1) =+ (n+L=-1)

(”)z
(-1)% (~n) (-n=1) ¢+ (~n=2+1)

& T {-n+l)
(-1) fTéﬁgz;ry

(C5)
(n} (n+l) <+ (n+)

(M) g1
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and also
(ny, = L{n+%) r(== + ¢)
I ) r(%a)
(C6)
1
(n) - D(n+e+l) _ T(—fa + L+ l)

Since n is even the I' functions here have half integer arguments
and are then finite and non zero even for negative arguments.
For these I' functions of negative argument we can also uselC

e 5,:- sin(mw) T(1 - w) (€7)

For large arguments we have the asymptotic form of the I func-
tions known as the Stirling approximation2C which has as w + «
with |arg(w)]| < =

1
w-
T =e¥w 2 2m? 1+ o) (c8)

Another asymptotic form for w + « with |arg(w)| < 7 is given for
fixed w1, w2 by3C

T(w + wl) _ Wy=W,

T v vy = ¥ {1 + O(w-l)] (C9)
2

iC. Reference 8, egn. 6.1.17.
2C. Reference 8, egn. 6.1.37.

3C. Reference 8, egn. 6.1.47.
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Next consider Bp,p for large &. As & - = we have

s - My 1My 2 pineasl) T(n+d)
n,% T+ 1t - 2 TT(L+2) T (L)
{r(n)}
= ___Ji__i AL AL S PO
[T (n)l
= Zotsin(m)1? (r-m12 22772 eoeh
™
2 n+l 2 -n-1 -1
= T[P(T)] 2 [1+0(&8 )} (Cl0)
T
Now write Qp as
. L1
R = ;E: Bn’lbd-§(22+2)) + x(-§(2£+l-n)){ + 4, (Cll)
=0

where the remainder after considering only the first 2] terms is

A, = :z: B, 2§x(-§(2z+2)) + x(-2(2041-n)) | (€12)
2=+l ’

Let %] be some large positive integer and substitute for Bp,g
from equation Cl0 and for X from eguation BlO tec give as 4] + «

2
by = %[F(%)] Z z'n'l[l-z-o(z'l)]{% sl :2L_2+o(2-2){
m £=£l+l
2 [--}
= %[P(Ejéi)] 5 Z [£727 240 (47773 (c13)
" a=01+1

Replacing the sums by integrals and treating & as a continuous
variable for this purpose gives as L] +» ©
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1 2=21+1 1 1
-n-1 @ -n-1 -n-1
SN e I it * 1o (25h)
n+l n+i n+l 1
2=20+1 -
o 2-n-l
272 . -%;I-[1+o(zil)] (C14)
2~Zl+l
and
@ -
0(e™3) =./. o™ an = o272 (C15)
g=2+l Lq+l '
Thus we have as 2] » =«
2 g7nl
2 n+l a "1l -1
4y = ;7[?('2—)] B [tvole1t)] (c18)

Then for any given n > 0 this can be used as an error estimate
for sufficiently large 21 so as to calculate Qpn to some desired
accuracy.
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Appendix D: Behavior of yz Series for Large n

Now we wish to consider the error inveolved in truncating
the sum over n in calculating the admittance. From eguation 135
we write

(D1)

where the remainder after including only the first n2 terms is

- n
. . (-ika)
A, = ika E —T Qn (D2)
n=n,+1

From equations 127, 112, 113, 73, and 76 we have
1

® b
-1/2 2%
a = 1 .l a
2 f £ouh dv = = f (1 - £2] ed” Aav
-1

e}
(1]

.

