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Abstract:

This note calculates the electric and magnetic fields produced in evacuated
cavities by the Compton currents ejected from the cavity walls by the gamma
radiation. The energies associated with these fields are also calculated.

Three simple geometries are considered: parallel plate, cylindrical and spheri-
cal.

1. Introduction

Interaction of D’rays with materials produce Compton electrons which
form a current (the Compton current) and in a vacuum next to matter from which
this current can flow, due to the lack of neutralizing positive charges, a
space charge (which the author chooses to call the Compton space charge). The
purpose of this note is to calculate to first order the electric and magnetic
fields, the potentials, and the energies associated with this space charge.

The general approach will be to choose cavities with simple geometries
(parallel plate, cylindrical, and spherical) in which Laplace's equation has
relatively simple forms and in which the boundary conditions can be easily
obtained from symmetry considerations. For convenience the voltage from the
space charge will be arbitrarily defined as zero on the conducting walls. The
formulas developed will be given in two forms, in t s of the constants_
relating the Compton current and @ompton space charge to the radiation intensity
and in terms of very approximate numbers for these constants. Thus, as these
parameters are empirically determined one can place them in the appropriate
formulas.

Since the Compton electrons have a finite average energy (about % Mev)
they can be affected by voltages approaching this energy. However, it will
be assumed throughout this note that the voltages are small compared to the
average Compton electron energy and thus have no significant effect on either
the Compton current or the Compton space charge. In addition since the high
energy Compton electrons produce low energy secondary electrons (less than
about 50 e.v.) in the cavity walls, it will be assumed that the voltages
are large compared with the secondary electron energy, so that these lower
energy electrons never penetrate the cavity interior and thus do not contribute
to the space charge. However, the range from about 50 volts to about .25 mega-
volts is still a large region of application for the formulas which will be
developed. '
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It will be further assumed that the cavities of concern have the
dimensions small enough so that the electron transit time across the cavities
and the electrical transit time around the cavity walls are short compared to
the time in which the radiation flux changes significantly. With these approxi-
mations the wave equation need not be solved but instead a solution can be
obtained from Poisson's equation, i.e.,

a -’£
v L/ - <, (1)
where V is the spatially dependent voltage,//9is the charge density, and }Ea
is the permittivity of free space.
It is intended that this note will serve as a convenient compilation
of the fields and energies associated with the Compton space charge in these

simple geometries.

II. Compton Current and Space Charge

In the walls of the cavities to be considered there is an equilibrium
relationship between the gamma radiation flux and the Compton electron flux.
Since for the cases of interest one is ¢onsidering undirectional gammas then
the magnitude of the gamma current, f, is equal to the gamma flux, Zr' s
There is then a proportionality constant, Cb-, between the gamma current
and the Compton current density, ;L° , given by the ratio of the mean forward
Compton electron range to the gamma mean free path so that :

S, = O @ {

where the direction of the gammas is taken as positive. This constant can
be taken in any units desired corresponding to the units of e and

o
(for a given E{Bpectrum and material). In this note ,Z; will be taken in
amps/(meter)? and J will be taken in roentgens/sec (ai% equivalent dose).~- -
Then for fission gammas (and any low atomic number material) & is approxi-
mately

A-8
¢, = -2 x/0 Co“/;”'“ — (3
efey© - raena?eh
or in other units _1
C. =~ _/0—/7 coulombs /e
J 2 (%)
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the negative sign coming from the fact that the electrons have a negative
charge. Neglecting the low energy secondary electrons produced by the Compton
electrons this equilibrium Compton current will be the current in an evacuated
cavity whose walls (at least the walls plus additiomal close by, low atomic
number matter in the direction of the radiation source) are thicker than the
range of the highest energy Compton electroms.

