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The Circular Flush-Plate Dipole in a Conducting
Plane and Located in Non-Conducting Media

Capt Carl E. Baum
Air Force Weapons Laboratory

Abstract

This note considers the response characteristics of a cir-
cular flush-plate dipole in non-conducting media. This sensor
is a circular plate coplanar with a conducting plane, but iso-
lated from it by a narrow slot. The current through the resis-
tive load across the slot is proportional to a component of the
displacement current density at low frequencies. The response
characteristics of this sensor are calculated using cylindrical
vector eigenfunction expansions. These calculations include the
dependence of the sensor response on both frequency and the di-
rection of wave incidence.

Foreword

The calculations in this note have a form similar to those
in a previous” note concerning a spherical dipole. For conven-
ience the figures are grouped together after the summary and be-
fore the appendices. Appendix E was written by Mr. Joe Martinez
of Dikewood and we would like to thank him for the numerical
calculations and thank him and Sgt. Richard T. Clark of AFWL for
the graphs.
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Introduction

Of the various types of electromagnetic sensors there is
type which responds to a component of the total current de”n--.

si.’cyor’ if the medium conduct’v~ty’ is zerot a component of tlie
$displacement curremk density, . This sensor is characterized

1 A previous note2by a geometric parameter, its equivalent area.
has considered the frequency response characteristics of one
such device, a slobted hollow sphere. The purpose of this note
is to consider another geometry of this type of sensor.

In this note we consider a sensor which might be termed a
circular flush-plate dipole. This sensor is a part of a con-
ducting plane and we analyze its performance using vector eigen-
function expansions in cylind~ical coordinates. The analysis is
similar to that for the spherical dipole in reference 2.

The sensor geometry is shown in figure 1. It is basically
a circular disk of ~adius Y1 centered in a hole of radius Y2 in
a conducting ground plane. Both disk and ground plane are as-
sumed infinitely thin and perfectly conducting. As shown in
figure 1 we have cartesian (x, y, z), cylindrical (’Y,$, z), and
spherical (r, e~ $} coordinates-related as

x = ‘fCos(+) , Y= ? sin($)

z = r cos(e) ~ Y = r sin(0)

The disk is defined by z = O, 0 <Y < Y1 and the conducting
plane by z = O, Y ~ Y2; the slot-is defined by Y1 < Y z ?2.
nominal slot center is given by Y = a which we define by

(1)

The

(2)

so that a is the geametric mean of VI and Y2. b is a lengh as-
;umed small compared to a? so that for b << a the slot width is
~pproximately 2b. No’ce that asb + O

,..:

‘l=a - b +0(b2) , Y2 =a+b+O(b2) (3)

. . Capt Carl E. Baum, Sensor and Simulation Note 38, Parameters
“or Some Electrically-Small Electromagnetic Sensors, March 1967.

. . Capt Carl E. Baym, Sensor and Simulation Note 91, The Single-
:ap Hollow Spherical Dipole in Non-Conducting Media, July 1969.
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The reason for this choice of the gap center will appear later
as a convenient definition in the admittance calculations. We
also have

‘2 - ‘1 (4)sinh(~) = 2a

The sensor gap, or slot in the conducting plane, is assumed
resistively loaded uniformly in $ to preserve symmetry about the
z axis. In practice this might be several cable inputs uniformly
spaced around the gap and bringing the signals with equal delays
to one common point. Such cables would be located in positions
where they would not significantly affect the sensor response;
they are not considered in this note.

In this note we consider the response of such a dipole to a
plane wave incident on one side of the conducting plane (say
z > ());this includes the reflection of the plane wave by the
conducting plane. Both sides of the conducting plane are as-
sumed to be semi-infinite uniform isotropic and homogeneous me-
dia, and for the numerical results the media on both sides are
taken as having the same parameters with zero conductivity. The
sensor has an equivalent area of T32 which at low frequencies
relates the vertical component of D or the total current density
(including the reflection from the z = O plane) to the current
from the sensor.

Note that we take the media on both sides of the z = O
plane as identical and infinite in extent. Practically this may
typically mean that if the z = O plane is a conducting ground
plane on the earth’s surface, then there is a hollowed-out vol-
ume below the sensor which is sufficiently large that the volme
boundariesnegligiblydistort the fields near the sensor. Also
the volume is assumed lossy enough that energy radiated from the
sensor toward negative z is absorbed and not reflected back into
the sensor. There are other geometries for the lower medium
that one might consider such as a coaxial TEM transmission line3~4
or a hemispherical cavity with lossy walls.5 In this note, how-
ever, we take the lower medium as semi-infinite and consider the

3 ● H. Levine and C. H. Papas, Theory of the Circular Diffrac-
tion Antenna, J. Appl. Phys., vol. 22, no. 1, Jan. 1951, PP. 29-
43.

4. G. I. Cohn and G. T. Flesher, Theoretical Radiation Pattern
and Impedance of a Flush-Mounted Coaxial Aperture~ Proc. Natl.
Electronics Conf., vol. 14, 1958, pp. 150-168.

5. J. R. Wait, A Low-Frequency Annular-Slot Antenna, J. Res.
N.B.S., vol. 60, no. 1, Jan. 1958, pp. 59-64.
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receiving characteristics of the sensor. One should note that
with both upper and lower media the same the sensor might not be
strictly considered an electric dipole since as one drives it a
dipole field is not produced if both positive and negative z are
included. However, since we are only considering the sensor

, from the viewpoint of its response to incident fields on one
side of the conducting plane and the sensor can be considered to
have an electric dipole moment when one considers the conducting
plane and only one side of this plane (z ~ O) because of its
far-field characteristics as a radiating antenna, then we still
characterize the sensor as an electric dipole.

In outline this note first considers the expansion of elec-
tromagnetic fields into cylindrical vector eigenfunctions. These
are then used to expand plane waves in cylindrical coordinates.
Then the short circuit current from the sensor is calculated,
including the effect of the angle of incidence of an incident
plane wave. The sensor admittance is then calculated for b << a
by assuming a quasi-static electric field distribution in the
slot. Finally these results are combined to give the sensor re-
sponse to an incident plane wave for various resistive loads on
the sensor output.

11. Electromagnetic Fields in Cylindrical Coordinates
m

‘.

Consider a linear, homogeneous, isotropic medium with scalar
permittivity E, permeability B, and conductivity a. We have
propagation constants6

and a wave impedance

‘=== Vnz “ (6)

where s is the Laplace transform variable which is taken as iu
for frequency-domain analysis. The radian frequency is u and i
is the unit imaginary. We include a in the analysis for gener-
ality but set it to zero for the numerical results.

With time harmonic fields and ei~t suppressed Maxwell’s
equations are

6. All units are rationalized MKSA.
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and the constitutive relations plus Ohm’s law are

(7)

(8)

Assume no charge (p = O) or source currents in the medium of in-
terest away from the boundaries giving vector wave equations as

Note that both ~ and ~ now have
boundaries of the medium.

In cylindrical coordinates
equation

V2T + k2T = O

(9)

zero divergence away from the

the solution of the scalar wave

(lo)

can be written as a linear combination of functions of the form7

with

(11)

(12)

where F~2) (kYC2) is one of the cylindrical Bessel functions

i i
Jn(kY~2), Yn(kY~2)l H l)(kY~2), H 2)(kY~2) for 1 = 1, 2, 3, 4 in
that order. The thir argument o T is listed as e or o (mean-
ing even or odd) and corresponds to using cos(n$) or sin(n$) re-
spectively. We only consider n as an integer for our cases of
interest so that the solutions apply for all @ around a complete
circle. On the other hand L2 can take on any value, including
complex values, although we will only be using real values.