27 _ T -
A= jr qn 1 cos(B)dp = er qn 1 cos(B)dR
o o

n
(D3)
) 1/2
g = [1 + v® = 2v cos(B)]
with
b
=
n=3-__£_&, v = e
b
-1/2 == (D4)
11 - g% e ® for |g| <1
£ =
0 for |g| > 1 T
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To look at the behavior of A2 for large n2 we first con-
sider An for large n. For convenience define a change of vari-

ables from B to ¢ as ‘

2

2
q

1 + v® = 2v cos(B) = 2v[ [y = cos(B)]

2v(y + l)e

-o _ ¥ = cos(B)

e Y + 1

sin(g)dg = =(y + e % 4o

where we have defined

¢

IPE%'[V+V-11=§'

Then from equations D3 for Ap we have

- ‘
An = 2(2\))'“[ [y - cos(8)]™ " cos(B)dB
o) ‘

: [0}
o
= 2(2v) "Ny + 1)'”+1f e(M=1)e 5 (4yaa
' o

with

d(a) = [y - (Y + 1>e'°‘J§1 -y - (Y + e

v + 1
2 1n( |5

Q
o]
o
'_l
e
€
{
L]
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Now we find the asymptotic form of the integral in equation
D7 as n + -» following a procedure similar to Watson's lemma.lD
Since there is a limit on the range of v of interest we can re-
strict

b
a

|
po

v < &

()]
tA

P

)

1<y < cosh(
(D9)

g, = 2 1n(|?o£h(§g 5)’) > 2 1n(coth(§5))

so that oo has a lower bound, independent of n (or n). Since
the integral of ¢(a) over 0 < & < ag exists and is independent
of n then we can write as n ¥ =

¢

%5 % {n-1l)a
f e(n-l)a d(e)da = f e(n-l)a P(a)da + O(e l)
o o

(D10)
where o] is some nunber lndependent'of n with 0 < a1 < a¢g. Then

we expand ¢ for 0 < o < d] (s;nce ¢ is finite in this range) as
the asymptotic form for & -~ 0 given by

,-1/2
$la) = [-1 + 0(3)1:1 - [-1 + (U + L + 0(a?)] }
5 )-1/2
= <[1 + 0(a)1l2(y + 1)a + Ol(a )}
= =[2(¢ + el Y2 [1 + o(a)] (D11)

Using this result in equation D10 we obtain as n += =-® or n =+ +«

1D. E. T. Copson, Asymptotic Expansions, Cambridge, 1965, pp.
48-50.
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o
J‘ e g (oan = ~r20+1)172 r(L)2-n) "2 [1e0(n7h)
o

1l/2

-

1/2

- -[$:T (n+1) "1/2 [140(n"1)] (D12)

‘Thus from equation D7 we have as n + +«

o Rl on 1
py = -2rt/2 2v) 2 12 (el Z [eo@7h)
. 1
1/2 e )
= -(31)7" (v+1)® 0 ? [1+0(n™h)] (D13)

This result applies for all v in our range of interest.
~For Qn as n + +» we then have

n
1 -1/2

b
172 . g =<
) [l+O(n-l)]J{ e [e +1] [1-22] ac

-1 (D14)

o’

Make a change of variable from § to o' defined by

=
e-a' - e + 1
)
e? + 1
(D15)
-q! b e1§€ d§
- '=—-
e da a—E—
ea + 1

so that we can write (Qp as
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b n+l o
Q= -AWVH\NEaE-H:mTﬂL \_. S e gt (o1e)
n T™hn b ° a @
with .
b
- ~-1/2
3 (a') = e 7[1-g%
. -1/2 b 2)"1/2
= Amw+wvmlﬁ_lw 1- W ln Amm+wvmlp.|w
(D17)
W - —
a
= e + 1 _ b
o T MITE T3
e 2 +1
We can now expand this integral for large n in the same manner
as equation D7. Then write as n - +«
o' N
o _ 1_ -(n+l)a’]

.\ e Ab+wv9.e_ﬁe_va9. = .‘ e ﬁ5+wve.e_Ag_vme. + oAm Hv

o (o}
(D18)

where 0 A.Qw < Qw with o7 independent of n. Expand ¢' for .
0 < a' < aj. Since ¢' is finite for all a' with 0 < a' < a3
then expand ¢' as a¢' - 0 giving

~1/2
b s b b :
' (a') = ﬁmm+oﬂp.vg 1- W HsﬁmmnA m+HvQ.+Oﬁp.mvg
_ -1/2
b -1/2 b 2
= ﬁmm+oﬁp.vg 1- H+w HbﬁwlAH+m mv9.+oﬁa.wv;
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-1/2 2 -1/2

b -]
= ?m+o$.@ 1l- _”“_.lwA“_.+m mv9.+oAQ.NVH_
b -1l/2 b -1/2
= _“mm..foAp.vH_ _HNWA“_}m mvp.+oap.mvu_
b -1/2

