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ABSTRACT o ais 2V

Spherical outgoing waves of arbitrary time dependence

are first written in the usual way as an integral over w of a
multipole expansion. It is then shown that integrals over w of
e_imt h(‘:) (kr) multiplied by an arbitrary function of w can be
replaced by a differential operator operating on an arbitrary
function of retarded time. Thus a form of the multipole expan-
sion is obtained which does not explicitly contain the frequency
spectrum of the multipoles. Given the value of EEr (for electric
multipoles, or Br for magnetic multipoles) as a function of

time on the surface of a sphere, expressions are given for all

% . s
the field components at all other points in space as functions of

time. The method employs a convolution integral and is use-

ful in problems involving a very wide-band frequency spectrum.
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I INTRODUCTION

The classical treatment of spherical waves in terms of a multipole
expansion is usually carried out with an assumed sinusoidal time variation.
Since the frequency spectrum and phase are arbitrary, the actual time vari-
ation (after mathematically performing a Fourier integral) is also arbitrary.
However, in some practical radiation problems it is an advantage to carry
out calculations in the time domain. In this paper a multipole expansion

will be formulated which does not explicitly contain the frequency spectrum.

The Fourier integral of the multipole spectrum multiplied by the spherical
Hankel function, which appears in the classical formalism, is replaced in
the present treatment by a differential operator and an arbitrary function of
retarded time. Using the multipole expansion in this form, the problem of
extrapolating to larger radii field values given on the surface of a sphere
which contains the source can be solved in the time domain, i.e., without
Fourier analysis.

The starting point will be Jackson's form of the multipole expansion.
Only the electric multipolé field \;vill be considered; the n%gnetic rnultipolesM

can be treated in the identical manner with E replacing B and -B replacing

Fj. Only outward moving waves will be treated in detail; the corresponding

1 Jackson, J. D., Classical Electrodynamics (John Wiley & Sons, Inc., New
York, 1962), pp. 545, 546.




expressions for inward moving waves are only slightly different; however,
there are theoretical difficulties in applying them. They are discussed in
the appendix. Some of the methods presented in this paper have been

applied to the dipole by Wicklundz.

I1. MULTIPOLE EXPANSION IN FREQUENCY DOMAIN

The electric multipole field for outgoing waves can be written

- _ (1) —
B - z agp @ m by (k) Xy o (0,4) (1)
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g - L, om v X (6,0 (2)
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where i&m(e’ é) = (1/NETR+LY ) ﬂY!lm (g, ) (the vector spherical harmonic),
the time dependence is e-lwt, h;l) is the spherical Hankel function, and

an @, m) are arbitrary complex functions of . Explicit expressions for
the spherical components of Eqgs. (1) and (2) will be obtained. As an inter- .

mediate step, the set of basis vectors (-, +, 2) as used in angular momen-

—_ _—— mm e

tum theory will be empioyed to simplify the algebra. 'ﬁ A and B are vec-
tors, the following relations hold:
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* Wicklund, J. S., Extrapolation of the Electromagnetic Field, Diamond
Ordnance Fuze Laboratories, TR-1058, 1962.
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The v vector operator can be written:
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where L, is defined as L = -i(_rT x v). Thus
o -i¢ o L, -id _
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Using Egs. (6) one can write the spherical components of B as
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Using Eqs. (5) and (8), the expressions for sinf and cosf times

the Legendre function from Condon and Shortleys, and the identities

(1)
h. " (kr)
] _k (1) (1)
r T 20+l [h1-1 (k) + hn+1(kr£| (10)
and
(1)
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'] _ k (1) (1)
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4 — - - = .
taken from Jackson , the -, +, and 2z components ofssE can be written -

as follows:

3 Condon, E. U., and Shortley, G. H., Theory of Atomic Spectra (Cam-
bridge University Press, London and New York, 1953), p. 53.