Next one is interested in the space charge associated with this
Compton current. If fNZFQD is the normalized distribution function of the
Compton electrons where,n(z;éD4Q5/€ represents the fraction of the Compton
electrons between energies £ and £ * £ and angles (from the direction of
the a’rays) & and 6911/6? , then the average value of the reprocal of the

forward component of the Compton electron velocity, <<__ ><nr 1 , is
given by I’
h"ﬂ
_f?féﬁ AOAE "
AL /1,-(5:62)

where Epax is the maximum Compton electron energy and /v:1@56913 the forward
component of the velocity of the Compton electrons. For the case of voltages
small compared to the energy (im e.v) of the Compton electrons then the magni-
tude of the velocity can be calculated from the energy of the Compton electrons
and then multiplied by cos & to give the forward component. For non-relativis-
tic electrons

@(59)27’2275 cos 6 6)
whre E is in e.V. ¥or relativistic electons

/uz(E,éD=f(]“ mc2+]>) cos &

where ¢ is the speed of light and / C is the rest mass energy of the
electron (.51 x 10° e.v.). _ G _

The Compton space charge desnity, j/% , is then just

ey s %

S

It is planned that in a future note Ve, will be evaluated for realistic
distribution functions. For the present this can be approximated by taking
the speed of a .25 Mev electron and assuming that this "average Compton
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electron" is traveling in the forward direction. Thus

" ~, /fc = E22 x/ﬂ& merér%ec (9)

From equations (2) and (8) the Compton space charge density can be
related to the gamma current by

\7 c couls l
- [ - J' fon b5
/o e, Mo b/ meler (19

so that another constant, 5;9 , can be defined as

-1
— S o~ = Tx/0 o lom és/ﬁ_enﬁé_j an

9" 7 metfor® (| sec

o

and thus

Il

7§f o ﬂ/;’"égj‘

/b7€?7?ﬁ~'3

(12)

s

As mentioned previously the purpose of defining these constants
( qf-,/U?O) €, ) is to allow their more accurate evaluation in the future
szt which time these values can be placed in the equations to be developed

in this and other notes.
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I1I. Parallel Plate Geometry

The simpliest geometry in which to make these field and energy calcu-
lations is parallel plate geometry as shown in figures la and 1b where z is
taken as the coordinate perpendicular to the parallel plates which are
spaced a distance, d, apart. It is assumed that the parallel plates extend
for distances in all directions (before they are elect®ically joined) which --- -
are large compa red to d.

In this geometry there are two convenient directions for the Z’
and Compton currents:

(1) Compton current perpendicular to the plates.

(2) Compton current parallel to the plates.
In either case the electric field and voltage will have the same dependence
because these are calculated from the space charge which will be the same

in both cases whereas the magnetic field will be different because this
quantity depends on the direction of the Gompton current.
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A. Compton Current Perpendicular to Parallel Plates

In parallel plate geometry as defined in figure la which
represents a right circular cylinder (so that the magnetic field can be later
conveniently calculated) there is a constraint placed on the dimensions that
the radius, /s , be much greater than the height, d, i.e.

e s>d | (13)

Then Poisson's equation reduces to

-————azl/ = - Lz (14)

9 ZZ é‘,

where the voltage distribution, V, is now a function of z.

Integrating one with resPeét to z one has the electric field,

=
E(Z): _ 9V - /goffc/z = Lz wolts (15)
22 e ) &,

E (2,

meter

where the lower limit on the integral comes from the fact that by symmetry the
electric field must be zero midway between the parallel plates. Thus

Fey= ,_Z.ﬁ. Yz vol7s (16)

meler

or

£ = ‘/_0 —3-3/2. | volTs an

meler —_—

where 2{ is in roentgens/sec and all other quantities are in m.k .s. units.
(This procedure will be followed throughout this note.)