.. . ..... .—

7. J. A. Stratton, Electromagnetic Theory, McGraw Hill, 1941,
section 7.2.
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Note then that G2 is a double valued function of L1 and we must
specify which value we are using for a given calculation.

Similar to Stratton (reference 7, section 7.3) we define
three sets of solutions to the vector wave equation (as in equa-
tions 9) as

.

(13)

where ~z is a unit vector in the z direction (and similarly for
other unit vectors) . These vector wave functions have some fur-
ther relationships as

(14)

All three of these sets of vector eigenfunctions satisfy the
vectgr wave equation as written in equations 9. Hoyever the fi
and M functions have zero divergence while for the L functions
we have

.- — .——.. - Thus in this note we use only the 3 and & functions for the
field expansions; the L functions are included in cases of source
currents and charges present in the medium.

Q
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Writinq out these veqtar eigenfunctions we have for the
vector comp&ents of the t functions

which can be expanded as

‘L)(n,Cl,o‘Y ‘) =

L(k) (n,gL,~) =
4

L(i) (n,Gl,oz ‘) =

F(8) (kYL2)n
kY

cos (n$)
sin(n$)I

-sin(no)
cos (n@)

‘k) (kYc2)e‘ikzcl cos (no){
‘iclFn [sin(n$)j

(16)

(17)

where a prime used with a Bessel function indicates differentia-
tion with respect to she argument of the Bessel function being
considered. For the M functions we have the components

which can be expanded as

(18)

7
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M(R)(n,Cl,Qz ‘)=0”

For the fifunctions we have the

t

r

cos (n+)
sin(n$)

(19)

(20)

which can be expanded as

Next we have some orthogonality relationships for

(21)

these
vector eigenfunctions on the-circle-O < @ < 2?T. If the n index
or the ~ index differs between any two-of ~hese vector eigen-
functio;s
tions+are
with N is

(including two of the s~me kind) then these two-$unc-+
orthog~nal. Likewise any combination of L with M or M
orthogonal. For n and ~ the same we have the relations
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where k’ and Li are
and CI respectively

+ ~’~iz 22 = ~

The Kronecker delta

used in the second function in place of L
and where

(26)

function is defined by

1
1 for .nI= n2

6 =
‘1’n2 -

0 for nl # n2

(27)

With expressions for the ~ and X functions we can expand an
electric field with zero divergence in the form

where E. is some convenient constant with dimensions of volts
per meter. Note that the dimensionless constants an and Sn are
both in general functions of <1 (or equivalently ~2) which can
take on complex values; so we may wish to integrate over some
range of c1 or C2 in the complex plane; this is just indicated
in equation 28 by an indefinite integral over C1 or C2. Alter-
natively we may only need particular discrete ql and.thus no in-
tegral of this type. Note that we can also sum over 1 and over

even and odd functions, but in the calculations in this note we
will+not n~ed such summations. Compare e~atio~s 7 and 8 relat-
ing E and H to the relations between the M and $jfunctions as in
equations 13 and 14, and note that we can find H from E by
replacing

(29)

giving an ~ corresponding to equation 28 as

10
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Similarly an expansion for * can be converted to one for ~ by
substituting

While we have considered these vector eigenfunctions from
the point-of view of expanding divergenceless elec$ric and mag-
netic fields they can also be used (including the L functions)
for appropriate fields without zero divergence. These functions
can also be used for other quantities satisfying the vector and
scalar wave equations, such as vector and scalar potentials and
Hertz vectors.

III. Vector Plane Waves in Cylindrical Coordinates

Havinq the qeneral forms of the electromagnetic field ex-
pansions
waves of

ii cyli~drical coordinates we go on t: consider plane
the form

-h+

F.: e-ikor
u

where ~ is some
the propagation

where 31 is the

unit vector independent of the coordinates and
vector is

(33)

ii= & x

Starting
so that all 3

+

‘1 (34)

with 31 we define two more unit vectors :2 and :3
are mutually orthogonal. Referring to figure 2B

11
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the direction of :1 is described by 91 and $Z in a spherical+co-
~rdi~ate syste~ with respect to the cartesian unit vect~rs (ex,
::, ez)~ get e2 be parallel to the same plane as b~th ez ~nd

. Then e3 is parallel to the x, y plane.+ Since e2 and+e~ ar~
mutually orthogonal and+both ortQogonal+to el~ and since E and H
are both orthogonal to el, then e~ and es can be ~sed i~ some
linear combination to describe the directions of E agd H. ThuS
we consider pla~e waves as in equation 32 for which u is taken
as alternately e2 and e3.

These unit vectors form a right handed system with the re-
lations

+ + +
xs=e

+

‘2 x ‘3 ‘h
–z

=1, 2 3 ‘ ‘3XZ= 2
(35)

.

Note that+~2 is chosen such that for O : OL : Tr/2the polar
angle-of e2 (as in figure 2B) is T/2 - 61. In terms of the car-
tesian unit vectors we have

+ + sin(el)~z+
‘2 = -cOs(el)cOs($l)Zx - cos(e2)sin(41)ey

(36)

Cartesian and cylindrical coordinates are related by

x = Y Cos(o)

The cartesian and

? Yy=

cylindrical

or

sin(o) . (37)

unit vectors are related by

+

‘Y = COS($)ZX + sin(~)$

+
‘$ = -sin($)~x + Cos(+):y

12
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where ~z is common to both cartesian and cylindrical systems.
Substitute for the cartesian unit vectors in equations 36 from
equations 38 and use some trigonometric identities to give

+

‘1 = sin(Ol)cos($-$l)~Y - sin(O1)sin($-$l)S@ + cos(O1)Zz

+

‘2 = -cOs(el)cOs ($-@l)Xy + cas(el)sin($-+l)~$ + sin(el)~z

(40)

For our sensor configuration (figure 1) we are interested
in an incident wave of the form

Thus we need ~2e-i~O~ and ~3e-i~’~ in terms of the cylindrical
vector eigenfunctions discussed in the previous section. Other
polarizations of the incident wave could also be considered but
due to the symmetry of the sensor about the z axis only the ver-
tical electric field component produces any signal in the sensor
and this field component is only associated with the polariza-
tion as in equations 41. As a further simplification, since the
sensor geometry is independent of $ we set $1 = O without loss
of generality.

To expand these

~.; = k; . :1

vector plane waves we first observe

= kY sin(el) Cos($) + kz cOs(el)

Now set

and assume that C2 # O. Then we can write

(42)

(43)

(44)

13
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and

(45)

Now we have the expansion8

with
wave

and

Our task is now simply to identify the above expressions
the vector eigenfunctions developed in section 11. The
function components of interest are

Jn(kyG2) =-ikzGl
NjL)(nrGl,e) = i~l

kY n sin(n$)

-ikz~l
N(l) (n,gl,e) = C~Jn(kYg2)ez cos (n@)

Jn(kyZ2) -ikz~l
e n sin(nt)M~l)(n,Cl,e) ‘- ~y

(47)

(48)

M(l) (n,Gl,e) = Oz

b Abramowitz and Stegun, cd., Handbook of Mathematical Func-
tions, AMS 55, National Bureau of Standards, 1964, eqns. 9.1.44
and 9.1.45.

