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ABSTRACT

This note contains curve fits to the radial electric cur-
rent and ionization rate responses to a temporal delta function,
point, isotropic source of gamma rays. The curve fits are based
on Monte Carlo calculations performed by R. E. LelLevier for
monoenergetic gamma sources at 1, 1.5, 2, 3 and 4 Mev in
air. * The fits are continuous functions of gamma energy, dis-
tance from the source, and time since direct gamma arrival,
and have been adjusted such that the time integrated dose buildup
factors match_ those obtained by the momentsamethpd for gamma _
energies between 1 and 10 Mev and distances between .6 and

10 mean free paths to within approximately 15%.

) These responses were generously supplied by R. E. Lelevier
of the RAND Corporation, and are described in RM-4151-PR,
"The Compton Current and Energy Deposition Rate From
Gamma Quanta - A Monte Carlo Calculation, " June, 1964.
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I. Introduction

This note claims to present reasonable fits to the radial electric
current and ionization (or energy deposition) rate density responses due
to indirect gammas from a delta function (in time), point, isotropic source
of gamma radiation. ¥ These delta function responses were estimated by a
time-dependent Monte Carlo code as described in RM-4151-PR.

The scattering medium was assumed to be air with the electron den-
sity of STP air. The Monte Carlo program was run with source gamma
rays at 1.0, 1.5, 2.0, 3.0, and 4.0 Mev. Hence any curve fits in this
report are based on the 1 -4 Mev interval and their accuracy outside of
this range other than on a time integrated basis is uncertain.

The units used in this report are chosen so that the results will be
readily usable in any unit system including seconds as its unit of time
(e.g., cgs, mks)., This is accomplished by expressing the delta function
responses as fractions of the direct beam contributions. For example, the
radial electric current re'spbnse would normally be exprgﬁsed in charge-
per-unit, area-per-unit time, while the direct beam response would be
expressed in charge-per-unit area. o Thus, the indirect contributions

divided by the direct would be expressed as seconds—1 regardless of the

charge or area units.

Henceforth, referred to as the delta function responses.

abs ot
SRR

Under the usual near surface assumption that the recoil electrons travel
radiallyat the speed of light. Strictly speaking, the direct beam effects
are also spread over time,




The radial current indirect delta function response, f(E,R,t) is

here defined by

where

where

Re

ck

and 7

Jindir-ect

Similarly, the energy deposition delta function response, g(E,R,t) is

defined by

Jindirect 1

f(EJ R: t) = sec »
direct
| . o Be R/
. t - k]
direc )y 4-,-rR2

is the electronic charge,

is the effective forward range of the recoil
electrons from collisions of the source
gammas,

is the gamma mean free path for collision,
is the radial distance,

is the source gamma energy, -

is the time since direct beam gamma arrival

at R, )

is the radial charge current due to indirect
collisions of gammas.

Q.. ..
indirect 1
g(EJ R: t) - Q sec E

direct

(1)

(2)



where

o _ Ee o R/
di - 2 !
irect A 4nR
where
Ee is the average energy lost to recoil elec-
trons on initial collisions of the source
gammas, and
indirect is the energy deposition rate due to colli-

sions of other than the direct beam.

Obviously then, the total radial charge current, .]'r , due to both
direct and indirect gamma collisions from a rest source can be expressed,

using (1) as

o0
IR = Ty ok |G rim R ] S G- ar (3)
- Q0
where
So(t) is the source strength in gammas per

s nd, and -
econd, and e _

5 (7) is the Dirac delta function.

Note that J dir can be chosen in any system of units. Similarly, the

ect

total ionization rate density due to a real source, Q(R,t) can be expressed

as

Q0
5 [6(7) +g(E,R,»] S (t-7 dr . (4)

- o0

QR,1Y = Q

direct



The resultant expressions for ionization rate and radial charge current are

given in their entirety in Section VL

II1. Curve Fit Method

The curve fitting method used here can best be described as "prag-
matic". In other words, no physical model was created with unknown param-
eters, which were then to be optimized according to a least squares criteria,
Instead, a functional form was chosen arbitrarily, but which seemed to rea-
sonably approximate the time dependence as evidenced by some histograms.
Then, values of some parameters were chosen by an "eyeball' method,
while others were objectively evaluated by the familiar least squares criteria.
The object was to obtain useful curve fits with a minimum of effort rather
than contribute to analytic transport theory.

