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ABSTRACT

This report studies the problem of
between the current induced on the
plate environment and that induced
ment.

obtaining the relation
cylinder in the parallel
in the free space environ-

..- .—. , .... . , ,,. .... ,. .. ,.,,..--7- . . . . . .... ...
— — . . . . . . . . ---- .

!~..:,t: -. ”.’,:S.:J =--’-:> ~..’. ! . ,., - . ..!’.. ‘-. .: J,,’:. -.:.. .“,: ... ,-.. ,.”’ —



Introduction

.!

o
A perfectly conducting cylinder is placed symmetrically between the plates of a parallel

plate waveguide as shown in Figure 1. It is then considered to be illuminated by a Heaviside
1

unit function (aIso called the unit step function ) puIse formed by the TEIL’I mode of the wave-
2

guide. The problem studied is that of obtaining the relation between the current that is

induced on the cyIinder in the parallel plate environment and the current induced in the free

space environment (represented by requiring ti/L+uJ).

In examining the harmonic current induced on the cylinder, it is found that the resonant

frequency of the cylinder is relatively independent of the plate spacing within the accuracy of

the numerical results and for 8/L >0.01. Figure 2 exhibits the effect of the plates on the

peak harmonic current at the center of the cylinder for two particular aspect ratios, L/D = 10

and L/D = 100. The current comparisons are made at essentially the same frequencies for

each aspect ratio. Figure 3 exhibits the effect of the plates on the peak harmonic current at

the point half the distance from the end of the cylikder to the center.

An appropriate superposition of the harmonic current yields the induced current under

transient excitation. For convenience in this study, the transient excitation is considered to

be a Heaviside unit function pulse, i.e. , the peak electric field is normalized to 1 volt/meter.

It is found that the peak current is obtained before interaction with the pIates can occur.

Hence, the peak currents are expected to be independent of the plate spacing. For the param -

eters investigated the foregoing is indeed observed.

The steady state scattering of a cylinder in a parallel plate waveguide has been treated

in depth in an earlier paper, which is presented in the Appendix. The foregoing is used here

to obtain the time-harmonic currents induced on the cylinder. To treat pulse incidence re-

quires the appropriate Fourier superposition of the harmonic currents with the Fourier trans -

form of the incident pulse , e.g., see Reference 3. For convenience, the incident pulse is

considered to be in the form of the aforementioned Heaviside unit function.

After the initial excitation, the current on the cylinder oscillates almost sinusoidally at
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the resonant frequency with exponential damping (e. g. , see Figure 9). This behavior is some-.

times referred to as ringing.

o

Investigations of the cylinder within the parallel plate waveguide

reveal a strong dependence of the exponential damping on the separation of the plates, Figure

4 exhibits this dependence for two particular aspect ratios. The damping constant a appearing

in Figure 4 is defined,

where ~ is the time in seconds required for the current to be damped l/e of its initial value.

This damping, of course, is due to energy loss through radiation.

Table I is included so that peak currents and decay constants may be computed from

data presented in Figures 2 through 4 for various cylinder lengths and plate separations. Note

that in the data presentation an attempt is made to present the data in a form for maximum

utility.

Figures 5 through 12 are included to indicate the accuracy of the previous data and to

illustrate the numerical techniques employed. First the harmonic currents were obtained.

@

Figures 5 through 8 show the harmonic currents at the center and half the distance from the

center to the cylinder end for two different aspect ratios and for several different 8/ L ratios.

Figures 9 through 12 are the corresponding time histories.

It should be pointed out that the results for the aspect ratio L/D = 10 are strictly valid

only for thin-walled cylindrical shells without end caps. Whether or not the results are valid

for solid cylinder is suspect. This will be discussed further below.

Analysis

To effect the solution for the harmonic currents

dence is eJwt ) one must solve the integral equation,

~L/2

(assumed but suppressed time depen-

4rE ~

1“ du?a(u)~(z, u) = Cl Cos pz - ‘-
‘Lo>

-L/2

(1)



where

1
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Kz,u~ 2n(L/2Hj s

h=-oo

(2)

“‘(zz’’=-+t432@
(Derivation of Eq. (1) is shown in the Appendix). Here the coordinate z locates the position

axis of the cylinder and is measured from the center of the cylinder. Also /3= 2Tr/Ais the

usual propagation constant and go = ~ is the wave impedance of the medium within the

waveguide, for air co G 120~ohms.