4 Jackson, p. 540.
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The expressions for E , E+, and Ez given in Egs., (12) can be substituted
in Egs. (6) to yield the spherical components. The identities from Condon
and Shortley5 and those given by Egs. (10) and (11) can ‘again be applied to

yield the following expressions for Er , EG' and Ed)'
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® Condon and Shortley, p. 53.
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I1I. MULTIPOLE EXPANSION IN THE TIME DOMAIN

In general, the multipele amplitudes an (¢, m) can be taken to be

arbitrary complex functions of . A Fourier transform to the time domain

of Egs. (9) and Egs. (13) can then be performed to yield multipole expan-

sions of the field components in the time domain. Thus, in Egs. (9), if

(1)

a_ (&, m)h " (kr) is replaced by

B g %
+ o0
_ ~iwt (1)
aEB(ﬂ, m,r,t) = j‘ e 2 @, m)h1 (kr) dw
- 0

_ ‘ . (1) "
and, in Eqgs. (13), if an 1, m)hl (kr) / kr, .';lE([,rrl)l'Jk_1_1 (kr), and

(1) ...
gy (2, m) hi_l(hl) are replaced by

(13)

(14)



+ o . h(l)(kr)

aEr(q,m,r,t)=S ~lwt ap (L, m) ‘kr dw (15)
= QD
+ oo

ag, O, m,r, 1) = S‘ e o @ mn ) aw (16)
-0
+ o0

ap_ @, m,r,t) = S _— aE(l,m)hgl_)l (kr) dw (17)

respectively, the resultant multipole expansions are in the time domain. In

, and o which

the following, expressions will be found for epg’ gy’ %F E-

+
do not contain explicitly the frequency spectrum ap (1, m) of the multipoles,

%
but instead contain arbitrary functions of retarded time ap U, m,t ).

The spherical Hankel function can be written

& .
. (ot +7/2)
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n n n+l

k
sk —ay
where t =t -r/c and ’l‘n (r) is the differential operator
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The variable t is a dummy in Eq. (18). If, at a given constant radius r,
s
a dimensionless retarded time 7 is defined by the equation 7 = ct /r, the
operator o~ a0 (r) can be written in the simpler form
— 1 & neel) @1 n@P-nme2) a2
,:.n(r)= n+l n+ 2-1! n--l+ 2 n—2+'“
r dr Tode 2 21 dr
2 2 2 ,. ,\2 . -]
. n°-1)0”-4) -+ [n7- (=17 (n+]) a7
2351 dgt
2 2 2 2
. n{(n —1.)(n -4)..-[n" - (n-1)"] 2n T . (20)
’ n “E, . -
2 n!
For simplicity of notation, let 'unj be the coefficiehts of Eq. (20) so that
that equation may be written
n .
g"s
;n(r) = T 5‘ Mo o (21)
r ~ J dr .
i=0
(1) (1)

Substitution of the expression for hnl in Eq. (18) for h in Eq. (15)

n

and associating the dummy t with time, one obtains

-8-
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. @, m,r,t) = S an X, m) -:: Ei(r) dw . (22)
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—wi
—

1 .
The operator, ;‘ — (r), may be taken out from under the integral sign

since it is not a function of  (assuming that an (1, m) are well enough
behaved functions of o to allow the change in order of integration and differen-

S
tiation). The functions o (@, m,t ) of retarded time are now defined by

+ o0 ”
-1 + /2 2+2
e l,m,t) = v( a (@, m) et T2/ dw (23)
E E
= 00
Eqguation {22) can then be written
a D= 1T @) el @m,t) (24)
Q‘Er , I, r, = r.—.qr Q’E s I, .
Since the lunctions apn (¢, m,t ) are Fourier transforms of arbitrary functions
ot w, they are arbitrary functions of retarded time. Similarly,r one can write
ot = = "2 (1) o @, m,t) (25)
QEB > 3 2 - c ,‘: ""'_‘1 r aE ? s »
ot
*
aE+(ﬂ,m,I,t) e (r) ap @, m,t ) , (26)
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o Wmrt =L 2o W () e m,t) (27)

c ot

The multipole expansion for the B field (Egs. (9)) can now be written in

the time domain as follows:

B =10
r
o %
B = v, (r) a1, m,t )
8 lgm 1(R+1) at* 1 E
L NTFTmeTT % v
2cose +m m+ e l, m-1
-i¢ .
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1 1 9 v *
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6 z oNTr) © 8t ¥ E
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VTR (T3 | ®  Yp+1,msl 1+1, m-1
+ +1 N(1-m)§-m-1) e_wY +N{@+m){A+m-1) e 4)
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-10-



Likewise, the multipole expansion for the E field (Egs. (13) )~ can be

written

=
n

1w *
Z - NTED S () e m ) Yy

i, m

: 2
1 1 — @Q+1) 98 = ¥
E - Z [1.:. () + 3£ 8= (r)] e @ mt)
6 o NTTT) (20 +1) g+1 2 at*z i-1 E

i, m ¢

T T e Y - N TERE @ et <
x( m)li+m+l e. Yl,m+1 +m){i-m+1) e Yl,m—l

i -1 1 — *
E, = = Z =L, (r) o, @,m,t)
¢ 2 i+1 NTFI(2+3) 1+1 E
i, m
-i¢ +i¢
X [xf(ﬁ+m+l)1T+m+27 e Y&+1, m+1 T NT-m+1)@-m+2) e Y&+1, m-l]
1+1 1 32 —— *
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T evrs s I L - 4, ' a9y
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If the field to be described is ¢ independent, then m=0 and the multipole

expansion reduces to
B =0

r

B =20

-11-



B, - Z——:_.(r)av(‘l,o,t)P
¢ N2 9 ¢ * ¢ E 1

ot

E = 1 Z - NId+1) % = &) aE(LO,t*) Pg
N2 r q
Byt = ) Gl ‘[aE (e Q1) 2 (r)] e 0,0, PL (30)
- f— 3 ]
N 1 (1) i+t ¢z a2 Ud E '
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where PQ is the normalized Legendre function. Only in the special case of
m=0, the field values are real if afE(l, O,t*) is real. For general values of
m the functions ap @, m, t*) can be arbitrary complex functions of t*. The
real or imaginary parts o-f the expressions given in Egs. (28) and (29) then
represent the actual values of the field components. Since the operator

—
— (r) plays a role similar to that of the Hankel function in the frequency

domain expressions, it will be referred to as the Hankel operator.
iv. SPHERICAL BOUNDARY-VALUE PROBLEM
o . - % _ -
Suppose E-M field components are known as functions of time on the
surface of a sphere which contains all the sources of the field of interest.
F3 *
Then (it will be shown that) the functions g (i, m,t ) and O‘1 (r) o @, m,t ),

where O!l (r) is any of the operators in Egs. (28) or (29), can be expressed

as integrals of the given field. Since integration is a standard operation

-12-



for electronic computers, the technique presented here lends itself well to
numerical techniques.
Only the components Er will be used to obtain the functions

e b5
ap ¢, m,t ) and O ap (¢, m,t ). The reason for this is two-fold. First,

']
the dependence of the terms of the expansion of Er on the angle coordinates

g, ¢ is given simply by the spherical harmonic. Thus, on a sphere of radius

r E can be expressed in the form
r

LN ) 1 % :
E () - z JIEI) . Bpmt) Y

i, m

where BE‘. 1, m, ) is given by

r
£ o] . 3
sphere of
radius ro

Second, the component Er is due only to the electric multipole; even if a
magnetic multipole is present, it_does not contribute to Ii){ . Thus, if both
types of multipolé sources are assumed present in the sa;:ne pr.oblem, the
electric part will be selected from the total field if Er is used to analyze
the fields. The magnetic multipole part can be analyzed in the identical man-
ner by replacing E by -B and B by E. Thus Br only would be used to
analyze the magnetic multipoles. All fields (and their derivatives) are

%
assumed to he zero initially, i.e., att = 0.

