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Abstract

Under suitable restrictions Maxwell's equations assume a simpler form for the
EMP fields near the air-ground or air-water interface. These equations can then
be used to include various effects in a computer solution for the early~time
fields. An analytic solution for the fields for simplified forms of the conductivi-
ties and the Compton current density is presented. This illustrates the influence
of some of the parameters on the field components and gives rough estimates of the
field components for certain conditions.
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I. Introduction

In attempting to calculate the time histories of the electromagnetic fields
that comprise the nuclear EMP from a surface burst there are many physical para-
meters to include in the calculation with the result that a full solution requires
a complex digital computer program. (This, of course, presupposes that all these
physical parameters are sufficiently well understood, which is not obvious.)
However, some parts of this problem can be approximately calculated if we make
simplifying assumptions regarding the various pertinent physical parameters. In
this note we consider a technique for approximately calculating the initial or
eariy part of the time histories of these fields.

First, the time span of application is restricted to the transit time for a
y-ray mean free path in air. Then it is assumed that the air conductivity is large
enough so all fields are the result of the local Compton current density and local
electromagnetic parameters of the air and soil or water. By local is meant that the
positions of these parameters are within a y-ray mean free path (computed in air)
of the position being considered. We can then define a local Cartesian coordinate
system in which Maxwell's equations are somewhat simpler. Then for anmalytic
calculations linear, time-independent parameters (£,u, and o) and a step function
Compton current density to 1llustrate the contribution of the various parameters
are assumed. Specifically, the ground or water parameters are included by letting
the ground or water conductivity be finite in the calculations. Thus, we can see
the effect of the ground or water conductivity on the various field components.

'We also have some simple approximate formulas for the fields during a square pulse
of vy rays, which might be used for a rough approximation for the fields from a y-ray
pulse of about the same pulse width.

II. Local Field-Gemeration Model

Consider a source of y rays at the center of a spherical coordinate system as
in figure 1A where positive+;' is air and negative z' is soil or water. We assume

a Compton current density, J., for positive z' with only a radial component, Jc ,

of the form _r , r
J =f (-5 2 i (1)
Cr 1 ¢ 4ur?
where ~ B
cm -1 (2)
Hofo

and is the speed of light in vacuum. We have an arbitrary functiom, £, (t- E), of
retarded time for the time variation and an attenuation due to the finite y-ray
mean free path, r . Equation (1) does not include multiple scattering of the

v rays which Spre;ds out the Compton current density in time, varies its distri-
bution with & and introduces,a 0 component of the Compton current density near

the ground or water surface. Similarly, for the air conductivity, o _, consider-
ing only electron attachment to oxygen, so that 00 is linear in the Y-gay dose rate,

~l. Lt Richard R. Schaefer, EMP Theoretical Note X, Prompt Gamma Effects in the
~Aicinity of a Ground-Air Interface, May 1965.
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B. LOCAL CARTESIAN COORDINATES WITH ELECTROMAGNETIC QUANTITIES

FIGURE | COORDINATE SYSTEMS
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o, = £,(t- g) e Y (3)

4nr2

where effects due to multiple scaftering of the Yy rays and the influence of
the electric field on the conductivity have been ignored.

By choosing a particular point on the x' axis, as illustrated in figure 1A,
for the origin of a local Cartesian (x,y,z) coordinate system, we have a new
reference frame for our problem as illustrated in figure 1B. By local is meant
that the origin of the coordinates is defined as -a position on the x' axis near
which the electromagnetic fields are calculated. Since the -electromagnetic
quantities are assumed independent of ¢ we choose ¢ = 0, without loss of generality,
to base these local Cartesian coordinates. It is convenient, however, to place
the origin at the air-ground or air-water -interface because of the discontinuity
there, even if positions off this plane are of interest. In the spherical coordinates
we have, by symmetry, only r and 6 components of the electric field and a ¢ compon-
ent of the magnetic field. Only consider positions which are much closer to the
center of the local Cartesian coordinates than are the centers of the two coordinate
systems with respect to each other. Then we only have x and z components of the
electric field, E, and E;, a y component of the magnetic field, , and x and 2z
. components'gf the Compton current density, Jc and Jc » where in general effects

. X z : :
due to multiple y-ray scattering are now included.

Further assume that the attenuation of the magnitudes of the Compton current
density components and the air conductivity with distance can be neglected.
Specifically, assume that these quantities are of the forms Jc (t-%), Jc (t- %),

z

ang a (t—fﬁ so that the only variation with x is in the retarded time variable,
t-=. These three quantities are assumed independent of y but are allowed to vary
wifh z. However, there are certain restrictions associated with these assumptions.