along the

The solution of (1) may be obtained as suggested in the Appendix; however, foIIowing the

suggestion presented in Reference 4 does expedite the technique considerably. In obtaining

the data presented in Figures 5 through 8, a pieeewise-constant representation with 41 terms

is used for the current distribution to solve (1). For the parameters considered, the “data

presented there are generally within 10~o of the exact values, i. e., the exact solution of ( 1). e

However, it should be pointed out that the boundary conditions employed, nameIy

$&L/2) = O ,

restrict the cylinder to a perfectly conducting infinitesimally thin cylindrical shell without end

caps. But if the cylinder is thin the results should apply as well for cylinders with end caps.

On the other hand, the results may not apply to thick cylinders (i. e., L/D & 10) with end caps.

Recently it was verified that in a free space region, (1) does yield sufficiently accurate results

for engineering purposes if it is applied to thick cylinders with end caps.
5

Unfortunately,

with thick cylinders with end caps in a parallel plate waveguide, ( 1) may not be sufficient,

particularly because of the interaction between the end cap currents and the plates of the

waveguide. This question

mental investigation or an

concerning thick cylinders remains to be answered by experi-

improved theoretical development.

I
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~s(L/4)1 rnax/LEo

a~L/C

rts(o)l nlax/L

p.(L/4)lmax/L

TABLE I

Critical Values for Free Space Current

L/D = 10

2.6

0.0114 A/V

0.00902 A/V

0.400

0.00329 A/m

0.00232 A/m

5.

L/D ❑ 100

3.0

0,00990 A/V

0.00706 A/V

0.288

0.00167 A/m

0.00104A/m



PLATE
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Figure 1. Wire antenna in a parallel plane wave guide. L is the length of
cyLinder, D is the diameter, and E. is the complex amplitude

of the incident electric field.
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Figure 2. Effect of the plates on the magnitude of the center current.
l&(0) \mu is the maximum harmonic center current in
free space and \~~(0) \ma is the maximum center current
in the parallel plate wave guide.
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Figure 4. Effect of the plates on the damping constant of the current.
as is the free space damping constant and ad is the damping
constant for the cylinder within the parallel plate waveguide.

7



.

.

lo”l~ I I I 1 I I 1 i
I

I I I I 1 1 1 i

-1

+

10-51 I I I I I 1 I I I 1 I 1 I I I I I
10-1 loo ~~1

/3L12

Figure 5. Harmonic center current versus electrical length. Here
L/D = 10 and d/L = 0.01, 0.05, 0.1, 0.2 and 50.
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Figure 6. Harmonic center currents
Here L/D = 100 and 6/L =

versus electrical length.
0.01, 0.05, 0.1, 0.2 and 50.
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Figure 7. Harmonic currents half distance between center and cylinder
end versus electrical length. Here L/D = 10 and d/L = O. 01,
0.05, 0.1, 0.2 and 50.
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Figure 8. Harmonic currents half distance between center and end
versus electrical length. Here L/D = 100 and 6/L = 0.01,
0.05, 0.1, 0.2 and 50.
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Figure 9. Time histories of the center current for a Heaviside unit
function field pulse. Here L/D = 10 and 13/L= 0.01, 0. 05~
0.1, 0.2 and 50.
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Figure 10. Time histories of the center current for a Heaviside unit
function field pulse. Here L/D ❑ 100 and d/L = 0.01,
0.05, 0.1, 0.2 and 50.
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Figure 11. Time histories of currents half distance between center
and end for ‘a Heaviside unit function field pulse. Here

L/D = 10 and 4/L = 0.01, 0.05, 0.1, 0.2 and 50,
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Figure 12. Time histories of currents half distance between center and
end for a Heaviside unit function field pulse. Here L/D = 100
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APPENDIX

THIN WIRE RECEIVING ~“TENNA IN A
:.’

PARALLEL PLATE WAVEGUIDE

In certain experimental antenna studies,

generate these fields in free space requires an

guide configuration is suggested; in particular,,.

very large

exorbitant

a parallel

~ield strengths are required. To

amount of power, Thus , a wave-.

plate waveguide, However, there

is then a question as to how the receiving properties of the antenna in the parallel plate region

differ from the antenna in free space.
..=

Consider a “parallel plate waveguide with a thin wire antenna located between the plates

such that the axis of the antenna is perpendicular to the plates and the midpoint of the antenna

is located midway between the plates. Further, it is considered for convenience that only the

fundamental waveguide mode is propagating in the waveguide region and incident upon the an-

tenna. This configuration is shown in Figure Al. It is most convenient to apply the use of

images to solve this boundary value problem. Because of having two plates, there is an in-

finite array of colinear images, equidistant apart, both above and below the thin wire antenna

o (see Figure Al).