-13-
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Equating the coefficients of Yﬂ. m in Egs. (31) and the first of

Eqgs. (29) (with r = ro) one obtains
— ¢ *
— l(ro) an I, m,t) = BE @, m,t) . (33)

. * .
Defining the dimensionless retarded time To = t c:/r0 , one can write

Eq. (33) as .
'.F-.q(ro) aé (A, m,7 ) = B,’E(n, m,7) ' (34)

where aé @ m,7 )= ap, m,'roro/C), and B]/E: @ m,7)= Bp@m, ""oro/c)‘

To solve Egs. (34) Green's functions will be found that satisfy the

equations

El(ro)Gt (TOJT(I))=6(TO_7:')): 1=03 R o] (35)

1
with the initial conditions, G, (0, 7!) = G(l) (0, 7')=---= G(q 1)(0, r)=0 s
. L o d o ] o

where G(‘]) (0, ') = G (+, 1)/ dr? . The functions
1 o) o' ‘o o T =0

q
o
a'E(ﬁ, m, 7 ) vsiill then be given by P A
To
eg®mr) = § G ) ppmapdn (36)
0

To solve Egs. (35) the homogeneous equations must first be solved. Since
the equations are linear with constant coefficients, this is merely a matter

of finding the roots of the auxiliary equation which, for Egq. (35)} is

-14 -



F! (z) = 0 , (37)
|
i} L-j
where F! (z) = Z “lj pa
j=0

The roots of F‘ (z) are the roots of H(l]:l-)l

2

1)

(iz) where H(I+1 (iz) is the half-
i

odd-integer order Hankel function of the first kind. In Jahnke and Emde's

notatione, Fq(z) . Sn+%(22) = zl NTrz ex}:)(z)(i‘)l-l'sl2 H([IJF)%

H(ll+)1 (iz) has a singular point at z=0 which annihilates the zero and branch
z

point in its coefficient; thus Fi (z) is analytic and nonzero at z=0. The gen-

(1)

eral behavior of the roots of H,‘+1
2

(iz). Note that

(iz) can be deduced from the graph on

p. 243 of Jahnke and Emde (Ref. 6). It is found that for { odd, Fq_ (z) has one
real negative root and (1-1) complex roots which appear in complex conjugate
pairs and have negative real parts. For L even, all of the i roots of FQ (z)
are complex (appearing, of course, in complex conjugate pairs) and have
negative real parts. Numerical values of the roots for Q< 16 are given in
the appendix. It is significant to note that all the roots ar®distinct. Thus,
the solution of the homogeneous e-quation can now be written explicitly. Let

Ny
D!('ro) satisfy the equation — (ro) D{(To) = 0, then

6 Jahnke, E., and Emde, F., Tables of Functions (Dover Publications, 1945),
pp. 136-137. -

_15-



3/2, Leven
(4-1)/2, todd

t i
D’. ('ro) = z exp (pij 'ro) (cj sin qh. L + dj cos qu -ro)
j=1

1 1 ] 1
where f =0 if 8 is even; Cj’ dj’ and f are arbitrary constants; the com-

plex roots of Fq(z) are given by plj t iqu; the real root of FQ(Z) (if 4 is

odd) is P

L 1@+1) To find the Green's functions, the arbitrary constants
12

in Eq. (38) must be evaluated such that the resulting expression satisfies
Egs. (35) with their initial conditions. To facilitate this operation it is con-

venient to define the constants slightly differently. Let the Green's function

be given by
0/2, ¢ even
1-1)/2, 9 odd
G, ( ‘) -I‘l+1 ex (r -"r' c,.sin {(r -'r')
170" 70" T o Z P1Pi*" " "o 2557 %3' 0 " o
=1 -

1 . 1
* d!j cos qu,('ro B To_):' * fi °xp [ pl, 1(2+1) :;:0 B -:-.0)] ’ _

where, again, f =0 if { is even, The derivatives of this expression for

1
G, (r ,'rl) can be written
2 0o o
8/2, 1 even
k : ®-1)/2, 1 odd
d GQ(TO’ TO) ) rl+1 rk ex_ (T _‘Tt)
k "o Z gj *P Byt
d-r [
O J:l