The maximum magnitude of the electric field,'/fi/ , occurs
2 . max
at either wall and is

/E/max: __//_.O_.C_I_J= AWt | volls

2e 2 e, mefer U9
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or

/E/»mx = 'S_X/O—f)// \/0/71-—5

merer (19)

Integrating eqn. (15) to obtain the voltage distribution one has
Z
s 2
V(Z) = - = Z dz =—§-‘-’-(a/ - ‘fza) volfs (20)
] J eo
‘%

where the lower limit on this integral comes from the arbi;{rary definition that
V be zero on each cavity wall (taken as the wall at z = — % in this case.)
Thus

V(z) — _B—C'f_ X(Ja— 722) volTs (21)
E,

or

V(Z) = ‘1.55-)‘/0‘6{(0/8—929 vo [T (22)

The maximum potential difference,/qu“K , €xists between the halfway point
between the plctes (z=0) and the walls (z=.“.‘.‘/E) and so

v

h)dx

= ch 2 _ /C/,/ a2
-g—éoia/ 1l y 12 Lok

8 p (23)

or

/V/m x A[.E_’é_x /0_4 3//_& J’o/fs (24)

It must be noted at this point that the electric field and voltage calcula-
tions of eqns. (1l5) through (24) are not valid near the circular wall

( r =Fr5 ). However, this is the whole point of the restriction in eqn.
(13).

Turning now the the magnetic field in this geometry, this can be
easily calculated from Ampere's law using symmetry considerations. Thus the
line integral of the magnetic field at a radius, r, is equal to the Compton



current flowing through this area. Thus
2
2 r /7/4,('“) =7r Jc-. (25)

and therefore

1.4 s
Hé(r)zlaclrz A (26)

meler
or -—8
/—/¢(,.) ~ - [0 Jr % 27
In terms of Bd ('") this is
Bosmd, Jr = A ¥r webe
¢ _.°_a‘a_.. - 2 melere
1.3x707 ) r webers (29)
B¢(r) =4 “meter?

The magnetic field has a maximum value at I = Vo given by

— /J;/ = /___._CJ/ a/k‘ mbs
/H"/M, T2 Ol %}%} (30)

or

//‘/,#/Mlx ~ J0 Ok %ﬁ & 06D

4’/0/1];, 0 /¢ o ber
6, = ALl e alol Vel

and

(o]

A = [3x /07T r welders

max meler®



From the calculations of the field distributions one can calculate
the energy stored in the electric and magnetic field. The total energy in the

electric field, , 18
L
, &, (-9 . e
U, = F’EJ —= . Je1 (34)
/d
bstituting from eqn£ (15) a/
or su /Z
2 ¢ 2 2 4
U = fo 7EN\ 22z = L TRt Z- J'W/‘"—S
e~ Fe Ee, 31 4 (35)
6 _% - ‘2
or 2 3 g 2 3
Ue = Lo 77'/2&5/ = S 7 X }';ao/ J'oa/é’s
Zte, 2Y%e, (36)
or -2z e 3
~r X 0 é »
(je —= ]E / b’ /, ﬂ/ ‘}0”/65 (.37)

The average electric energy per unit volume, u_e , 18

o= Lmd = G XA jeules

CYe, 2¢4e, meTer3 (38)
°r a2 2 2 /.
— - joulls
Likewise the total energy in the magnetic field, U—. , is
noo e 4
) = A "{J_L_H (")(2 7r) A J'oa/es
” A= (40)
or substituting from eqn. (30) ~
2 I id |
U = Ltate, [ rlr = Ty Voo 4 1 (41)
" l’- A L/_ ?— o
or

2
l/
U, = Tede r. = T4 YR Y foutes



or

- 2
U z= /0 Lyt JW’/“ (43)

The average magnetic energy per unit volume, W, , is

2
_ A S 2 _ aCf B 2 toules
T,= Hoge pT = LRI R

or

_ -c2 2 2 ‘au/c?s
7. = .31x/07" 0 n o

(45)

B. Compton Current Parallel to Parallel Plates

If the Compton current is now assumed to be parallel to the plates
as in figure lb it is more convenient (for the magnetic field calculations)
to use a Cartesian (49?)2-) coordinate system rather than a cylindrical ( 045, &)
coordinate system. In this case it is also assumed that the cavity is rec-
tangular with the dimensions W in the ¢ direction and £ in the y, direction
and with the constraints
w >>d

As argued previously the calculations for the electric field and
voltage will be the same as the previous case as are contained in eqns. (14)
through (24). However, the magnetic field will have to be calculated by
considering a unit length in the X direction and applying Ampere’s Law, recog-
nizing the symmetry of the magnetic field about z=o. Thus