= Tw?ﬂﬁvp@ [14+0(a')] (D19)

Using this in equation D18 we have as n » =
5 b (1712
“‘ e+l (gr1yaer = Tmﬂmmiﬁ r(z)(m+1) " 21100 (a7 ]
) ; :
/2 _ _ ,
= | —I— | Y% 11+0:7h (D20)
Nmﬁmm+pv
Then from equation D16 we have as n » «
1
. n+x
_ [a H\Mﬁ a g -1 -1
2, = -(5) Lle%+1] "t riso(a™h]
b -1/2 B qB*l
= - mAmmiv _”mm+L (n+1) "L{1+0(a™h) ] (D21)

Now substitute this result into equation D2 to give as
ﬁm > o0
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n+l

s T e i
- . n+ a
Az - [g(ea+l } (-1ka)(n+1?l+l {l+0(n_l)]

n=n2+l '

2 7 ¢ Ll

_— ' a

= [g(eaﬂ.)] r"lkan? *1J fis0(n™h) (D22)

n=n2+2

This is basically the remainder in truncating an exponential
series. Rewrite this equation as

n.+2

b ‘1/2[ ( b ] 2.
_ b( a ) ~ika ea+l)
Ay = [a‘ e *l:l T ()] %
n=n2+2
(D23) .
5 n-n2-2 .
(n2+2)! ( E ) -1
‘1’1:1' = T -ikale " +1 [L4+0{(n )]
Define
ng = n - n, - 2 (D24)
and note that as n3 + ® with n > n2 + 2
_ -1
¢n2+2 =1+ O(nz )
(D25)
()
¢ . a
n+l _ -~-ikale™+1 -1,
én - n+l [l * O{nz ﬂ

Then for n + 1 > |ka|(eP/2 + 1) we can bound the series for
n > nz + 3 in equation D23 by a geometric series so that as npy -~ = .
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o1 < I¢s||
n
n=n2+3 n=n2+3
n
S et ()] e
a 3 -1
< |ka|\e®+1 (ny+3) >[1+o(n3”)]
n3=l
& AN
_ |ka ea+1) ka (ea+l) -1
= n2+ 1 - n2+ [l+0(n2 )]
— -l B
_ O(n2 ) (D26)
as ny + ®, Thus we have for A2 as n2'* ®
n2+2
b -l/2|: b
_ g( a )] -ika(ea+l> -1
Ay = [a o341 DT [1+0(n3")] (D27)

For fixed ka and b/a then for sufficiently large n2 this result
can be used to estimate the error in calculating ya.

73



Appendix E: Numerical Techniques for Computer Calculation
Joe P. Martinez, The Dikewood Corporation

The numerical calculations for the graphs in this note were
done on the CDC 6600 computer at AFWL. Most of the calculations
are straightforward, but the admittance computations involved
some special techniques, and the methods used are described
below.

The first step in the calculation was to write a computer
function which would calculate the X(a) of equation 132 for any
value of a. A series expansion for this function was developed
in appendix B and is given by equation B5. The two summations
in equation B5 are treated separately. Let X1 (a) be the first
part of the function, so that

o |'
a22

xl(a) = (E1)

VB

= ((22')11)2

This may be expressed for computational purposes as the summa-
tion of a pi product

m.oog' 5y
- T o
X, (@) -§1+(Z T 1?)+Rm (£2)

L'=1 k=1

Since this series expansion is absolutely convergent by the
ratio test an upper bound on the remainder may be expressed aslE

lag_q 12
IRyl < E mol = g (E3)

m-1] = [3m|

where ap is the last term in the summation. The relative error
due to truncation may be expressed as

€
e = I__ < B (E4)
r Sm -

where Sy is the summation carried out to_&' =m. For the cal-
culations in this note E was set at 10-13 to insure accuracy.