-16 -
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1
X [(dllj coSs kqu' + clj sin ke!lj) cos qij (-ro - -ro) (40)

k _ . . - !
+ (cqjcos 9&;‘ dg[jsmkeq_j) smqu(-r0 To)]

k 1
4Py 1q+1) P [pa 1(1+1)‘ *o)] ’

where riJ exp (161 +1ql The initial conditions below Eqg. (35) state

that, if two sets of constants clj . dﬁj , and fq are defined, the first applying
1

1
for 0 < o < o and another for 0 < T, < Ty then the first set is given by

§/2,4 even
@-1)/2, 1 odd
k ! ] '
Z rij exp (—plj -ro) [(dlj cos kelj + cth sin kqu-) cos (-qu -ro)
i=1
1
+ . kg, . - d,. si ) sin{-q,. 41
(chcos 61] dﬁJ smkeh) sin ( qu 'ro)] (41)
f k exp (- )— 0, k=0,1, .-+, -1
TR ey PR L) o) T T T

] 1
for all g (>0), Thus, for T < T all the constants are zero and the

e -

Green's function is identicélljr zero. Integration of both stdes of Eq. (35)

1 1 . - 1
from T, "€ to T + € and taking the limit as e— 0 reveals that dt 1Gn('v'o, To) /

s . . . . +1
d 'r'o must have a positive discontinuous jump of magnitude _ri at the

i
point = = 7 . Thus
0 0

- I -
lim &rG (e, )/ det r =y
1 0o o 0 T =7 + € o}
c—0 o) o]

-.17..



I
Since the lower order derivatives must be continuous at o = T to satisfy

Eqg. (35), the equations determining the constants in the Green's function

I
for = > ~+ are
o o)

1/2,% even
(4-1)/2, % odd
Z (dJCOSkel * < smke )+f p! 1(@41) " Ok, 81 , (42)
i=1
k=0,1, , -1 s

where 6ij is the Kronecker delta.
Now that the Green's functions are determined, the next step will be
1
to find explicit expressions for O1 (r) U @, m, -ro), where again, Oq (r) is any
of the operators appearing in Egs. (28) and (29), Terms of the form
k |
1 d 2 1, m, 'ro)

rﬁ,+1 q Tk

k'-:l, 2,... s ]_+]_

must be evaluated. By succeeding differentiations of Eq. (36) one obtains

K ovo "o -
d e @, m, ) 9
ET 7 07 (k) ! ! ' 1 _ ‘ )
" = S Gl ('ro, -ro) BE(l,m, -ro)d'ro, k=1, -+, 1-1 (43)
dr
0
' "o

— S (’(T,T)BE(tmT)d»r)dT +r1 BjE(l,m,f())
d-r
0
' T
dl+la‘ (l,m ‘T) 2 (l'l'l) 1 ' | 1
2= ol ) B m,n) d
dn~r
o 0

-18-



4B @, m, )
i+1 B o 1 !
T 3 - -3 e +1) BE @, m, 'ro) )

: \ : . :
where G(‘])('r L r ) =dG (r,r) [ dr . Noting that = = = r/r_and hence
i1 o o 1 o o o 0 )

k k k
r d .
that = (—) — , one can write
k T k
dnr 0 dr
o)
- -:-r/r0
1 d o 1 (k) roo ! 1
8+l k ~ t-k+l k S Gy (rrfr, r ) Bp @ m, T )dr, (44)
r d-~ T r
o 0
1
dB.. (1, m, v )
9+1 ! Q+1 E™ 77 o 1 !
t o Ty BpmT)tey 01T dr_ - LD B @ m T )
k=1, 2,° , 1+l