14
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Note that by our choice of c1 in equation 43 then the z depend-
ence of the plane waves as in equation 45 matches that of the
~ector eigenfunctions. This l~aves the Y and $ dependence. Now
e3 has no z component so that Hinc (e~ations 41) has no z con-L-
ponent and can only be ex~anded with M functions. Thi~ implies
(from equations 31) that Einc can only be expanded in N func-
tions. For t~e electric field expansion we then identify the z
component of e2 in equations 45 plus the expansion in equation
46 with Nz in equations 47 to give

w

1=— z [2 - dn,o ](-i)%jl)(n,cL,e)
‘2 n=o

(49)

Since the X functions cannot be included in ~2e-i~”: the only
expansion choice available for the electric field as in equa-
tions 41 is

‘z
w

+ -1 “; ~ee2 z= G2 ~=Q
[2 - 6n,o](-i)%(l)(n,<l,e)

(50)

Then making the transformation from the electric field to the
associated magnetic field as indicated in equations 29 gives the
magnetic field in equations 41 as

(51)

As a check one can expand the Y and $ components of the right
side of equations 50 and by use of trigonometric identities and
recurrence relations for the Bessel functions manipulate the
series into the forms given by equations 44 through 46. We do
not record these manipulatior~shere but note that they do check

15
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equations 50. Equations 51 follow by a simple transformation
(as in equations 29) from equations 50.

For the results of equations 50 and 51 we have set $1 = O.
However the results can be easily generalized to include +1 # O
by making a coordinate rotation by replacing $ everywhere by
$ - 41. (Note the combination $+- 01 $hro~ghout equations 40”).
Alternatively both even and odd N and M functions could be used
in the expansions.

The expansion of plane waves of the form ~le-i~”= would+be
another generalization of the present r$sul$s~ allo@g any u in
equati~n 32 as a linear combination of elt ea, and es. ThiS

form of plane wave would applyAto the case of source currents
and
the

Iv.

charges in the medium and-i functions would be included in
expansion.

Short Circuit Current

Having expanded plane waves in cylindrical coordinates we
go cm to consider the short circuit current from the sensor.
For these calculations we short out the slot in the sensor at
all $ so that the problem becomes one of considering the surface
current on the perfectly conducting x, y plane as shown in $ig-
ure 3. The incident plane wave has its propagation vector k
pointing at an angle 01 with respect to the z Qirection; the re-
flected plane wave has its propagation vector kre pointing at an
angle n - 01 with respect to the z direction. For convenience
we define another angle

(52)

so that for our incident wave from equations 43

cl = cOs(el) = -cos(e.i)

(53)

C2 = sin(el) = sin(ei)

Then $i is the angle of the incident and reflected wave propaga-
tion with respect to the negative x axis as shown in figure 3.
Note that we only consider r/2 : e~ : T or O : ei : T/2 for
these calculations.

The expansion of the incident wave is given in equations 50
and 51. To obtain the reflected wave we merely replace 61 by
‘rf-61 which replaces Q1 by -ql giving the reflected wave as

●

16
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ire=E~ x0 ‘2 n=o
[2 - dn,o] (-i)~(l) (n,-~1,e)

(54)

this gives a total field distribution as

● ✍

✻
ii(~)(n,Ll,e) + fi(l)(n,-Cl,e)1

(55)

ii + ilre
E C9
01.—

xz ‘2 n=o
[2 6n,ol (-i)n

●

✻

i fi(l)(n,Cl,e) 1+fi(l)(n,-CL,e)

Since the sensor is part of the conducting plane which of course
reflects an incident wave we use the fields in equations 55 as
our definition of the fields to which the sensor must respond;
response functions will be normalized in terms of these fields.

Note in equation 47 that Ny and N$ are odd in ~1 so+tha
tangential E is zero on the x, y plane as required. Atr= 8
which is at the center of the sensor, the only E field cornpon~nt
is Ez which from equations 47 and 55 is

(56)

The total current density in the medium at ~ = ~ (just above the
x, y plane) is

(57)

This will be used in defining the low-frequency sensitivity of
the sensor.

17
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The surface current density on the x, y plane is

where

(59)

E“

x
Jn(kU2)

J =Hy = -2 ~ [2-6 n,o](-i)n-l
% kYG2

n sin(n$)
Z=o+ n=o

The total current crossing Y = a (outward) on the z = O plane is
just

J
2’K

I a= J
o ‘Y Y=a

E
= -i47ra#J1(ka sin(el))

As ka + O we have

I = -i2ra >ka sin(O1) + 0((ka)3)

where the equivalent area of the sensor is

‘A = ra2
eq

or as a vector
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so that we can write as ka + O ‘

..

I = -(u + iuc)% ~=: ● ~eq + 0((ka)3)

(63)

(64)

., ,. “. . .

Thus the short circuit current from the sensor is proportional
to the total current density (equation 57) at low frequencies.
For the case that a = O, which we use for the graphs, the total
current density is just the displacement current density.

Note that the sensor slot is for Y1 < Y < Y2 and a is the
geometric mean of Y1 and ‘?2. The above results for the short
circuit current then assume that the slot is narrow compared to
a. This implies that the distance b which characterizes the
slot in equations 2 through 4 is restricted by b << a.

For convenience we define a short circuit ,transfer function
as

T(%i) ~ [-2Aeq(u + iu&)Eo sin(61)]-1 I

2 Jl(ka sin(el)) =
2= Jl(ka sin(9i))

ka sin(el) ka sin(ei)

(65)

so that as ka + O we have T + 1. The deviation of T from 1 as
ka increases then shows for various 01 the departure of the
short circuit current from its ideal dependence.

We also define a special short circuit transfer function as

‘1 s T(7r\2)= ~ Jl(ka) (66)

This transfer function applies to the case of a plane wave prop-
agating parallel to the x, y plane and is a special case of in-
terest. It is used for some of the later response function cal-
culations when we want to consider only one value of ei.

The short circuit current transfer function is”plotted in
figur”s-”q-”a~–a—fu-nctionof ka sin(el) with u = 0; For conven-
ience the phase is plotted as arg(T) - ka sin(el) which

19
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-ikasin(9i)
corresponds to multiplying T by e . The reason for
this is that in the time domain the wave reaches the sensor slot
before it reaches the re$erence point for the fields, i.e. the
center of the sensor or r = h: This phase shift references the
phase to the first arrival of the fields at some position around
the sensor gap. Note that the magnitude of T starts rolling off
for ka sin(ei) > 1 and has zeros corresponding to the positive
zeros of JI (not including ka sin(ei) = O); the first such zero
occurring at ka sin(ei) ‘ 3.83. Also note that the phase jumps
bv ~ at each of the zeros of T. As a convention we add T to the
pfiaseon,going through a zero in the direction of increasing
ka sin{Ol). This makes the phase,oscil.latearound some finite
negative value for large ka sin(el). We keep this definition of
phase for cases which later use T or T1 as part of various re-
sponse functions for the sensor.

v. Admittances

Now consider the admittances when the sensor is driven at
the gap, the annular slot in the x, y plane described by
yl < y < y~. AS shown in figure 5 there is a voltage Vgap uni-
formly distributed around the gap. Associated with Vgap there
are 3 surface current densities parallel to ey. These are JSCI

JSU, and Js~ and are associated respectively with currents into
cables or other transmission lines loading the gap, with fields
above the conducting plane (z > 0), and fields below the con-
ducting plane (z < 0). Taking the conventions for these surface
current densities as indicated in figure 5 we define three ad-
mittances as

Jc
Js J

?zC
‘k

Z2ra~, Yu=2ra~t Y&~2~a~ (67)
gap gap gap

Note that for our case of interest Yu = YL because of the iden-
tical geometries above and below the x, y plane. Thus we define
a single normalized admittance as

(68)

The total normalized admittance associated with the fields both
above and below the x, y plane is just 2ya. If in some other
problem the geometry of the region below the ground plane were
changed, then another admittance besides ya would be needed.