—B /'4(2) = 2= J:, C (47)

and therefore

7 = - = - a
Hx(z) zJ, €7 Iz s )

-8
H«(Z)g 2x/0 XZ bt/ NE (49)

meler

In terms of Bx (2) this is

'Bx(Z) = —A4,Z Jc-,, = ~A4Cr Uz _""_e_L_‘:E (50)

melere
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or

B> = 2.5 /07 yz webers

meterd G

The magnitude of the magnetic field has a maximum value at

Z:I% given by
KL, = 2IT| = Fod 222 o
//-/“/Mx = /0 A _;:e‘f%; (53)
/ch/‘”v _{%_ﬁ// / 4, /Cj/a;/ t:’eeé?g"s (56

/Bx/ ~ ] 3x/0 -/?Xg/ webers (55)

may "’leftoi“a
These magnetic field calculations do not hold near » = £
Since the electric field is the same as the previous case the

energy in the electric field can be calculated from the formulas of eqns.
through (39) by replacing the plate area, 7]‘#;2 , by W.(?. Thus

2 3 2 2 3 )
Ue :—EA;‘:‘_. W/&I’ = E%;a’ w A J'O“/C’J (55)

~ 38 %107 b joules (57)

The average electric energy per unit volume is the same as given in eqns.
(38) and (39).

The total gnergy in the magnetic field is

Z 2
Um_—_ wh :‘_/L_E/L@-J/z J‘oq/e_s (58)
/d
2

11

s
el

(34)



or substituting from eqn. (48) 3

2 2 ol wd o
[/h‘: —’”‘—é—ff&“’jjéza‘{z =,£/LE__|:/_§_4&Joq/eS(59)

2
U. = —ETWjJ = {/,z—ffl Y wdd " joules (60)

or

or

[z 21%10 R Y WA A7 joutes -

The average magnetic energy per unit volume is

& ye 2 2
(_,I.-m - _ld_,,o_ﬂ_—-l-" / = /% CT 12 l‘ou/es
2t e melers (62)
or
— -22 yw© 4¢ ‘ou /65
7, =.2lx0 0 A G (63
Iv. Cvlindrical Geometry

Another convenient geometry for these calculations, cylindrical
geometry is, shown in figures 2a and 2b. It 1is assumed that the length of the
cylinder, 17, is much greater than its radius, /3 , i.e.

v>>r, ¢64)

Again in this geometry there are two convenient directigns for the a/. and .
Compton currents:

(1) Compton current perpendicnlar to cylinder axis.
(2) Compton current parallel to cylinder axis
As before the electric field and voltage will not be affected by

the change in orientation while the magnetic field will be significantly
affected.

12
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A. Compton Current Perpendicular to Axis of Cylinder

In cylindrical geometry as defined in figure 2a where the dimen-
sions are restricted as in eqn. (64) and with a uniform charge distribution
{(thus no ¢ dependence) Poisson's equation reduces to

| 2 [+ 3V - S
7 orl 5, . (63)

where the voltage distribution, V, is now a function of «r.

Multiplying by r and integrating once with respectto r one
has

’-
I"Q_L/::—_/?f_o }“a’r*:"_--—/o“I”'2
or €. . 2 & (66)

where the lower limit on the integral comes from the fact that 339’r. must
be zero at r=o. Thus, the electric field, £ (), must be

Eon=-2=Lar= S ¥r volls

or cCé 2 e, mefer (67)

or
r meTer (68)

The maximum magnitude of the electric field occurs at F=/s and is
//oe / / / volls
[EL,=Fn = Z2 0hn Ll ()
0
or

| - L -
IE/max 2,5‘/( /0 ’ b//"a vol7s (70)

me fer

Integrating eqn (67) to obtain the voltage distribution one has

Very = —ﬁ"— ’”‘/r‘ .zi:;(,- 1) Lolfs

(71)

14



Thus
V(r) = ;%‘b/(";a"}'a) volls (72)

or

Vem = = 285x 1070 (R*=rD volts

(73)