Consider the charge density associated with the Compton current density. In
spherical coordinates the equation of continuity (considering only Jc ) is given by
. - . i i -~

r
; 3p
.3 .1 8 2 = .t
Vi T dr %r Joof T ot T S o ,(4)
r r

where Pe can be called the Compton charge density. Froﬁ equation (1) then

- .
— B VR : r -
, ¥ -
o, g -De oy r. Y
it 2 ¢ e FE R Qe (3)
4nr L a(t_' f) Y
AL r.

—

T,
We have assumed that the exponential attenuation, e Y, with distance can be ignored.
Equation (5) shows that for a Compton current density which changes significantly
in times much less than the transit time, _y, for one y-ray mean free path this
c
exponential term can be ignored. At a given location, then, if we consider t = 0
as the start of the Compton current density at that location, then for times
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r -

much less than‘—l the exponential attenuation, e rY, can be ignored. For a total
scattering mean ffeéipath;iiY?ibf about 200 meters for sea level air

Ty

P = 700 ns (6)
Thus, in our local Cartesian coordinate system we take Jc and Jc as zero for

t :.f-< 0 and only consider times of x z
!

1

r : v
. X Y
: - — <<
tTe ¢ (7)
Next an important restriction is that the local electromagnetic fields
(E and H) are determined only by the other local electromagnetic parameters
(e, ¥, O, Jc , and Jc ). Specifically, the electromagnetic fields at the

position of ¥nterest %re assumed to be insignificantly affected by electro-
magnetic parameters from some other position where they might be significantly
different (for a given retarded time). Since Jc s Jc , and Oo depend on the

' R z
y-ray mean free path in a manner similar to equations (1) and (3), r_can be
taken as the distance at which the electromagnetic parameters are significantly
different in retarded time, provided the source ig far enough away so that the
l/ngdependence is not as significant as the --;-dependence.

. . e Y

For ¢ = 0 fields generated at one radius can propagate to another radius,
larger than the first by Tys arriving at the larger radius at the same time as
the Compton current demsity. To inhibit this propagation effect we can consider
only those values of o or ¢, which are large enough to significantly attenuate
fields which might propagate a4 y-ray mean free path. For the moment, considering a

time independent o, we have a characteristic form of e Vs (o+se)rY . for plane
wave propagation for a distance, ry , where s is the Laplace transform variable
(with respect to time). The transIt time is jnstEE r>awhile a characteristic
diffusion time constant is wor,“. If this diffusion tIme constant is made much
larger than the transit time, Ihen in propagating a distance, r, , and for times
of the order of the Eransit time after the initial arrival of the wave (one free
space transit time, _Y), the wave is severely attenuated, as desired. Thus,

. c.
we consider only those cases in which

uorYZ >> \Jue T, (8)

or

£« Nf;; r 9

g Y

where ¢/0 is the relaxation time for the medium. For the air medium (z > Q) we
have '



€
2

o]
Y%

Iy
<< S (10)

‘which is approximated in equation (6). This implies a lower limit for the
air conductivity consistent with

o, >> 10_5 mhos/m (11)

Of course, in a real case 0, starts at a value much lower than this (zero for
EMP purposes) so that this limitation does not strictly apply to the practical
case. There is some retarded time at the beginning of a y-ray pulse for which
there is a Compton current density generating fields while o _ is lower than
indicated above. However, in many cases this may not be practically important,
introducing only a small error into the results due to this early time propaga-
tion.

In the local Cartesian coordinate system two of Maxwell's equations are

-
Vx—ﬁ-‘»-ug—:} (12)

and YxHd=J + w2 | 2 Qa3
XI"C O'Eat) )

. Reducing these to the scalar equations in the field components we have

9B, 9E, M,

%2 Tw - Y (14)

-5 =, F |oteg, | By (15)
X !

and
91 3
5o =, + [oter | E, (16)
Q

The various electrical parameters, €, u, and v, are subscripted with a zero for
the upper medium (z > 0) and with a one for the lower medium (z < 0) as in
figure 1B, For greater generality we have included a z component of the
Compton current density, Jc » on the right side of equation (16), but this

is neglected at some pointszin this note. The x component of the Compton
current density, Jc , 158 later assumed zero for z < 0 and independent of

z for z > 0, but inxgeneral we can let it vary with z.

We assume that locally Jc , Jc » and 0 are functions of x only as

contained in the retarded time éxpregsion, t - £ . Then whatever fields are

at x = xo are at x = x3 at a time later by (xl < xo)/c (for the same z). The
conditions relative to x; at the later time are the same as those at x, at the
earlier time. The solution of Maxwell's equations is the same for these two
position—time combinations. Thus, the three field components are each functions



of x, only as contained in retarded time. Note that 0 is a function of the
magnitude of the electric field.? However, since ¢ and the magnitude of the
electric field are both functions of x only in the retarded time formulation,
the fact that ¢  is a function of the magnitude of the electric field does not
alter its dependence only on retarded time for its x variation. Since t and x
variations are combined in retarded time, derivatives with respect to both t
and x are redundant. Define retarded time