__.AQo..de_fine a normalized cable conductance as

20
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(69)

where Z= is the net cable impedance (resistive) loading the gap.
Since we use a = O in the numerical results then rc > 0 for
these calculations and we can specify rc parametrica~ly.

A. Boundary Conditions at Annular Slot,.

As in reference 2 and a few other previous notes we find
the sensor admittance by specifying a quasi-static electric
field distribution in the gap. Again the gap width Y2 - Y1 is
assumed small compared to the characteristic sensor dimension a.
This field distribution is written as

‘Y ~=o
= #vgapfE

where fE is a normalized
condition

(70)

distribution function subject to the

fEclY= 1

Actually fE is non zero only in the range YI < Y < Y2. For
later use we introduce the normalized cylindrical radius

dv = ~ dY

(71)

(72)

and another variable ~ for use in defining positions in the
sensor gap as

(73)

dv=
v

Back in equations 2 we defined the annular slot in terms of
Y. In terms of v we define ●

21



.

@

(74)

Note now that in terms of v the slot is defined by V1 c v < v2;
in terms of ~ it is defined by -1 < g c 1. In terms of these
new variables the normalization condition on the electric field
distribution function becomes

(75)

For this note we choose fE as

(
-1/2 “g

#[l - C2] e for IEl < 1

(76)

‘o

Substituting this definition in the second of equations 75 one
finds that the normalization condition is met. In terms of V
the distribution function is

lo for w < VI and for v > v
2

NOW as b/a + O we have

‘1
=1+:+0((:)2) , V2=1 -:+0((:)2)

,

(78)
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and for V1 < v < V2 so that v - 1 = O(b/a) we have

fE =
J [
*l-;(v- 1, + C@]2j1’2 +

(79)

~[
;l-; (v-=- 1,]2+0(:) }-1’2$

This field distribution has the proper form of singularity at
the edges of the annular slot, assuming perfectly conducting
edges of zero thickness. The factor of l/v makes the field de-
crease slightly going from the inside to the outside edge of the
slot which is not inappropriate for such a geometry. While
there is a simpler form for fE in terms of V which still meets
these conditions (by dropping the l/v and O(b/a) terms in equa-
tion 79), we choose the form in equations 76 and 77 because it
is helpful in the solution of a certain integral over fE to be
encountered later. In addition this form goes to the simpler
form as b/a + O, as do the slot edges in equations 78.

B. Hankel Transforms

Later in this section we use Hankel transforms. For later
reference we have the Hankel transform pair as9

J
co

1/2Jn(U1u2)dulF(u2) =“ f(u~) (u~u2)
o

(80)

J
Ce

1/2Jq(u1u2)du2f(ul) = F(u2)(u1u2)
o

where q is the order of the Hankel transform. Substituting the
first of equations 80 into the second gives the identity

mm

JJ 1’2(U1U2)1’2Jn (U2U3)Jq(U1U2)du3du2f(ul) = f(u3) (U2U3)
00

(81)

9. Magnus, Oberhettinger, and Soni, Formulas and Theorems for
the Special Functions of Mathematical Physics, 3rd ed.~ Springer-
Verlag, New York, 1966, p. 397.
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Define

-1’2 f(ul) ,9(Q = u~ ‘1/2 F(u2)G(u2) = U2 (82)

giving another form to equations 80 as

J
a

G(u2) = 9 (ul)uLJv (U1U2)dul
o

(83)

J
a

9(Q = G(u2)u2Jn (ulu2Mu2
o

and equation 81 takes the form

a

Jv
Ce

gq = g(U3}u2u3J~(u2u3)Jn(u1u2)du3du2
00

(84)

These Hankel transform relations have an important applica-
0

1

tion in that suitably well behaved functions, say f(ul) or g(ul),
can be represented as integrals of other functions (their trans-
forms) times Bessel functions of the first kind with the inte-
gration limits O and =. Knowing that functions can be so repre-
sented will allow us to find an explicit expression for ya in
terms of fE using Hankel transforms.

c. Formulation of the Integral Expression for the
Admittance Associated with One Side of the Sensor

Zn solving for the sensor admittance we drive the slot uni-
formly in $ with only a Y component of the electric field. By
symmetry the only non zero field components are Ey, Ez~ H@ and
they are all independent of +. We only consider the fields
above the z = O plane in calculating ya. The components of the
vector wave functions of interest are
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N(l) (O,cl,e) = O
$ (85)

and

Mjl) (O,C1,e) = O

-ikzql
M(l) (O,gl,e) = -G2J:(ky Z2)e

$

(86)

M(1) (0,c2,e) = Oz

Note that ~1 and G2 have definitions for these admittance calcu-
lations which are not the same as for the short circuit current
and plane wave calculations in previous sections.

For z > 0 the fields are expanded (as in equations 28 and
30) in the form

(87)

Then Ey on the z = O plane is given by

= iE1
J
= A1(C2)C1G2JL (kY<2)d~2‘Y z=Q___..__=o._.__-_.,... __

(88)
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which is to match the Ey on the z = O plane as specified by the
field distribution discussed in section V A. Looking at equa-
tion 88 and comparing it to the Hankel transform relations in
section V B, note that Ey on z = O is set up as the Hankel trans-
form (of order one) of A1(c2) (with a few other terms) where Ey
is considered as a function of kY. We then know that we can
have such an A1(K2) because it is given through the Hankel trans-
form of Ey. This also shows why the limits of zero and m are
chosen on the integrals in equations S7. El is just a conveni-
ent constant with units volts/meter.

Note that c1 and G2 are related by equation 12 and since we
are interested in a range for C2 of O < C2 < = then we have to
define which branch of the square root to use for cl. We define
this as

(89)

where the square roots here have their standard positive defini-
tion. This choice assures that for all G2 being considered the
vector wave functions for z > 0 represent either outward propa-
gating or attenuating waves. Note that we are only considering
G2 on the positive real axis in equation 89 but it can be con-
sidered a more general complex number provided the definition of
c1 is made in a manner consistent with this one.

The surface current density on the z = O plane (associated
with the fie~ds for z > O) has only a Y component given by

J
J

‘1 m
= -%12=0+

= -i — Al(C2)C2Jl(kU2)dC2SY Z. (90)

With this result we find the surface current density driven from
the slot by setting Y = a and using the convention in figure 5
to give

(91)

-’)0

We evaluate this.surface current density at Y = a for convenience
under the assumption of a narrow slot (b << a) SC)that for wave-
lengths large compared to b the surface current density as in

●
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equation 90 is approximately uniform across the gap. The nor-
malized admittance associated with the upper half space is then

Ss

J
‘1 =

Ya = 2raZ # = i2ra —— A1(C2)C2J1 (ka~2)dC2 (92)
gap ‘gap o

Now we need an expression for A~(G2). Equating the expres-
sions for the tangential electric field on the z = O plane from
equations 70 and 38 gives

‘E =
(93)

This is a
For convenience define

Hankel transform relatlOn for AI(q2) in te~s of fE.

so that equations 93 and 92 become

J
CQ G2

Ya S27T; A2(G2) q J1(kaC2)d~2
o

This equation pair contains our solution.