The maximum potential difference exists between r=o and
r=1r, and so

[Vl.., =——-—Z°‘é°/ RS = %-’ Yr® wlts

(74)

or

{Vlmaxz,is‘x/o"'a’,ga 9

These electric field and voltage calculations are not valid near
the ends of the cylinder (within a distance of the order of r, or so).

of the Compton current as being in the r direction with = ¢, the magnetic
field can be calculated from symmetry about a plane parallel to the Compton
current which contains the axis of the cylinder (the plane defined by =0
and = #). Thus the magnetic field will be in the z direction and can be
calculated using Ampere's Law for a unit length in this direction. Thus

2. Hz = ¢]‘;(2 r 5/'/7¢) & (76

Since in this geometry it is convenient to d;;ine the direction

and therefore

H, = Jr s =G¥rsnp _amps 77
meler
or

-2
Hz ~ Px/0 Ir _m,ﬁf %1%—:; (78)

15



In terms of Bz this is

- b é"‘
B, :%anrs/'*v{ﬁ://o ¢ W sing webers

meTere  (79)

or

B ~ -—2_5—)( /0'/‘,‘- b/I’ Sih ¢ Weéér\‘
2

meler e (80)

The magnitude of the magnetic field has a maximum value at V=¥
and¢:.":§ given by

/Hz/w =|J.[r = [ Ore arps (1)

meler

or

[H] = 2x/0" ¥r s -
and
/Bz/.,,.f’%/é/’? = [ 0h _,V‘%é_efféa' (83)

or

R e L o

melers

Again these magnetic field calculations do not apply near the ends
of the cylinder. 7 : S5 i -

The energy in the electric field in this geometry is
fo Ea
— | e, £ ; '
=a)E5R2mrde joules

o
or substituting from eqmn. (67)

r 2
A * '
()= 77, cef FAr = 7L~ t, £ Joules (86)
e e /4 &,
e Jo
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> '—,Z_c_i_za‘yb?,e J'ou/es

Ue = 76, (87)
or 22 2 4
~ [.OX 3
Ue / 8 /0 3’ r, 1 J d‘f/e_j (88)
The average electric energy per unit volume is
2
= _/_fco rt Cga J ?Za !'ou/e_s
Je = 7. 6¢, = T/ée, mefer? (89)
or
_ -2Z 2 &
Ue =. 5_ 7 x /0 a/ C (90)

The energy 'i‘_n the magnetic field in this geometry is
L

Um = ﬂj ﬁé/éar /,,. /¢ J'oc//es (91)

o 0
or substituting from eqn. (77)

5 2/ h

Y, i
U,,, = Ao %a b Su-:f 4’% J'ol-(/e_s

or

(93)

or

Um: 77—/? ¢o j 77-'% ;J’ D/f" j JO“/@S (94)

Um ~ P X /O_aa b’a”;‘fj J'oq/e; (95)

The average magnetic energy per unit volume is

, f:r;: A LI RE joules
] 8 meler3

U, = (96)

17



or

-22 y.© ;
U, = 43 %0770 RE Joules o7

meler >

B. Compton Current Parallel to Axis of Cylinder

As in the case of parallel plate geometry, any shift in direction
of the Compton current has no effect on the electric field and voltage distri-
bution so that equations (66) through (75) still hold. In additionm, since the
geometry has not been altered (as was the case in the parallel plate geometry
calculations) the equations for the energy in the electric field (eqns. (85)
through (90)) still hold. However, due to the change in direction of the Comp-
ton current as shown in figure 2b where this current is now parallel to the
axis of the cylinder the magnetic field and magnetic energy calculations will
change considerably.

Referring to figure la one can notice that the magnetic field cal-
culations are the same as in figure 2b if d is replaced by § , since the mag-
netic field calculations in this case did not depend at all on the relative
size of the dimensions. The equations for the magnetic field do not contain
the cylinder length as a dimension, so therefore eqns. (25) through (33) are
the solutions for the magnetic field in this geometry.