X
T=t - | a7
Since all quantities of interest are dependent on T and not on t or x separately,
we can replace derivatives with respect to both t and x by derivatives with
respect to T. We then have for these differential operators

] )
3t ot (18)
and
3 __ 1.2
3x ¢ oT 19)

Thus, equations (18) and (19) can be used to rewrite equations (14) through

Y - __x_1 z
H o1 9z ¢ 9T (20)
aH 3

s = - U+ea—_[) E (21)

and

oH .
1 v _
p—N _..J -
c oT c

9 ‘ .
] 0+€5;) Ez (22)

The number of independent variables are now reduced to two, z and Tt , simplifying
the equations. , . - G _ -

Combining equations (20) and (22) to remove Hy

oF 3E ; .
17x_1 "7z _ _ - 3
u 9z uc 9T Cch ¢ a+es} Ez (23)
Qr
3E ‘I
—_— + ——% —
el w|eot e uc) 8- J E, (24)

2. Lt Carl E. Baum, EMP Theoretical Note XII, Electron Thermalization and Mobility
in Air, July 1965.



Differentiating equation (21) with respect to T gives -

aJc
9 H x 3 i 3 : ’
o192z =T 3t - 5}(0 + ESE) Ex (25)

Rearranging equation (22) and differentiating with respect to z gives

2 aJ
o H c, 3 3
3zt =-¢ 9z - ¢ 3‘ ote 3}) Ez . (26)

Equating the two second derivations of Hy in equations (25) and (26) then gives

aJ 9J

c
x+_§_ {U+e§‘ z+c_8_
ot

9z 9z

3
ote P

91 9T Ex s ¢ E; @7

Equations (24) and (27) are two equations for Ex and E , having removed H .
Note that at this point JC ,»Jc . Ex’ Ez, and o*can alf be functions of bdth
x Tz :

independent variables, z and t. In this form we can, for example, have ¢ as

a function of Ex and Ez besides the y-ray source. Likewise, Jc and JC can
. &

be functions of z and in this formulation can even be affected by the field

components, Ex’ E , and H_, although in this latter instance we would use the

three equations (50) throzgh (22). The essential condition is that the various

electromagnetic quantities can be approximated as functions of 1, instead of

t and x separately.

Associated with these differential equations there are boundary conditions
for the field coaponents. Across the boundary plane, z = U,éye have continuity
of : |

Ex (taagential E)

Joo+
c
z

2
U+€-5r) Ez (total normal current density)
and

Hy (tangential H)

Iin the limit of large positive z the presence of ground or water has no influencc

on the solution leaving an Ex (uniform with z), for Jc independent of z and no Jc ,
x z

as the only field component. For large negative z there is no Compton curreant

density and thus no fields. Then, for large positive and negative z, if Jc and S,

oE X
are uniform with z and Jc is ‘zero, —5;53 Ez, and Hy are zero. Also Ex is zero
? - . .
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for large negative z. However, for more general forms of Jc ’ Jc » and 9,0 for
b4 z

large positive 2z, we can have other forms for the field components.

At this point equations (20) through (22) could be used as the basis for a
detailed computer calculation.of the early-time fields near the ground. Since
we have but two independent variables and can base our coordinates near our loca-
tion of interest, we can grid z and T rather finely, if desired. With this simpler
form for Maxwell's equations we can also more easily include other effects in the
calculation, such as the dependence of ¢ on the electric field which in turn is
a function of z and 7, the distortion- of the Compton current density within an
electron range of the ground or water due to the presence of the denser medium,
and the distortion of the Compton current density due to the generated electric
and magnetic fields. We could even let the ground or water conductivity depend
on various parameters such as the y~ray dose rate. In all these cases we must, '
of course, first know the dependence of these parameters on one another.

There are a few special cases of interest which further simplify the
equations. Consider the upper medium (air) where p and & are the free space
values, then equation (24) reduces to

9E

X
Py uochz + uoccoEz (28)

such that the retarded-time derivative and the dependence on € have been removed.

This can be substituted into equation (27) giving

oJ '
c ; )
X +2 2 (4 2L _x
Chs TO'} o o 9T|{ O_ 9z
o o .
(29)

which is an equation containing only one. field component, Ex' Another simplifica-
tion which might be made is to ignore the displacement current with respect to
the conduction current. In this case, equations (24) arfé (27) reduce to -

aEx
5z - chcz'+ uccEz (30)
and
aJ 9J
Cx 3 €, 3 -
9T '+'5; (OEx) T STz te 2z (oEz (31

These can be combined to give

2 aJ
c

3 Ex 3 <
azz - HaT ( cEx) =M 37 (32)

which again has only one field component.