Now take equation 95, change G2 to q~~
by kYJl(kYG2), and integrate over kY from O

multiply both
to = to give

(94)

(95)

.,

(96)

sides

~wfEkYJ1 (kYQd(kY) = j= f ‘A2(C~)kYCjJ1(kYC~)J1 (C2kY)dc~d(ky)
o 00

= A2(G2) (97)
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where we have used the Hankel transform result of equation 84.
Now change from kY as an integration variable to v(= !!/a)from
equation 72 giving

A2(c2) = (ka)
J
2= fEv31(kavc2)dv (98)
o

This is an explicit solution for A2(c2) in terms of an integral.
over fE which is given as a fUnCtiOn of V in equation 77. Sub-
stituting this result for A2 into equation 96 gives an eW~icit
result for the normalized admittance as

Ya C/2==~2= 27r~ (ka) —vJl(kavC2)J1 (kaC2)dC2dv‘E c1
(99)

00

For convenience we write this last result as

= 2iT : (ka)
J

2*
Ya

o
‘Evrldv

where

We go on to consider some manipulations of rl.

D. Manipulation of rl

3 and we followThis integral I’1is considered in reference
a similar derivation to manipulate it into a more convenient
form. Starting with a form of the well known addition theorem
for cylindrical Bessel functions (ref. 8 eqns. 9.1.79 and 9.1.5)
we have as a special case

Jo(Pc2) = z Jn(kaWC2)Jn(kaC2) cos(n@)
n- =—-

= 2 [2 - dn,olJn(ka~C2)Jn(kaC2) cos(n~) (102)
n=o

28
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where

P skaq

and

1/2
q = [1+V2 - 2VCOS($)]

The square root is defined as positive for v real.
both sides of equation 102 by cos(~) and integrate
O : f? & 2n giving

As a special case of a
integral as

1
27

JO(PC2) cos(~)d~
o

(103)

(104)

Multiply
over

(105)

result of Watson10 we have another

where the definition of ~1 is as in equation 89.
evaluate I’1using equations 105 and 106 as

(106)

Then we can

10 G. N. Watson, A Treatise on the Theory of Bessel Functions,
2n~ cd., Cambridge, 1966, p. 416, eqn. 13.47(4).
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Tr ~-ip
=- — cos(~)de

‘K
o P

This result can also be derived from an expansion of (l/p)e-iP
found in another reference.11

There is another result for i’1in which I’1is expanded in
an infinite series of spherical Bessel functions. However this
expansion is not directly used for our present results and it is
presented in appendix A

For convenience we

r. i -i2~kar, = ka

Zor completeness.

define an integral related to I’1as

.4 J. Jo P

“J
27re-ikaq

I

‘Re-ikaq
= —cos(f3)d(3 = 2

q
— cos(e)dp

q
(108)

o 0

where q is defined in equation 104. The normalized admittance
now has the form

J
a

Ya=i ~ ka fEvr2dv
o

(109)

Next we go on to consider 1’2.

E. Manipulation of r2

Now expand the exponential in equation 108 in a power ser-
ies (an absolutely convergent one) as

w

e-ikaq =
x
n=o

Substituting this

(-ika)n qn
n:

(110)

series in equation 10S and interchanging sum-
mation and integration gives -

11 . Reference 9, p. 487.
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X= (-ika)n *
‘2 = ~=0 n! n

where

“21T

J

~
= [l+v2- 2V Cos(s)] cos(13)d8

o

(111)

(112)

For convenience define

(113)

giving another form for An as

J
2?r

An = Q‘~ cos(f3)ds
o

Now expand Q-n for q # O, -1, -2, ‘“” in the form12?13~14 ,

(115)

12 . Reference 9, pp. 218-224.

13. A. Erdelyi, cd., Higher Transcendental Functions, vol. 2,
McGraw Hill, 1953, pp. 174-178.

14. A. Erdelyi, cd., Higher Transcendental Functions, vol. 1,
McGraw Hill, 1953, pp. 175-177.
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where the functions C! are called Gegenbauer or ultraspherical
polynomials. For ~ = O we have simply

For n = O the ultraspherical polynomials need a special defini-
tion to make them not identically zero and this definition is
inconsistent with equation 115.
is often restricted to q > -1/2
functions integrable. We allow
the integrability of the weight
poses. We also have the useful
spherical polynomials for ~ ~ O

‘Note also that the range of k
in order to make the weight
rI< -1/2 since we do not need
fufictionsfor our present pur-
representation of the ultra-
as

where the Pochhammer symbol is given by

(l-l)T = n(n+l)(n+z) ““” (?l+T-1) for ~ =1, 2, ““*

(118)

=r(q+T)
r(~)

Note that q can even be a negative integer if the r functions
are not used. The expansion in equation 117 is derived in ref-
erence 14 using the expansion in equation 115 as the definition
of the ultraspherical polynomials. Provided the Pochhammer sym-
bols are used in the derivation instead of I’functionsthen ~ can
be a negative integer and the derivation sti~l applies.

NOW An for n # 1 (or v # 0) can be rewritten as

(119)
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where
\

,

.(
27T

E
“n, A = ~

C;(COS(e)) cos((3)d6 (120)

while for n = 1 (or q # O) we have

,, .

‘1=0 (121)

Substituting the expansion of Cl as in equation 117 into the in-
tegral in equation 120 the only contribution comes from the
terms for which 1 - 2T = *1 due to the orthogonality of the
trigonometric functions over the interval O < 6 < 2T. Thus we
have the result

-’-

Since only odd A contribute let

for A odd
(122)

(123)

and define a new coefficient for integer !2as

so that we have the result for n # 1 as

al

{

IT x B ~2fi+l
nr2 for lv\ c 1

%=0

An =
co

lTz B ~n-2!L-2
n,i for Ivl > 1

fi=o

(125)
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If equations 121, 124, and 125 are substituted into equation 111

\

then I’2will be expanded as a doubly infinite series in ka and V.

F. Expansion of ya

With the last results for I’2we substitute them into eaua-
tion 109 to obtain ,

Ya = ika zm(-ika)n ~

n=o
nl ‘ - (126)

where we have

(127)

and where An is given by equations 121, 124, and 125.

equationsNow recall the change of variable from 73

(128)

and the distribution function fE for the electric field in the
slot (-1 < g < 1) from equation 76 as

Substituting these in

m

on =
~1

mB a

t=o
n,!lE

equation 127 gives for n ~ 1
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J
o

I
1 -1/2 -$.(22+1-n)

+ [1-:2] e ‘ d~

o /

Define a function as

(
1 -1/2

x(a) = [1 - g21 ea~ dg

‘o

This function can also be written as15

(130)

(131)

X(a) (132)= ~[Io(a) + lo(a)]

where 10 is a modified Bessel.function and Lo is a modified
Struve function, both of zero order. The series and asymptotic
expansions of X(a) are treated in appendix B. With this func-
tion we can write for n # 1

‘~= 2 ‘n,Jx(-S(2L+2))+‘(- :(2L+1- ‘))1 (133)
k=o

while for n = 1 equation 121 gives

‘1=0
(134)

15. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Ser-
ies, and Products, Academic I?ressl1965, p. 322? @qn. 3.387(5) .
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Summarizing we have a solution for the normalized admittance
associated with one side of the z = O plane as

Ya = ika z
M (-~:a)n ~

n=o ●

n

The behavior of these series for large L and n are treated in
appendices C and D respectively.

The normalized admittance is plotted in figure 6 as a func-
tion of ka with u = O for several values of b/a. Remember for
small b/a the slot width is very nearly 2b. For convenience
this normalized admittance is plotted in the form ya/ka. As
ka + O ya/ka tends to a constant, i.e. iQo; the numerically de-
termined coefficients are listed in table 1.

b Ya

z
~
Lka

.001 15.36
.01 10.76
.1 6.16

Table 1. Asymptotic fo~ of yint for small ka

For small ka this admittance represents a capacitance.