1E. W. Kaplan, Advanced Calculus, Addison-Wesley, 1952,
pp. 328, 322.
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Similarly, let the second part of equation B5 be X3(a), so
that
< (2L
Xp(a) = Z ) (ES)
Li=g ((22' + 1)!1)

Expressed as a pi product for the computer, this is

m 1 2
X, (@) = a + z'z:l a(T‘. a )+ R, (ES6)

k= 4k% + 4k + 1

This series is similar to the one in equation E2 and the
error criterion is treated in the same manner.

Note that X1(a) is an even function and X3(a) is odd, so
that with negative o one actually has a subtraction when alge-
braically adding X1(c¢) and X2(¢). This causes round-off error
in the computer when the values of X1(a) and X2(a) are in the
order of 109. So at the point where round-off error starts be-
ing significant one can switch over to the asymptotic form of
X(a) for negative o as derived in appendix B and given by equa-
tion Bl0. It was determined numerically that the round-off er-
ror is significant at o < =25, The relative difference at
¢ = -22 between the asymptotic form and the straight calculation
is in the order of .001l. The actual switchover point is at
o = =22,7, with a relative difference of .0011.

With positive o the two parts of X(a) are positive and no
round-off error occurs in the addition, however with large posi-
tive o the calculations require more computer time and it is de-
sirable to switch to the asymptotic form for positive numbers at
some point. The asymptotic expression is given in equation B7.
The switchover occurs at o = 200 with a relative difference be-
tween the straight calculation and the asymptotic form of .0006.

The next step in the admittance calculation involves the Qp
function. From eguation 135 we have

o= D By g% (220 + 2) + x(-R2e + 1 - m)] (£7)

2=Q

The Bn,j term is given in equation 135 and for computational
purposes in the computer may be represented by a pi product as

75



L
2
_ (1l - n+ 28) 7‘{ _n+1
Bn,o = T+ 1 (L 7% ) (ES)
k=1
if 2 # 0.
If 2 =20
Bn’2 =1 -n : (E9)

In appendix C it was seen that if n is odd the series for
Qn is finite and truncates at £ = (n - 3}/2. This allows the
computation to proceed to this point without the necessity of
checking for truncation error. If n is even and the series is
truncated at some %] there is a remainder Aj to consider as
shown in equation Cll. This remainder is derived in appendix C
and given in eguation Clé. In this note the summation for Qpn is
carried to the point where the relative error is

b8y

&

< .001 (EL0)

The number of terms required for convergence for the n = 0
term was large for small b/a. Table El summarizes the calcula-
tions performed for {lg. The asymptotic form listed is that of
equation 145 for Qo at small b/a.

Q

No. of o Asymptotic Relative
b/a terms by series form difference
.001 41443 15.3613 15.3607 .00004
.01 5919 10.7564 10.7555 .0001
.1 1034 6.1621 6.1503 .00l6

Table El. Calculations for Qo

For n > 1 the number of terms needed for convergence varied,
but the summation was usually completed by the time n/2 terms
were reached, except for the first few values of n, which re-
guired more terms.

The asymptotic form for Qpn for large n is given in equation
D21. 1In the calculations for n = 200 and b/a = .1 the asymptotic
form differed from the calculations with a relative difference of
.003. For smaller b/a this relative difference is larger for the
same n.
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The final step in the admittance calculation is the solu-
tion of the admittance itself. This is given in egquation D1 by

n ‘
_ s j : (-ika) ™
ya = ika _n—l_ Qn + Az (Ell)
n=o
The femainder A2 is given in equation D25. Again the error

term may be represented as

< E (E12)

‘It was found that this series converges rapidly and greater
accuracy could be obtained by carrylng the sum out farther. So,
for this series E was set equal to 10-8 The number of terms
required for convergence depends on n, but the largest number
used was 67 at b/a = .1 and ka = 10. The accuracy obtained by
using this criterion for convergence is in the order of .000l.

Since Qin is dependent only on n and not on ka it was found
convenient to store Qn for 0 < n < 70 in an array and use the
values stored for all ka. This decreased the computer running
time significantly as compared to calculating the Qn every time,
for every ka.
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