9



L. e inee Transforiwed Solutions

wow iet us use thnis formulation of Maxwell's equations to obrain some
aprruximate analytice solutions for the fields. TFor this purpose we make some
sinpiifying assumptions. First, assume that the electromagnetic parameters, e,
ii, and 0, are independent of retarded time so that we can conveniently Laplace
trznsform Maxvell's equations. Actually the air conductivity is not independent
of retarded time, but for a step function (in retarded time) of y rays the air
conductivity will approach a constant value within a few attachment times.
{Electrons attach to 02 molecules in about 10 ns) For our problem we can think
of g, as a step function commencing at tv = 0, the same retarded time that the
step function of Y rays begins. Then we can still Laplace transform the equations
oacause 0 is a constant for T > 0. We must also neglect the dependence cf o_ on
the electric field (which varies with retarded time) to make it independeunt o
retarded time. These approximations, and others to be made, reduce the quantitative
value of the solutions. However, we can perhaps qualitatively see the influence
of the various parameters. :

The assumption of a step function y-ray pulse is perhaps a little more
plausible if we note that the solution for a square pulse, of width, At, and
starting at t = 0, is identical to the solution for a step pulse, also starting
zt T = 0, for retarded times such that T < At. Thus, the solutions apply
during a square y-ray pulse. We might think of approximating an initial y-ray
»ulse by a square pulse, and taking Jc and o, as average values over

X
this At. However, we should be cautious in assigning quantitative value to such
21, approximation. ' '

In the followisg tavle are listed the variables for the components of
tne fields and thc Compton current density, in both retarded-time domzin and
;.place domain. The Laplace transform is performed over T, giving a Laplace
variable, s. A tilde, v, over a field variable indicates the Laplace transform
oF the variable. :

ketarced--Time Domain Lapiace derain
T £ T} . } i c-) - ' ’
. c \ 6+ 3 . - e N - %, - - e
X : X
o n
J 2,T J o (z45)
c ‘\ 2 ) c ( 9 2,
L Z
oA . n, A
nx\Z,T) nx(z,s;
= . N
E (2,1 L (z,8)
z “
N N
(2,1 il (z,58)
y J

Tewie I, Listing of Variables

If these variables are further subscripted with a zero they apply to the air
medium (z > 0), or if subscripted with a one they apply to the soil or water
medium (z < U). With neither of these subscripts the variables apply to both
media.

10



Then for €, U4, and 0 independent of t(for 1>(Q ) we can Laplace transform
equations (20) through (22). Taking the fields and the Compton current density
as initially zero &in retarded time) we have -

)}
’b_d_x_-s_m

us Hy— 52 CE, (33)

i

oH

-2 = _ - Yy ¥

Y 3c (o+es) Ex (34)
x

and
5'\;.__'\. - N ' ’
o Hy ch (o+es) Ez (33)

Associated with tucse equations are Laplace-transformed boundary conditions.
At the boundary plane, z = 0,

Ex (0,s) = £ (0,8) (36)
o *
) ' \ n,
I, 0,8 + (o +es) E_ (0,8) = I A(O,s)+(ol+els)§z (0,8) (37)
z o z 1
o 1
and
47 A7)
H (0,s) = H_ (0,s) (38)
yo yl .
Also for large positive and negative z, if }c and g, are independent of z and
3E %
Y

4]
if Jc is zero, then

X Y v
3 , L, and H are zero.
z z y

For convenience assume that the verticzl cowponent of the Compton current
density is zero and that the horizontal component isegero for z<0 and a step
function, independent of z, for z>0. Then

J. (z,1) = Jq u(t) (39)
xO

e (z,1) =0 (40)
X
1

and

I, (z,1) =0 (41)

Z

where u{t) is zero for 7T<0 and one for t>0 and Jo is a constant. This is
roughly consistent with a step function of y rays travelling in the x direction
for positive z, ignoring the scattered y rays. In Laplace domain then

11



I (e = 2 | (42)
p.4
o]

Y (z,8) =0 (43)
1

and

?r’c (z,8) =0 : (44)

z

Combining Maxwell's equations to remove ﬁ gives, as before (equations
(24) and (27)), y ]

a7
JE 1 '
X _ - l T . . .
5 - H [cc + [ec NC) s] Ez (45)
and
| 53 + s (c+es)% =c 2 (otes) E (46)
. X 0z z

v
where Jc has been dropped. Further assuming that ¢ is independent of z,

- z
equation (46) becomes "
)
n, \ K4
= 4
chx+s(o-Ijes)Ex c{o+es) e 47)
At this point define some convenient parameters
€ . .
= 0
tr = g (48)
o 0
_5a )
LI S - (49
1 1
€ U E
e’ E;-L i- lZ]E tr(1—~°€°) (50)
1 1 T 1 H1%1
11
JO
EO = E (51)
ua z2
- 00
tz = A (52)
0
and
u,o, 7z
_ 14
tzl E 4 7 (53)

12



The relaxation times for the two media are given in equations (48) and (49) while
equation (50) defines a modified relaxation time for the lower medium. Equation
{51) gives a parameter, Eo’ which is convenient for expressing the electric field
solutions. The final two parameters are characteristic diffusion times for the
two media, which are used later in the note.