G. Behavior of ya for Small ka

From equation 135 note that as ka + O we have, since these
series are convergent and Q1 = O,

Ya

I’Ei= Q. + 0((ka)2) # (136)

-’l
@
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The term $20is given from eqUations

J

1 -1/2
$2.=; [1 - g21 Aodg

-1

where from equation 112

., .,.,

127 through 129 as

1
T -i/2

AO=2 [l+v2- 2V cos(f3)l cos(e)d~
o

(137)

(138)

Now let

B=~ - 26’ , Cos(fl]= 2 sin2(S’) - 1 (139)

giving

J
T/2

AO=4
2sifi2(~’)’ - 1

1/2 d~’

o [(l+v)2- 4V sin2(~’)1

= *W -:]’(m)-‘(m)l (140)

where K and E are complete elliptic integrals and are functions
of the parameter m given by

E 4V(1 + v) [
-2 = V-1’2 + v

m 1/21-2 = [Cosh(j :)]-2 (141)
2

and where the complementary parameter is

‘1
sl-m= [_]2 = [tanh($ ~)12

For small ml with Igl < 1 (and thus small b/a) we have16

(142)

16. H. B. Dwight, Table of Integrals and Other Mathematical
Data, 4th cd., Macmillan, 1965, eqns. 777.3 and 774.2.
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K(m)
()

“ ~nm* [1 +o(ml)l

E (m) = 1 + O(m2)
(143)

(5!2)2+O((E :)4)
‘l.= 2 a

so that as b/a + O equation 140 becomes

ho =
[ ()

~ [l+O(ml)lln --- - 2 + O(ml)l+V }

[
=21”+3 + 0((E:)2)]{[1 + +:)2)]4* :) - 2}

J 2] + 0((5:)2 W&J= 2~ln(* ~1 - ~ - >[’”(+ ;) -

(144)

Next substitute this result into equation 137 noting that
terms odd in g give no contribution. Thus as b/a + O we have17

J

1

1

1 -1/2

Qo=; [1-&21
~~‘1’21n(&)d~ + $lln(8 ~) - -111-E21 dE

-1

+ o((b/a)21n(a/b))

= 2 in(2) + 2{ln(8 ~) - 21 + 0((b/a)21n(a/b))

(145)

17 ● Reference 16, eqn. 863.41.
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This result can be compared with table 1 to give an indication
of the accuracy of this first term in the asymptotic expansion
for small b/a. Note that the results rely on the form of fE
chosen in equation 76. In fact for b/a = .1 this result differs
by less than one part in 103 from the result determined by sum-

.,mingthe series for Qo. For small b/a this choice of fE should
be quite accurate since as bia + O fE goes to the known solution
for the case of an infinitely long straight slot in a conducting

,.sheet of zero thickness at u = O. For b/a > 0, but still small,
there maybe some small error in fE. The presence of signal
cables connecting across the slot will of course further alter
the field distribution in the slot.

Now as u + O the admittance associated with the space above
the z = O
135)

Yu =

where u =

Cu =
.

plane has the asymptotic form (from equations 68 and

iucu + 0((ka)3) (146)

O is assumed. This capacitance is just

= Ea$20 (147)

If the lower half space is the same as the upper half space then
the sensor capacitance is just 2CU or 2saQo.

VI. Frequency Response Characteristics

With the short circuit current and admittances calculated
in normalized forms we go on to consider some frequency response
characteristics of the sensor. First define a response function
including only the admittances as

Yc Yc
R= Yc+Yu+Y&=p~ = [1 + 2rcya]-1
Y

(148)

This is plotted as a function of ka in figures 7 and 8 for two
values of b/a (.01 and .1) with a = O. For each graph there are
several values of rc. As ka + O we have Ry + 1. As rc is de-
creased Ry is maintained as a flat response characteristic out
to larger values of ka.

Including the short circuit current transfer function-from
‘ equation 65 we have the response function
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R(e~) S T(O~)Ry -1= T(O~) [1 + Zrcyal

Another convenient response function uses
rent transfer function for only one value
66 with 13~= ~/2. This response function

-1
.R1 = ‘lRy = Tl[l + 2rcya]

(149)

the ?hort circuit cur-
of 61 as in equation
is defined as

(150)

Figures 9 and 10 have RI plotted as a function of ka for
two values of b/a (.01 and .1) and several values of rc.

Based on R1 we define an upper frequency response as the
minimum positive value of ka for which

(151)

This value of ka is plotted as a function of rc in figure 11 for
two values of b/a. Frequency response is increased by increas-
ing b/a and by decreasing rc.

Figures 12 and 13 show R,plotted as a function of ka with
u = O for various values of 61 with b/a = .1 for two specific
values of rc. These two values are rc = .1327 and rc ~ .2654
which correspond to Zc = 50 0 and Zc = 100 S2respectively if the
media both above and below the z = O plane are assumed to have
the same constitutive parameters as free space so that the wave
impedance is

z 20=

Using RI so
sponses for
by ka = .33
tivelye

= 376.7 Q (152)

as to pick a specific e~ of 7r/2,the frequency re-
these two cases as defined by equation 151 are given
and ka = .17 for Zc = 50 Q and Zc = 100 Q respec-

Vxz. Summary

In this note we have developed equations and curves for the
response of a flush circular plate dipole with a uniformly re-
sistively loaded slot as a function of frequency and the angle
of incidence of the incident electromagnetic wave. For low fre-
quencies the response of this sensor is proportional to a compo-
nent of the displacement current density (or total current den-
sity if the medium is conducting) .

40
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The present calculations consider the case that both upper
and lower media are semi infinite half spaces. An extension to
the present calculations would be to put finite boundaries on
the lower medium and/or to divide the lower medium into two or
more distinct media with different electrical properties./

Note that the sensor slot has been assumed small in this
note to allow the use of simple quasi static approximations of
the electric field in the sensor slot for wavelengths large com-
pared to the slot width. Perhaps some future notes could con-
sider detailed static solutions for this geometry, even for b/a
not small. Such solutions could be used for accurate calcula-
tions of equivalent area and capacitance of the sensor.
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Appendix A: Expansion of I’1in Spherical Bessel Functions

In equation 107 we have the integral

i
I

‘Re-ip

rl=70T
(Al)cos(s)d~

103 and 104where from equations

1/2
COS(8)]P s ka[l + V2 -

where we have O v. Define<

v- = min[l, v]

(A3)

= Inax[l, v]‘+ -

giving the relation

(A4)

func-

v-v+ : v

Then we have from an
tions~r2At 3A

1 addition theorem for spherical

e-ip
.

P

where Pn is

i z ‘2) (kav+)Pn(cos (S))F (2n + I)]n(kav-)hn
n=o

a Legendre polynomial.

obtain the expansion for rl multiply
by cos(~) and integrate over O & S :

z
1=~
T (2n + l)Dnjn(kav-)h~2) (kav+)

n=o

both sides
r giving

To
tion AS

of equa-

‘1 (A6)

McGraw

lA. Reference 9, p. 107.

Feshbach, Methods
1466.

of Theoretical2A. Morse and
Hill, 1953, p.

3A. Reference
.

8, eqns. 10.1.45 and
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where

J
‘n

J
1

Dn = Pn (COS(6)) cos(6)df3= Pn (a) da
d%

(A7)
o -1

For n even Pn(U) is even in a and the integra~ is zero.
odd and given by

,,

n= 2n’ + 1

For n

(A8)

we have4At5A

~ (2n’ -l) I!(2n’+l)!!=n (n-2) !!n!!=
(2n’)!!(2nl +2)!! (n - 1)!~(n+l)!!