1
To obtain the final expression for the terms of Ol (r) U s the expression for

Gglk) given by Eq. (40) is substituted in Eq. (44) which yields
* pr—
r_c 1/2, leven .
dk f 1-k+1 o (2-1)/2, 1 odd
R TR
0+1 d k |r Z gj
4 0 j=1 &
t* !
c .
X exp p!lj r A (dlj cos kelj + c:’.j sin kelj) cos qu
t;1= ! t*c !
C . N
te . - te . 45
X r Tt (Cljcos kelj dlj Smkelj) sin q’-:i r o (45)
*
f ex t—'g‘-'r' BI (Q.In'rl)d"rI
¥ pn 1@+ P P e r T 7o E T T 4T,
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I
dBE ®, m, 'r('))

dn~r
(o]

! %
+ 5leE(!,m,t C/ro) t 8y 441

- k=1,2, -+« , 141 .
Note that the integral in Eq. (45) is independent of r, that is,

independent of the radius of observation of the field. Hence, for a given
source, the integration need only be performed once to give field values
everywhere outside the sphere.

The integrals required in Eq. (45) are

*

tc
r -
o * *
I (ilmjt*) = g sing S .+ exp |p te o B];J(ﬁmq-')d'r' (46)
s 7Y 1 \r 0 1j ir o T 0" T o
o o
0
%
te
r
* J b t '
' = Le _ r1Cc_ 1 1 47
Ic (t,m,j, t) f cos qu - .| exP plj " ™ BE A, m, -ro)d':-oJ (47)
o o
0
where j=1, 2, -+ -, 1/2 if ¢ is even; if 1 is odd j=1, 2, -, (8+1)/2 and

is taken to be zero _(pq 1@+1) is, of _course,qathe real root of
. 7 B -

Y, 10+1)
Fq (y) = 0). The variable of integration in Egs. (46) and (47) can be changed

%
back to t if that is more convenient in a practical problem.
One can now write the expansions for B _, B, E , B, and E, at
P g "¢ r 6 ¢

arbitrary radius r in terms of the integrals (46) and (47). Let

9
%

S
E‘.lm ap @, m, t)
ot

B

* 1
im ) = e
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]
L

L= (r) ] *
a_r'_"lr Q'E(Jm:t)

o]
ll‘
==

= *
rlm — (r) o i, m,t) ‘

E, = v, () a @ mt
tm+y - g T egmit)
2
_ 1 8 — *
Enm— = ¥z o1 (r) g @, m,t)
c ot
3
18 = *
= =3 5 '—"l—-l(r) aE(i,m,t) X (48)
r oT -

Substituting the expressions for the derivatives of g from Egs. (45) into

Eq. (21) and using IS and Ic to represent the integrals of Eqs. (46) and

(47), one can write Blm’ Er!lm’ Elm+ and Elm- as follows:
4B (M, m,t)
‘ r r m
* 1 1 0 * 0 E "
B () = < 2 1@+1) | — -1 Bpm,t) + 3 ?t* _ -
] .
+ 1 F ( t* 49
r Z “i Fogm (00 ) (49)
i=0
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by
r
1
- F (r,t 50
Tor Z “i Py a0, m ) : (50)
i=0
dB_ @, m,t)
- (ﬁ"'l) .r_o b3 ro E ij
Elm+ = Tor [(0.+2) - l] BE(l,m,t ) + > dt*
2+1
1 *
Yo Z 41,1 Frim 1) , (51)
i=0 i
df. (@, m,t)
- .-!— 19_ * 'I—‘g E lm;
Elm— - 2r [(l 1) r - g’ - 1] ﬁE(l: m:t )+rc dt*
-1
1 %
o7 z ui_l’ian(r,t) . (52)
i=0 .
where .
/2, teven
r i 1-1)/2, 1 odd
Foo(r,t) = (2] - Bt VA —_—
lim r i
i=1

_ %
x [ (le cos {@-i+1) olj + Clj sin (0-i+1) elj) I_c @, m,jt)
. - » ' L] *
+ (cljcos @-i+1) 913 - dlj sin @-i+1) el]. ) IS @,m,jt )i|

N ¢ 1-i+1)

&
1
0 Py, 1@s1) Lo @ z@iht) : (53)
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The field components are then given by Eqgs. (28) and (29) with Blm ,

Erﬁlm s Elm+ and Elm- substituted for the quantities they represent.
V. SUMMARY OF STEPS TO SOLVE A FIELD EXTRAPOLATION
PROBLEM

This section is a summary of steps that must be taken to solve a
field extrapolation problem using the methods given.