Rewriting equations (45) and (47) for the two media

o
A
= v 4
Y. B cu Lz (54)
0 v
s _
- [ s
+ a{l+e 8) i ¢ (| 8) 5. (53)
V) I )
3E
i 4 "
]
"z c01(1+t r s)Ez (56)
1 1
and aﬁz '
s% = ¢ L - (57)
x oz .
1
These can be further refined, removing Ez’ giving
aZEx g
' N _ 00 .
3 2 S“oooEx T 14+t s E't:) (58)
z o r
o
and
2%k
X o
+ su,0, (1+t' s)E =0 A (59)
azz 11 r, ¥ .

Rewrite one of the boundary conditions (equation (37?7 as -

‘ n A
g, (1+tros)Ezo(0,s) = al(l+trls)Ezl(0,s) (60)

We can solve for Ex.from equations (58) and (59) and E from equations (54) and
(56), applying, the boundary conditions as in equations (36) and (60). Finally,
we can obtain Hy from equation (35) which can be rewritten as )

ca

7] = - o ) ) )
i —2 @+t s) 'ﬁ‘z (61)
o (] (o]
and
co
¥ o= —-;l 1+t s) ¥ (62)
Y1 1 1

13
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Solving for Ex gives

n Eo [1 -\ SH T z] ) Eo l —thz s

E = -
%o S(H'-tros) - coe s(l+t_ s) l-Coe °. ] (63)
o
and ' r
1 - '
v E,C, 2/§u101(1+t r1s) z L E c1 . 2 tzls(1+t rls) (64)
X s(l+tr s) ‘ a(1+tr s)

o o

where C and C, are independent of z. These solutions match the boundary
conditions for }arge positive and negative z, but for z = 0 these must be equal
(equation (36)) giving

Co+Cl = 1 . (65)

For Ez equations (54), (56), (63), and (64) give

""SUOOOZ = tz 8
Y Eo Co € E° Coe °
¥ .- a - L2.° (66)
c-\/suogo T, et 9)
r o
o
' - L}
and b e'\ﬁs‘ulol(lﬂ: rl5)4”1 — Lce 2 tzls(1+t rls)
E _ o 1 - 0o Q o 1l (67)
z U0
L . , 1°1
cVeuo L+t r 2, s) ,V/Ei 1+’ 8) (I+t_s)
o i t r r
r 1 o

Applying the boundary condition at z = 0 (equation (60)) gives

1+t s
g EC /u g r
0 00 = o 0 1].1
'cl ulol Eocl 5 (68)
s \/'E (1+t:’r s) (1+|:r s).
t ' ' r 1 o = - o

r - o
o .
or — L+t s) ‘\/l+t:'r s
C - C 170 Q 1 (69)
1 o] ua 1+t_ s
ol rl )
Combining with equation (6 '
"100 a+tros) Vl-l-t 1._1:3
Co = L+ ua 1+t s T : (70
ol rl
and
l+tr s -1
uool 1
C, = 1l + (71)

1 H1% (14t s)Vlﬂ:'r s
‘o 1

14



By substituting these into equations (63), (64), (66), and (67) we have the electric
field components in the Laplace domain.

For ﬁy equations (61), (62), (66), and (67) give

—Usuocoz coe-zwltz s

" JOCoe Joctr o
Hy = = = 0 (72)
o S [sH,9, S3/2 \JE-
A T,
and
- .
{L W/s ulal(l+t r s)z l+tr s
o J Cle 1 1
ﬁy = 2.0 Franl (73)
[}
1 s \/sulcl(1+t 1._15) r,
or in terms of Co (from equation (69))
T —-2\."'1; s(l+t"' s)
ysupo Fe’. s)z 1o ce 2 Ty
" Joco e 1 o ro o
H = = " (74)

y -
1 S . [su g 33/2ﬂ [t
oo r

y o
Substitution of C_ from equation (70) into equations (72) and (74) yields the
; .0 ! )
magnetic field in the Laplace domain.

IV.  Retarded-Time Domain Solutions.

As the Laplace-transformed field components stand, they are ratner complex,
particularly from the point of view of performing an inverse Laplace transform.
However, we can consider various simplifying cases which bring out different
aspects of the solutions. First, let the ground or water conductivity be
infinite and solve for the fields above the ground, including the effects of
€ 0H s and gy Second, look at retarded times, large compared to the relaxation
times, waich is equivalent to uecglecting displacement: currents compared to
conduction currents, out include the erfectz of p, and ¢. in the lower medium.
Tiird, consider the initial benavior of the fields at thé interface betwean the
two media with a finite o, and finally, calculate some approximate numbers for
the time constants and appropriate coefficients for some typical conditions.