IT
‘ [

n! !

1

2

= n(n + 1) _ (A9)

where the double factorial function is defined by

(2n)!! ~ (2n)(2n - 2) ● “* (4)(2) (even)

(2n -l)!! ~ (2n-l)(2n -3) ● ** (3)(1) (odd)
(AIO)

For I’Iwe then have

4A. Reference 8, eqn. 22.13.7.

(All)

‘.iA. A. Erdelyi, cd., Tables of Integral Transforms, vol. 2,
McGraw Hill, 1954, p. 276, eqn. 16.2(5). #
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In another form we have
functions (using ref. 8

some special
definitions)

n+n’ ’odd

values of the Legendre
as6A

P:’’(o) =

\

n+n’ ‘

(-1) 2 ~n+n” -l)li
l)!! for n + m even(n - n’

giving

-?2

x [1
2

‘1 = *‘h jn(kav-)h~2) (kav+)
n=1

(A12)

(A13)
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eAppendix B: Representations for X(a)

In equations 131 and 132 we have the function

(Bl)

This function has a series expansion which can be found by set-
ting

.~= sin(d) , d~ = cos(~)d~ (B2)

givinglB~2B

(B3)

‘ In another form this series can be written as

(B4)

or as

where the double factorial notation is defined in equations A1O.
These series expansions are absolutely convergent for all a.
They can also be found from the series for 10 and Lo by addition.3B

lB. Reference 16, eqn. 858.44.

‘B. Reference 8, eqn. 6.1.18.

3B. Reference 8, eqns. 9.6.10 and 12.2.1.
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For large ICYI we can use aS~ptOtiC expansions for X(a) to
hel characterize the behavior of the function.

h
First we have

as a + cuwith larg(a)I < n/2 the results4B15B

+ O(a-l)~

8“-1(;) (2~’)!
(B6)

Lo(a) = Io(a) - 2
[x

!2’ a-2V
k’ +O(a -2!L! ‘

IF& ! )
L’=a I

and thus

x(a) = nIo(a) - + + 0((2-3)

= Vzeal1 + O(ct’-l)~ (B7)

This can be used for large positive a (a + +=) in computation.

Next as Ial + = with \arg(-a)I < Tr/2we use the relations

Io(a) = Io(-a) , Lo(a) = -lo(-a) (Ba)

~eference 8, eqns. 9.7.1 and 12.2.6..—. -....._ —.. - . ..

5B. Reference 9, p. 115.
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so that we can use equations B6 with
priate changes in sign. Thus as lal
have

a replaced by -a and appro-
+ m with Iarg(-a) ] < IT/2 we

-a

1Io(a)=~l-~+O(a -2)}
G

(B9)

W-1(;) (2!L’)f

Lo(a) = -Io(c%)- ~
{x

k’ ~-2~ 1 -2$1~

L‘i
+O(ci )

!2’=0 1

x(a) = @a(a) + Lo(a)]

This can be
This result
sion of the

1 -5---
> + O(a )

a

1-ti+o(c+ -3, (B1O)

used for large negative a (a + -=) in computation.
can also be obtained by a direct asymptotic expan-
integral in equation B1.

.—- —
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Appendix C: Behavior of $2nSeries for Large 2

Consider some of the features of fin. From equation 135

C/n=

o forn=l

where we have, as in equation 113,

(cl)

(C2)

In calculating on there are two cases to consider.

Case 1: n odd

In this case ~ is a negative integer or zero. In calculat-
ing Bn,~ we have the Pochhammer symbols

(n)g = (n)(n+l) “*” (q+!Z-l)

= (-l)q-q)(-rpl) ● ** (-q-L+l)

(-n) != (-1)2‘-

(T)n-1

= (-l)A
(+ ‘)L!

* -

(C3)
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()n-l !

-2-
n-(+ -l!- 1)!

n-3

$!)=0

Thus for any given odd n there are only a finite
needed to calculate Qn. Note that if we use the
that if the upper limit on the summation is less
limit the sum shall be taken equa~ to zero, then
s21= 0 as required.

(C4)

numberof terms
convention
than the lower
this sum gives

Case 2: n even

In this case the sum over L does not terminate. The Poch-
0

hammersymbols have the form

(?-of = (Tl)(l’1+1)● ** (n+~-1)

= (-l}%) (-n-l} “’” (-n-fi+l)

I r(- +1)= (-1) *

(C5)
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r(~)
= (-1)2+1~

r(Tc- ,8 - 1)

(C6)

Since n is even the I’functions here have half integer arguments
and are then finite and non zero even for negative arguments.
For these 1’functions of negative argument we can also uselC

~ sin(w) r(l - w)k’= IT (C7)

For large arguments we have the asymptotic form of the r func-
tions known as the Stirling approximation2C which has as w + co
with Iarg(w)I < m

+r(w) = e-w w (2T)1[2 [1 + O(W-l)] (C8)

Another asymptotic form for w + cowith larg(w)I < r is given for
fixed WI.,W2 by3C

r(w + Wl) . WW1-W2
T(W+w [1 + O(W-l)]

2)
(C9)

lc . Reference 8, eqn. 6.1.1-~.

2C. Reference 8, eqn. 6.1.37.

3C. Reference 8, eqn. 6.1.47.
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Next consider Bn,g for large i. As t + = we have

= >[%9]2l-n-’ [,+0(,-’),

Now write On as

(Clo)

(Cll)

where the remainder after considering only the first II terms is

(C12)

Let 21 be some large positive integer and substitu~e for Bn,g

from equation CIO and for X from equation B1O to give as 11 + a

(C13)

Replacing the sums by integrals and treating L as a continuous

variable for this purpose gives as 21 + =
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-n-l
‘1

“x>

and

.-n-1

(C14)

(C15)

(C16)

Then for any given n ~ O this can be used as an error estimate
for sufficiently large 21 so as to calculate On to some desired
accuracy.

—— _ ..__ _____ - . . . ..
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Appendix D: Behavior of ya Series for Large n

Now we wish to consider the error involved in truncating
the sum over n in calculating the admittance. From equation-135
we write .

n2

ika
z
n=o

Ya = (Dl)

where the remainder

m

after including only the first n2 terms is

--

ika x
n=n2+A

(-ika)n ~
n! n.‘2 = (D2)

From equations 127, 112, 113, 73,

J
1

[1

-1

$
e Andv ‘

1

S2n fEvAndv = ~

An
do

1/2
2V COS(B)]2

+ v’q

with

n v =

-1/2
E21

‘E

-—— . ——.—
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To look at the behavior of A2 for large n2 we first con-
sider An for large n. For convenience define a change of vari-
ables from ~ to a as , .

q2= 1 + V2 - 2V COS(B) = 2v[iJ- cos(f3)l

= 2V(* + W-”

(D5)

e-CL=$ - COS(B)
*+1

sin(s)ds = -(4 + l)e-a da

where we have defined

Then from equations D3 for An we have

An = 2(2v)-’l
~
n [* - CC)S(~)]-’lcos(s)ds

o

1
(XO

-q+ + 1)-n+l e(Tlb2 ~(a)da
= 2(2V)

o

(D6)