1inc
Ez

2a4

,z=h+a
PLATE

.z=h

!

inc
IS EQUIVALENT TO Ez

.2=0

.z. .h
PLATE

\z=-h-d

rO INFINITY

- z=3h+2d

-z=h+2d

-z=h

Z=o

-z=-h

[

Z.-h.z,j

z=-3h-2d

! TO INFINITY

Figure A-1. A thin wire antenna in a parallel plate waveguide
ten equivalent colinear image configurations.

—

with

.!,

“’Taken from the ~, July 1967.
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The scattered vector potential at the surface of the thin wire antenna satisfies the fol - a

lowing differential equation

()d2~& Az(a, z) =
dz 2

where the assumed but suppressed time dependence

-j4Eincs (A 1)

is exp (j~t), p is free-space propagation

constant, u .is the radiamfrequency, Az(a, z) is the vector potential at point z and E~nc is the

incident electric field. T’ne solution of (Al) is

.
Az(a, z) = Cl cos pz - j&IJ

> (A 2)

-1 inc
where U = P Ez and C ~ is an arbitrary constant. Another representation for the vector

potential is

m

m Yn
WC)

Az(a, z) ‘ ~ dz’ ~n(zt)K(Z, Z’) ,

0!.

where In (z9 is the current on the nth antenna,

a!~=(2n-l)h+2n6,

Yn = (2n+ l)h+ 2n6 ,

K(z, z’) = ‘Xp ‘JP
(z - Z’)2+ a2 ? .

Because of symmetry the current

Using (A7) and a simple change of

(z - Z’)2+ a2

distributions on all the antennas are identical, i, e, ,

[
In(z’) = 10 z’ - 2n(h

int-egration variable

1+6) ,

in (A3) yields

(A3)

(A4)

(A5)

(A6)

(A?)
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PO x!
h

Az(a, z) = — duI( U)
41T -h

[ 1.K z, u +–2n(h + 6) ,

where the zero subscript-of the current distribution is deleted for simplicity of notation. Com-

bining (A2) and (A8)

I
h

duI(u)~(z , u)
-h

.

4Tr 4 lTu
=—C1cospz-j —

‘o co ‘
(A9)

where

a

K(z, u) =
Z[ 1

Kz, u+ 2n(h+d)
●

The constant Cl may be determined by requiring the current go to zero at the end of the

antenna. Of course, this is not the proper boundary condition when the ends of the antenna

are so close to the plates that this end current is no longer negligible.

For convenience, define C; such that—

(A1O)

The numerical solution of (A9) is obtained by approximating the integration with a finite=

sum at N different points (method of moments). The resulting linear algebraic equations are

m.1

p=l,2,3j*o*, N. (All)
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rp =c:cosszp-j~u.

o

By simple algebraic manipulation

II mp = g(p -m)+ g(p+ m-1),

g(m) ‘~Adv$K[mA, v+h(h+ti]

nm

where

z m=(m-l)A

‘P

A = h/N

The aforementioned boundary condition requires

()IZN ‘O,

which should apply when ~ > a. Using (A 17) in (A 11) yields the system of equations

i

m-1

p = 1.,2, *”C, N ,

which has N unknowns and N equations.

.

(A12)

(A13) ‘

(A14)

(A15)

(A16)

e

(A 17)

(A18)
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t In Figure AZ, the center current of the receiving antenna between parallel plates is

e shown as a function of frequency and plate separation. It shows a relatively small dependence

upon plate ‘separation except in the region of resonance. Here it is observed that the presence

of the plates tends to diminish the amplitude of the current without changing the resonant fre -

quency. Figure A3 exhibits the change in the distribution of current for changes in plate

separation.
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Figure A-2. Center current as a function of electrical length
for various plate separations, $2=2 Pn(2h/a) = 10.

MILLIAMPERES PER VOLT

Figure A-3. Current distributions for various plate separations. ~h = 1.45,
!2 =2 Pn(2h/a) = 10. Note that the left and right abscissa scales
are dtiferent.
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