A. Infinite Soil or Water Conductivity.

Letting o, = ® we have fields only for positive z. £quations (70) and
J- o
(71) reduce to
o™i (75)
and
c, =0 (76)
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Then we have

N
E
X
o]

e

and

e

Yo

in Laplace domain,_f}om equations (63), (66), and (72),
) Eo L ) -Zj}tz s

(o}

|
!
o
o

E e
- . _wo9
% (1+t_ s)
r o
-2 Vtz s
J ctr e o]
o]

S3/2ﬁ\/??
r
o

(77)

(78)

(79)

We can invert these Laplace transforms, in some cases using the convolution
integral if we separately invert parts of the transforms which are multiplied

together.
First
L—l
L—l
and
L—l

where L'.1 is

which applies for all positive z.

E
X
o

[ e | —
ot
il
et =
[}
i
T
La ]

(o,1) = - E0 [1-e r

considering Ex we have the inverse Laplace transforms3

x
R o
1+tr s .
o o
~ L
1 t
—_— | = - r
s(l+t_s) 1 ,e o .
r %

(o]

the inverse Laplace transform opérator. Then
-1 -

Simpler forms exist for limiting
8 I
t

o]

(80)

(81)

(82)

(83)

cases of z as

(84)

3. For these transforms and various functions see AMS 55, Handbook of Mathe-
matical Functions, National Bureau of Standards, 1964.
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and

Exo(O,T) =0 (85)

For the limiting case of small t. s which should apply for ™t , we have the
o o

simpler result, including the z variatiom,

t

%o

E . = -Eo erf e . (86)

Second, considering Ez we have additional inverse Laplace transforms.

-2 Vstz A - %o ‘
-1l! e o [} T
clle /=2 e (87)
5
t
r
o
-
-1 1 _ T :
L 372 = Tt (88)
L] t o
T o
- o
and
i ) S ’-\[127_ F( %) ~(89)
Ve @+t s) o :
. r 0
o
where 2 n
-n v2 ) ,
F(n) = e - e dv ‘ L= , ~€90)
o

and is called Dawson's integral and has a maximum value given by

F(.924) = .541 (91)
Then for all positive z __a=t' 3 €2
1 ty To R '
Ez = - on —t_ e ) o e - drt (92)
o r
o o
For large z
Ez (w’-;) =0 (93)

o
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while for z = 0

2 /T
E (0,1) = -E — Fﬁvﬁ— ) (94)
Zo Oﬁ ,t -

0
which for T<<tr is
0
It
7 ) P N ¢
lz (0,7) “o 2 \/7rt ' (%5)
o) r
o)
and for 'r>>tr is
o]
I ,
ro
Ez (0,1) = -Eo poeay (96)

0

For t>>tr (including the z variation)
o

;\/FE; _ zo
. o] T .
Ez ¥ - Eo P e (97)

o

Finally, considering Hy we have anothér inverse Laplace transform

_2 ‘\/T— zO I
L = 2 -2 \{— erfc (98)
2 t
L 3/ .\/— m ro
Then for all positive z ¢
o z '
: -2 [t e,
B =Jct 2'\/"—- e ' - =2 erfe [\[ > (99)
y o r Tt t T
o o r r
o o
For large 2z
Hy (=,t) = 0 _ (100)

(o]

and for z = 0
- - / T
Hy 0,1 Joctr 2 -ry (101)
0 o r
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Conveniently H.y does not depend on tr as a characteristic time for the waveform.
[¢]
It enters as an amplitude scale factor. If we rewrite c and tr in terms of €, Hyo
o
and 90 &, cancels out of the equations for Hy.

B. Retarded Times Much Greater Than Relaxation Times.

Now let 9 be finite. waever, only consider the case in which >t
o
t. s and t't . This last assumption considerably simplifies the Laplace trans-
1 1 '
forms of the field quantities which take the limiting form for small tr ’ tr , and

t; . The coefficients from equations (70) and (71) reduce to ° 1

1

[ ™ ]‘1
c =J1+\—=—2 (102)
[e] uc

RSN

- -1

Wa H. QO '
. ‘\l/_o_l :\/._L_g

R it Pl Co (103)

1% ¥oo1

and’

=

which are independent of s. The Laplace-transformed field quantities (equations
(63),(64), (66), (67), (72), and (74)) become

l-Coe-Z vtz s

v - [+
B, T TR s (104)
. cl éZ\ftils
E -~ -E (105)
b4 o s
1
-2 tz s
" Coe [+]
E = -EO : - : A . (106)
z, A “n _ .
t
T
0

H C C,e 1
E o= -Eq °0° 1 (107)