In the corresponding equations for the energy in the magnetic field
(eqns. (40) through (43)) the length of the cylinder is now changed to A? SO
that

2 2 2
U = AT dttfe TG LY joutes
) 7é / (98)
or
-22 , -’
U, = /0 J r;q/ Jau/e_s (99)
The average magnetic energy per unit volume is the same as eqns.
(44) and (45). - . = _ -
V. Spherical Geometry

Finally these fields and energies can be calculated for spherical geo-
metry as shown in figure 3. In this case there are no approximations to be
made regarding the relative dimensions as there is only one dimension, the
radius, r,.- Also there is only one set of calculations for a given orienta-
tion of Compton current because one direction looks exactly the same as any
other direction.

18






Given the orientation of the 3’ and Compton currents a spherical
coordinate system ( /7, 6, ¢ ) can be defined as in figure 3. Due to the uni-
form Compton space charge demsity and the spherical boundary conditions the
electric field and voltage now only depend on r and Poisson's equation reduces

to
.l _a_.. ’"a_‘?l/ = —Lai"_
e or o0 é. (100)
Multiplying by r2 and integrating once with respect to r one has
r
aBV__._/fc_o raéj —.._/:"_"l”g (101)
ro“. = r = B
or € €
0
oV

where again the lower limit on the integral comes from the fact that
ar

must be zero at r=o. The electric field is then

.__.Q_V-—/oco - < f‘
En=-gr=g2r=520r wE o

or

Er) = -.37 x /0 0r wolls (103)

meler

The maximum magnitude of the electric field is at r=r, and is

[E[. = [Pl py = 12l Yy, velTs (104)

Max 369 7 3&0 h'efel‘
or
-5
[E[. = 37x/0 Vo ells 4 (105)
max ' e ter
Integrating eqn. (102) one has the voltage distribution as
r
< o e 2 .
Vers = - &= rdr = £ (r2-r®) vl
°* r, ° (106)
Thus
V(*‘) = g—% B/(r;a-—ra) volTs ¢107)
(-]

20

',n‘"k', =



or

V(P) = '"-] 7 X/ﬁhfb’(roe-f‘a) volls  (108)

The maximum voltage difference ('between =0 and r=r,) 1is

L O A

(109)

or

/Vmax :.]7"/0_5{/72 vel/7s (110)

These electric field and voltage calculations are valid throughout the
spherical volume. There are no "end" or "edge" effects caused by the geometry.

Since the Compton current is parallel to the line defined by & = 0) 7
there will only be a ¢ component of the magnetic field which can be calculated
from symmetry considerations using Ampere’s Law. Taking the line integral of
the magnetic field on a circle of radius rs/a& around the @=Qrline one has the
Compton current flowing through this area. Thus

27 (f’ 5:"79)/7(* = 77(1‘5/'579)&(]20

(111) |

and therefore
J c
H = ° rs; 9 = = V' s/h 9 . Aamps
¢ Z L4 E a, mef(’k (112)
or
— 10 s B
e - ’ ~7 MM oS —
My reme SEE aw

In terms of B¢ this is

o 1 A €
= Mo Y psipf — o —J - webers
Bf‘ 2 Z Srsinb metert (114)

or

5;15 =1 3x/07" 5 sint welers (115)

meleér
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The magnetic field has a maximum value at r=r, and & = % given by

or

W) = 10" rn s

and

B e )y, webers
Z

/QEé max - Z “meter

or

/B‘}/ ~ j3 X /0_/4&/1’5 Weéer:s

meler®

The eneigy in the electric field is
4 2
— e,E(V‘) 2 .
[

or substituting from eqn. (102)

2 r e £
(42 = Jé%%zigfgihdjri”%;ﬁf = jéifCﬁf%é re J‘O#(/éis
° ()

45 e,
or a )
] = Jéijg;f%:- s s - 'ocfﬁ?s
Ve 45 e, i /

ox

Ue = jg x/ﬁﬁaza’anfﬂu/es

22

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)