1. The roots of the Hankel function (eq. (37) ) must first be deter-
mined for the orders of interest. These are given in the appendix for
Q=1, 2, , 16,

2. The Green's function constants must be found. That is, for each
order (1), the system of 1 simultaneous linear equations given by Egs. (42)
must be solved for the 1 unknowns denoted by dlj’ Cﬂ.j and fl

3. The spherical harmonic expansion of Er on the sphere on which
it is known must be obtained; that is, the coefficients BE A, m, t*) of Eq. (31)
must be obtained by evaluating the integral of Eq. (32) or by some other
means.

4, The convolution integré.ls given by Eqs. (46) a%d (47) must then
be evaluated.

5. The quantity in the braces of Eq. (53) can then be evaluated as a
function of the indices 1, i and m and the independent variable t)"< .

These five steps can be carried out before choosing a point to which
the field is to be extrapolated. After choosing such a point (r, 6, ¢), one can

proceed to step six.
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6. The quantities F 1rn(r, t') can be computed by multiplying the

i

i *
results of step five by (rolr')1 . The functions Flim(r’t ) can then be sub-

stituted into Egs. (49) through (52).

7. The extrapolated field values are then given by (from Eqgs. (28)

and (29))
iB . '
By = z ,_@_)qm L ('\I(Il+m+17(i+m+2) e 19 Y01 met
° it m 2N +1 ‘\J(21+1512n+35 ,m
i¢
b NTmIDE @D e Ym’m_l)
041 ( 'l¢
+ NT-m@-m-1) e Y
N RI-1)(2T+1) 1-1, m+1
i¢ .
+ NO@m@Im-1) e Y!_l,m_l)
_Bn. .¢
By = Z ——= [f\/(l+m)(l—m+l) e Y, i
2‘\]le+1; ) »
i, m
- T ¢y rn+1] T

rlm “Im

E=Z-mEY

i, m

1 1
E - Z [1E ++) E ]
6 - zm (22+1) Im+ im
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X [\Hl—mﬂl+m+15 e_id’ Yl, il NE+m)-m+1) el¢ Yl, m-1 ]

{E

i -1 Ym+ -ig
- 2 }“ [\] (Ervsy ez S A
9(8+1 N (28+3)
i,m
+i¢ :
+ NB-m+I}T-m+2) e Yl+1 m-l]
G+ E, i
+ im ['\f(!-m)(i-m—l) e Y1 ma
N(I-D(21+1) !
i¢ '
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APPENDIX

(2)

A, Incoming Waves., If Egs. (1) and (2) are rewritten with h!1 sub-
1
stituted for h(ﬂ ), they then represent incoming waves. All the equations in
Section II can be rewritten with h(lz) instead of h(g'l); they then apply to incom-
ing waves., Since h(iz) (kr) can be written
%
-i(wta - 7/2)
. i r—
W (kr) £ 0P Py | , (54)
g | 1+1
K
=t (2) by
where v '(r) = «a , (r)
4 4 *
t = -t
a
)
) 2-j
= 7 .(-1)n L N ,
1] *-]
: dt
i=0 a
*
t =t+r/c ,
a

the equations of Section III can be written for incoming wawvgs by substituting ..

o (2)

t for t* (r) for E (r) (or equivalently u ("l)l_:i for u_.)