(D7)

with

1
z -1/2

4 (u) =[*- ($ + l)e-a] 1 - [$ - ($ + l)e-al
\ (D8)

ao S ln(~)
= 2 ln(l- )
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Now we find the asymptotic form of the integral in equation
D7 as ~ + -= following a procedure similar to Watson’s lemma.lD
Since there is a limit on the range of v of interest we can re-
strict

b b-—
e a z<v”<e--

(D9)

a. = (1.2 h coth(~ ~) ) Z 2 ln(coth(~))

so that a. has a lower bound, independent of n (or n). Since
the integral of Q(a) over O :.a : a. exists and is independent
of n then we can write as n + -=

‘a

where al is some number
we expand O for O < a <
the asymptotic form fo~

Q? (D1O)
.

independent of n with O ~ al < ao. Then
al (since @ is finite in this range) as
~ + o given by

I
~ -1/2

Q(a) = [-1 + 0(a)] 1 - [-1 + (~ + l)a + O(az)l
1

[ )
-1/2

= -[1 + o(ct)] 2(V + l)a + 0(a2)

Using this result in equation Dlo we obtain as T + -a or n + +-

1 E. T. Copson, Asymptotic Expansions, Cambridge~ 1965, pp.
4::50.
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J
a

0 ~(~-l)a @(a)da = -[2($+.1)]-1/2 1“(~)(1-q)-1/2 [1+0(~-1)]
o

[

-1/2
‘1/2 [l+Q(n-l)]=-—

$:1. (n+l)

Thus from equation D7 we have as n + +=
.

n-l 1

An =“ +&/2 (2~)~ (++1) (n+l)-Z [l+O(n-l)]

(D12)

This result

For $2n

applies for all v in our range of interest.

as n + +COwe then have

()
1/2

Qn”-* [l+O(n-l)] (’~ [$+lT [1-~2fl”2 ‘g

(D13)

4-1

Make a change of variable from ~ to a’ defined by

e a+l

(D14)

(D15)

so that we can write Qn as
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n

(D22)

This is basically the remainder in truncating an exponential
series. Rewrite this equation as

n2+2

‘2 = [:(:+,)j’’’ika~+:f~~,,,
2“ n

n=n2+2
(D23)

n-n.-2

Define

‘3 sn -n-22
(D24)

and note that as n2 + = with n ~ n2 + 2

4n2+2 = 1 +O(n~l)

(D25)
b

@n+l ()
z

[
-ika e +1 ~ +

~= nil

Then for n + 1 > \ka\(eb/a
n > n2 + 3 in equation D23

O(r$=)]

+ 1) we can bound the series for
by a geometric series so that as n2 + co

m
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< ~[,ka](~+l)]n3(n2+3) -n3Ll+0(n~1)l

n==l
a

[1“@‘ -%&J“[’+%’)’

as n2 + =. Thus we have for A2 as n2 + =

n2+2

*2= [~(~+~)]-1’2[-ika(eg+~)l{n2+2)1
[l+O(n~l)l

(D26)

(D27)

For fixed ka and b/a then fc>rsufficiently large n2 this result
can be used to estimate the error in calculating ya.
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Appendix E: Numerical Techniques for Computer Calculation
Joe P. Martinez, The Dikewood Corporation

The numerical calculations for the graphs in this note were
done on the CDC 6600 computer at AFWL. Most of the calculations
are straightforward, but the admittance computations involved
some special techniques, and the methods used are described
beiow. ‘

The first step in the calculation was to write a computer
function which would calculate the X(a) of equation 132 for any
value of a. A series expansim for this function was developed
in appendix B and is given by equation B5. The two summations
in equation E5 are treated separately. Let Xl(a) be the first
part of the function, so that

This may be expressed fqr computational purposes as the summa-
tion of a pi product

(E2)

Since this series expansion is absolutely convergent by the.._
ratio test an upper bound-

where am is the last term

on the remainder may be expressed asLE

= E (E3)

in the summation. The relative error-..
due to truncation may be expressed as

(E4)

where ~ is the summation carried out to ~’ = m. For the cal-
culations in this note E was set at 10-13 to insure accuracy.

lE. W. Kaplan, Advanced Calculus,
pp. 32S, 329.
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Similarly, let the second part of equation B5 be X2(a), so
that

(ES)

Expressed as a pi product for the computer, this is

This series is similar to the one in equation E2 and the
error criterion is treated in the same manner.

Note that Xl(a) is an even function and X2(a) is odd, so
that with negative a one actually has a subtraction when alge-
braically adding Xl(a) and X2(a). This causes round-off error
in the computer when the values of Xl(a) and X2(a) are in the
order of 109. So at the point where round-off error starts be-

- ing significant one can switch over to the asymptotic form of
X(a) for negative a as derived in appendix B and given.by equa-
tion B1O. It was determined numerically that the round-off er-
ror is significant at a < -25. The relative difference at
a = -22 between the asymptotic form and the straight calculation
is in the order of .001. The actual switchover point is at
a = -22.7, with a relative difference of .0011.

With positive a the two parts of X(a) are positive and no
round-off error occurs in the addition, however with large posi-
tive a the calculations require more computer time and it is de-
sirable to switch to the asymptotic form for positive numbers at
some point. The asymptotic expression is given in equation B7.
The switchover occurs at a = 200 with a relative difference be-
tween the straight calculation and the asymptotic fom of .0006.

The next step in the admittance calculation involves the $2n
function. From equation 135 we have

m

fin = z Bn,j~X(-~(22 + 2)) + X(-~(2L + 1 - n))~ (E7)
A=o

The Bn,~ term is given in equation 135 and for computational
purposes in the computer may be represented by a pi product as
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(E8)

ifl #O.

Ift=o

B = l-nn,~ (E9)

In appendix C it was seen that if n is odd the series for
On is finite and truncates at L = (n - 3)/2. This allows the
computation to proceed to this point without the necessity of
checking for truncation error. If n is even and the series is
truncated at some RI there is a remainder AI to consider as
shown in equation C1l. This remainder is derived in appendix C
and given in equation C16. In this note the summation for $1~is. .
carried to the-point where the relative error is

‘1
E =

q I
~ .001

The number of terms required for convergence

(E1O)

for the n = O
term was large for small b/~. Table El summarizes the calcula-
tions perfor~ed for Qo. The asymptotic form listed is that of
equation 145 for $20at small b/a.

No. of
$20 Asymptotic Relative

b\a terms by series form difference

.001 41443 15.3613 1.5.3607 .00004
.01 5919 10.7564 10.7555 .0001
.1 1034 6.1621 6.1503 .0016

Table El. Calculations for Go

For n > 1 the number of terms needed for convergence varied,
but the summation was usually completed by the time n/2 terms
were reached’ except for the first few values of n, which re-
quired more terms.

?

The asymptotic form for flnfor large n is given in equation
D21. In “the calculations for n = 200 and b/a = .1 the asymptotic
form differed from the calculations with a relative difference of
.003. For smaller b/a this relative difference is larger for the
same n.
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The final step in the admittance calculation is the solu-
tion of the admittance itself. This is given in equation D1 by

n

2

(-ika)n ~ + A2
Ya = ika n~ n

n=o

The remainder A2 is given in equation D25.
term may be’represented as

‘2 <E
&- —

“ Ya -

(En)

Again the error

(E12)

It was found that this series converges rapidly and greater
accuracy could be obtained by carrying the sum out farther. so,

for this series E was set equal to 10-8. The number of terms
required for convergence depends on n~ but the largest nber
used was 67 at b/a = .1 and ka = 10. The accuracy obtained by
using this criterion for convergence is in the order of .0001.

Since on is dependent only on n and not on ka it was found
convenient to store on for O < n ~ 70 in an array and use the
values stored for all ka. Th~s decreased the computer running
time significantly as compared to calculating the On every time,
for every ka.
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