The average electric. energy per unit volume is

2 2
g =Ll 2o G yOn2  jeules
¢ 306’6 e 30&0 ‘-ef?,’r-3

ox

- 2 .
%= 3x/FETTRE Joules
melers

The energy in the magnetic field is

roren/rr, >
U,.,, :{j f-’!"z—//i /"aS/"' 6 dr a’d’ 46 J‘ocf/e;
o 70 Yo

or substituting from eqn. (112)

J-Z w727 K,
U = :féffé_sﬁ‘jS/‘)I”‘?'S’" * 4/;~a¥z¢ 48
2 Jo )
er
U = %ar;"jgwﬁe de 46
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and therefore
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The average magnetic energy per unit volume is

2 2
A, pE o A G yBR? joules
=27 Zo T s aw

or

I -eé e e N u/ﬂj

As mentioned previously, in spherical geometry there is only one
direction of the Compton current for purposes of calculation. Thus, the calecu-
lations for these simple geometries are finished.

VI. Summary of the General Characteristics of the Fields and Energies

Comparing the results of the calculations for the fields and energies
in these simple geometries one can note some qualitative characteristics of
the fields and energies which are gemerally applicable to maximizing or mini-
mizing the quantities.

The electric field is dependent only on the magnitude of the B/’or
Compton current, not the direction. This field is proportional to the
smallest dimension of the cavity multiplied by the gamma flux. The average
electric energy density is proportiomal to the square of the electric field
and thus to the square of the smallest cavity dimension times the square of
the gamma flux .

The maximum electric fields and voltages (using the approximate
value of c;,) can be summarized as follows:

(1) parallel plate geometry

electric field

Ty el
/E/max“"SX/ﬁ A Jh:_e?f{k (19)

voltage

/V/md,«-:\-.‘ /-Efx/0-6a//‘2 Vo/;i; O (24)

(2) cylindrical geometry

electric field

/E/hvax _’_‘_" S-X/a-s-a/ro ‘:0;_/:‘ (70)
_ eler

voltage

/V/maF’#,ES'x/O"ffna VJ//3 (75)
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(3) spherical geometry

electric field

[E]. = .3%x/0"Fn volls (105)

hay mefenr

voltage

Wy = 07 X067 0R% o)t (110)

When comparing these electric fields and voltages one should remember that
in parallel plate geometry d represents the plate spacing and that in cylindri-
cal and spherical geometry 1, represents the cavity radius.

The magnetic field is also dependent on the direction of the )’ or
Compton current. This field is proportional to the smallest dimension of the
cavity which is perpendicular to the 6'or Compton current (i.e. the dimension
"parallel to the current does not count). The average magnetic energy density
is, of course, proportional to the square of this field. The maximum magnetic
fields (using the approximate value oijJ can be summarized as follows:

(1) parallel plate geometry

Compton current perpendicular to plates

{B¢/ 1'].3"/0*”‘&7; we bers (33)

ay me er®

Compton current parallel to plates
B =13l meb
may '

meters
(2) cylindrical geometry

Compton current perpendicular to cylinde: axis

14
~ P 5xt0” n  webers
[é;‘hax y . metert

Compton current parallel to cylinder axis

—~ -1
B 137107 0n  weter  o»

(3) spherical geometry

/5,,/“5—’].3 X/0FI¢&’/—° webers

meter”®

(84)-

(119)
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When comparing these magnetic fields one should remember that the r, used in
parallel plate geometry (first equation of this group) is one half the large
dimension of the cavity while in cylindrical geometry it is one half the small

dimension. 1In spherical geometry, of course, it is one half the only dimension
of the cavity.

In general the total energy contained in each field component is pro-
portional to the fifth power of the dimensions, i.e., the volume times the
square of the dimension applicable to either the electric or magnetic field
as defined above. Thus, there are two general considerations in maximizing
or minimizing the total energy of any field component.

(1) The total energy in each field component is proportional to the
volume of the cavity.

(2) However, for a given cavity volume, the energies can be maximized
or minimized by appropriately choosing the dimensions so that the smallest
dimension (as considered above) is maximized or minimized.
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