1 11 s
t
r
o
-21,tz )
Ce e

(108)

and
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Ve, s

c 1
0

- s
e
H Ject, L
vy, * o r, 3312\/22' A : . (109) .
o

In the retarded-time domain, for T much longer than the relaxation times,

=1
[

X, (110)
Exl = (l;l)u
E.Z = (112)
o .
Ezl = (}13)
- . t-z
[ uldo-_l ; T - ro - tzb tzo
H = J ct 1+ 2\/C_ e <2Y — erfe{ /|7 (114)
y o r ® G Tt t T -
o o ol r r
- _ o t o
and _ - ro. z1 ./t t
: T -1 ~ /T Tt o/ 21 %1
H = Joctr 1+ ldo 2 ntr e -2 E;“’erfc T (115)
yl o Mo ;J o o

"001 -1 .
E 0,1) = Ex 0,t) = —Eo- 1+ p ' 7 < , (116)
%o 71 H1%
\/ﬁ L[ |
. e ) y -
Ez (0,1) = -E° 1+ o p— (117)
o ol , .
oo u100 Y tro
E (0,T) = -E 5 1+ o = (118)
% °9 Mo
and -1
u10° T
H (0,1) = H (0,1t) = Joctr 1+\y— 2 perall {119)
yo yl o uocl r

0

Since Co and C, are constants these solutions are of the same form as those in

Section IV A f%r >t . For the retarded time much greater than the relaxation
° .

times we can regard Co as a reduction factor (relative to the infinite al case)
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for the vertical electric field above the surface and for the tangential magnetic
field at and above the surface. The radial electric field at the surface is
reduced, from the value for large positive z, by the factor Cl'

C. Retarded Times Much Less Than Relaxation Times

Consider retarded times much less than the relaxation times (defined in
equations (48) through (50)). However, only consider the case of z = 0. Assume
that € 2 €, and/or b > H, SO that t'r > 0. We then take the limiting forms for

1
large s of the Laplace-transformed quantities. The coefficients from equations (70)
and (71) become

t
[u o r
. ol 1 1
CO = . (120)

T
lo o
o Vst'
r

and

C 1 | : (121)

1

The Laplace-transformed field quantities (equations (63), (64), (66), 67), (72),
and (74)) at z = 0 become

c
Y] A7)
E (0,s) = E (0,8) = -E —%- (122)
X X, o 2
o] i s t
r
[
c
N - [o]
Ez (U,s8) E 372 . (123)
(o] S

N
?
!
=
o
o'!:
Qal o
o
N
a
[
!
|
r

I‘b B
E (0,s) " (124)
1 1’1 s R
t t
r o r,
O X1
and
" C
H (0,s) = H (0,s) = Ject S P (125)
y “° y ? r 3/2
o 1 s
t
r
o
Substituting for CO and C1
a n
E 0s) = B (0,8) = -E, —+- (126)
o 1 st
r
o



U e . ue-1/2
" - "\/ \/ '\/ ol 0 0 1
Ez (0,s8) = Eo - 1 . 2 (127)

R
=
o
Q
=)
Hﬁ
=
a
et
|
=
m| ™
|
=
S
[ 3]
1]
N
(s
~
.—I
N
00
~—

E (0,s) =

%1 H1€1 r

o

and - fuo e ']/tr U e, ] ‘u € "1/2
ﬁ (G,s) = N (0,s) = Joctr odl " 1 t'l é = Joccr °€1 [i - —229 —_—

Yo Y1 o] 1% ro rl st o 1% ul 1 s

' o
(129)

All the Laplace~transformed field components at z = 0 are then of the same form,
proportional to 5'2, in the limit of large s.

In the retarded-time domain we then have for t << tr > t and t'r

0 1 1
— ~ - X
Ex 0,1) = Ex 0,t) E0 c (130)
o 1 T
o
3 H.€ -1/2
- 1 L1 _ T
E, (0,1) = E, ¢ e 1 . (131)
o o o0 r
o
M, € - 1/2 .
- % 171 I :
Ez (0,1) = EO R 1 ) t . . _ (132)
1 : 00 o
o
and
€ U E - 1/2
B (0,1) = H_ (0,1) =Ject —& -181 -1 L (133)
Yo Yy o o uo o ro

If we combine t_ with Eo (giving Jo/eo) in equations (130) through (132) we note
o ' -
that no conductivities are present in the solutions. If we compare equation (130)
to equation (84) we observe that the radial electric field at the surface is initially
unaffected by the presence of the ground or water surface.

D. Approximate Numbers for Time Constants and Coefficients

Finally, let us consider some approximations for various time constants
and coefficients in terms of the y-rzdiation rate and the conductivity and permit-
tivity of the soil or water. We can use these with the appropriate previous equations
for rough estimates of the fields.
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Relating tEe parameters for the air to the radiation rate yields for the
air conductivity
15

2.1 x 1077
v Y

o, = en, ue(E) = eue(E) x (134)

o]
a

where e is the electron charge, u (E) is the electron mobility (a function of E,
the magnitude of the electric gie d), v_ is the attachment frequency of electrons
to 0y molecules (about 108 sec - at STP?, and y is the y-ray dose rate expressed
in roentgens/sgf. Here a steady-state solution is assumed by assuming times long
compared to Vv . Also other effects, such as ionic contributions and electron-
ion recombinafion, have been ignored. A typical value of p_ for small electric
fields (less than about 103 volts/meter) is about 1 meterzl(solt—sec) at STP,
giving a conductivity

12

o, = 3.4 x 10~ y (135)

This is somewhat lowered for typiczl electric fields (which are larger than lO3

volts/meter).