b

% *
'i(wta - 7/2) -i{pt + #/2)
e e
and for
1{l+1 kIl+1
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In solving the boundary-value problem of Section IV, the auxiliary
equation (37) is the same except for a change in sign of the coefficients of the
odd powers of z. Thus the roots are the same as for outgoing waves except
for a change of sign of the real parts. Thus the Green's function contains
exponentials increasing in time instead of decreasing as in the oufgoing wave
treatment. This comes about because incoming waves are related to outgoing
waves basically by a time reversal. The Green's functions are not time
reversals to each other because the boundary conditions forced on them are
not related by a time reversal. For outgoing waves Gl(-ro, "r;) was found to
be zero for S < 1-:) ; for o > 'r; it is nonzero, but exponentially decaying.
For incoming waves the Green's functions G(lz) ('ro, 'r:)) are again zero for

T ? r ; for » > v , however, the functions G(z)
o o} o) o

2 exponentially rise,

B. Solutions of Scalar Wave Equation. Note that (r Er) satisfies the
scalar wave equation. It follows that the formalism and solution of the spheri-
cal boundary-value problem for (r Er) can be applied to any quantity satisfy-

ing the scalar wave equation, i.e., the rectangular field or vector potential

components,

C. Roots of the Hankel Function. Using double precision on an IBM 7044

computer, roots of Eq. (37) were obtained through the sixteenth order. Greater
computer precision would be needed to obtain them beyond the sixteenth order.
For 4=1, the root is -1, for 1=2, the roots are -3/2 T i 3. Table I con-

tains the roots that were found numerically.
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TABLE 1

(1) ,. _
Roots of H9.+% (iz) = O

Real part Imaginary Real part Imaginary
Order () of z part of z Order (1) of z part of z
3 -2, 322185 0. 12 -8, 253457 0.867839
3 -1. 838907 1. 754381 12 -7.997204 2.608989
4 5. 896211 0. 867234 12 -7.465614 4, 370186
4 -9.103789 9 657418 12 -6.610991 6.171537
’ ) 12 -5, 329710 8. 052905
5 -3.646739 0. 12 -3. 343023 10. 124297
5 -3. 3519566 1. 742661
13 . -8.947802 0.
5 2. 324674 3.571023 13 -8.830184 1. 736704
6 -4, 248359 0.867510 13 -8. 470615 3.483830
6 -3.735708 2.626272 13 -7, 844380 5. 254921
8 -2.515932 4, 492673 13 -6.900370 7.070641 .
13 -5. 530681 B, 972248
7 -4,971787 0. '
7 _4. 758290 1. 739286 13 -3. 449867 11.073928
7 -4,070139 3.517174 14 -9, 583335 0. 868314
1 -2. 6856717 5.420694 14 -9. 362826 2. 607241
8 _5. 587886 0.867614 14 ~-8.911220 4, 361654
14 -8.198775 6.143068
8 -5, 204841 2,616175
14 -7.172405 7.973204
8 -4, 368289 4,414442
3 5 838984 6. 353911 14 -5, 720353 9. 894709
) ‘ 14 -3. 551087 12. 025738
4 ~6.297019 9 15 -10. 273503 0.
9 -6.129368 1. 737848 .
15 -10.170628 1. 736566
9 -5. 604422 3.498157
15 -9, 859659 3.480484
9 -4,638440 5,317272
9 -2. 979261 7. 991464 15 -9, 323611 5. 242350
‘ PantERR 15 -8, 532440 7. 034373
10 -6. 922050 0.867690 15 -1, £%9402 8. 878983
10 -6.615282 2.611555 15 -5, 900151 10. 819999
10 -5, 967534 4, 384950 15 -3.647357 12, 979501
-4, .2
> oo 16 -10.914145 0. 875305
’ ’ 16 -10. 714492 2.602741
11 -7.622450 0. 16 -10, 328305 4, 356535
11 -7.484148 1, 737140 16 -9, 711228 6.126361
11 -7.057923 3.488977 16 -8. 848105 7.928469
11 -6. 301334 5.276207 16 -7.673256 9, 787751
11 -5,115647 7.137018 16 -6.071237 11, 747872
11 -3.229722 9,177112 16 -3. 739232 13. 935028
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