The Compton current density can be related to the radiation rate as
r

e e
Jo = 7 M (136)

where n_ is the photon current density in phctons/meterz-sec (taken as in the + x
directizn). The ratio of the mean forward electron range, r,, to the total
scattering Y—gay mean free path, r_, is about 1.1 x 1074 for arbitrarily assumed
2 MeV y rays. Thus, L

21

J = -~1.8 x 10 n : (137)
o Y

Changing nY to v we have for 2 MeV y-rays that6

1.2 % 1013 photons 1 roentgen (138)
me ter ) ) ) ‘_;a N

giving
I o=-2.1x1008y (139)

o

With Jo and co we can calculate Eo, a ¢naracteristic electric field in
the solutions. However, at such an electric field Ho is decreased. For ue
equal to 0.3

o, = 107+ § (140)

and

-2 x 104 volts/meter (141)

5]
R

4., Units are rationalized m.k.s unless otucrwvise indicated.
5. John S. Malik, KMP Theoretical Note XVI, The Compton Current, Nov. 1965.
6. T. Rockwell, Reuctor Shielding Design anval, 1956.
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This mobility and field are consistent with each other.7 Thus, we use equation
(140) for the air conductivity for subsequent calculations. Actually, since ¢
does not instantaneously follow the y-ray dose rate, the electric field can be
significantly higher than Eo'

The time constants for the upper medium (air) are then

-9 .gqg.,1 -
€, =5> =897 (142)
(o] o
and Lo 22
€ =20 = 31x1077 2%y (143)
[s]

We can combine these time constants with other terms for convenience of calcula-
tion. From the late-time vertical electric field (equations (96), (117), and

(118))

t ) .
r .
V=2 =\/%;{—3- = Va.gr? (144)

where we have defined

T =y (145)

which is just the y-ray dose expressed in roentgens. Likewise for the magnetic
field (equations (101) and (119))

Ject 2 N R —:-‘r «\(450 T (146)

Excluding the effects of the lower medium we then have rough approximations for
the electric and magnetic field components.

To include the effects of the lower medium, consider thé two typical cases

of NTS soil and sea water as in the following table.

Parameter NTS Soil Sea Water
(Frenchman Flats)

9y (mhos/meter) .02 4
€
L 16 80
€
o

Table II. Parameters for Lower Medium

7. See reference 2.
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The permeability, ul, is taken equal to uo in each case.

For NTS the time constants are
€

'—l

t = —= = 7.1 us (147)
] 9
and
U, 0.2 _
e =2l . 63 x1078 22 (148)
2, 4

We also have the factor
o
—2 = 5x1070y (149)
]
1
which appears in the late time field expressions (equations (110) through (119)),.

For sea water the time constants are

£ = ;1- = .18 us (150)
5 1
and
£, = 2L . 1.3x10% 22 (151)
1 4

The conductivity ratio is

ag
2 = 2.5x10713 (152)
9

For these two cases we can see from equations (1%9) and (152) the y-ray
dose rate at which the air conductivity is about the same as the conductivity
of the lower medium. For retarded times much longer than the relaxation times
we can see from equations (110) through (119) the effect of the conductivity
of the lower medium on the fields. The magnetic field for z>0 is reduced by
the finite ground conductivity (instead of an infinite ground conductivity).
Likewise, the wvertical electric field for positive z is decreased, while con-
versely the radial electric field is increased.

V. Summary

We then have a technique for calculating the early time fields, based on
a simplification of Maxwell's equations in a local Cartesian coordinate system.
This simplification reduces the time and space variables to two: the vertical
coordinate, 2, and retarded time, T (which includes both time and the x coordinate).
However, there are possible restrictions on the minimum air conductivity and maxi-
mum retarded time for validity of the approximations.
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Making some simplifying assumptions regarding the air conductivity and the
Compton current density we can obtain analytic solutions for the fields. Such
solutions show the influence of the various parameters such as the finite ground
conductivity which reduces the magnetic field and increases the horizomntal electric
field above the ground or water surface, relative to the values for ar infinite
ground or water conductivity.

However, these simplifying assumptions concerning the various parameters
for an analytic solution are not necessary. We can take the simpler form of
Maxwell's equations, depending on z and 1, and make a computer calculation. This
could include things such as time variation of the air conductivity and Compton
current density, dependence of the air conductivity and Compton current density
on the field components, and time variation of the ground or water conductivity.
Of course, we can only include these dependences to the extent that they are
known.
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