The analytic forms chosen for both the f(E, R,t) and g(E, R, 1)

-NT/K(R, E)

functions were A(R, E) e where A is a fictitious initial value,
t is the time since direct beam gamma arrival, and,;_J( is_ a decay parameter.
The "initial value”* functions, A(R, E), were fit by an ''iterative eyeball"
method- -which was relatively easy. Values for the initial values obtained
by the Monte Carlo calculations are shown in Figs. 1 and 2 for the charge

current and ionization rates respectively. Then, assuming that the initial

value curve fit functions were accurate, the exponential decay parameters,

" Actually, the theoretical initial value approaches infinity as 1 — 0 as
log (R/1); but the area in any time interval, At, is finite.

-5-
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K{R, E) were chosen by a least squares evaluation on a computer. After
these parameters were chosen, the areas under the fit curves were com-
pared with the areas under the Monte Carlo results, and the curve fit
build-up factors were evaluated. The curve fit build-up factors (for energy

deposition and radial electric current) are simply
o0

1+ S ae VK g
0

which equals 1 + ZK2 - A. The energy deposition build-up factor was used,
after the A(R, E) and K(R, E) were fit as functions of radius and gamma
energy, to judge the validity of the fits for energies outside the 1 -4 Mev
interval and for radii greater than 1 km. Some of the decay parameters for
the electric current and ionization rate delta function responses, as deter-
mined by the least squares method, are plotted in Figs. 3 and 4 respec-
tively.

=N

IT1, The Curve Fit Results at Standard Temperature and Pressure for

Source Energies Between 1 - 4 Mev

The fits presented in this section were based on calculations made
assuming standard temperature and pressure air as the scattering medium
(760 mm Hg. pressure, and 273° K temperature). This corresponds to an
electron density of approximately 38. 75 (1025) elec:trons/meter3 . The

fits are extended to arbitrary air densities in the next section.
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The energy deposition or ionization rate delta function response,

g(E, R, t) can be expressed as

1
g(E,R,t) = AQ(E, R) exp(- '\/?/K.Q(E, R) S0 , (5)
where
E is the source gamma energy (in Mev),
R is the radial distance from the gamma
source (in meters),
t is the time since direct gamma arrival
(in seconds),
AQ(E, R) is the ionization rate delta function response
"initial value' (see Fig, 2), and
KQ(E, R) is the ionization rate delta function response

decay parameter (see Fig. 4).

The initial value function, A_(E,R) was fit by'the following function by

Q

trial and error using no objective criteria. The fit is evaluated at 3. 0 Mev

and is plotted in Fig. 2.

AQ(E, R) = (1.186 - .062 X E) 2.055(10 ") r\/Rho(E)‘ g%g ,  (6)
where
A is the gamma mean free path for collision

in STP air.

e
s

In this energy range, 1-4 Mev, the mean free path for all interactions
is very nearly equal to the mean free path for Compton collisions.

-11-



The exponential decay factor KQ(E, R) was fit by straight lines which are

obviously not very accurate inside approximately .6 mean free paths.

1

KQ = (1.1 + a(E) X R/)to) X 10_4 (seconds?) , (7)

where

a(E) is a function of energy only, which
is plotted in Fig. 5.

The coefficient a(E) was fit by a polynomial at 1, 1.5, 2, 3, 4, 5, 6, 7,
and 8 Mev -- the points at 5, 6, 7, and 8 Mev being extrapolated points

(see Fig. 5). Thus, a(E) can be expressed as

9
i-1
a(E) = a,BE . : (8)
i=1
The a, were determined by numerical solution of the resulting set

of nine simultaneous linear equations obtained by enforcing Eq. (8) at the

above energies.

TABLE 1 ~ )
U S i i
1 1. 565706 5 3. 875632 (1070
2 -2, 774190 6 ~7.185585 (107 %)
3 2, 529891 7 8. 005050 (10°°)
4 -1, 280640 8 ~4.921981 (1079
9 1.283994 (10°°)

-12-
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Thus, Egs. (8), (7), and (8) provide everything needed to evaluate Eq. (5)
except AO(E) , the source gamma mean free path at STP. This gamma mean

free path can be fairly accurately approximated by

52.2 + (E-.1) X 93.5 meters for .1 < E < .5 Mev

89.6 + (E-.5) X 61.1 meters for .5 < E < 1.5 Mev

9
150.7 + (E-1.5) X 48.3 meters for 1.5 < E < 4 Mev ®)

271.4 + (E-4) X 39.4 meters for 4 < E < 8 Mev

Similarly, the radial electric current delta function response,

f(E, R,t) can be expressed as

1
f(E,R,t) = ALE,R) exP(—'JT/KJ(E,R)) Prodi (10)

where

A J(E, R) is the radial charge current delta function
response ''initial value' (see Fig. 1),

and

KJ(E, R) is the radial charge current delta function
response decay parameter (see E;lg 3),

and all other variables are defined above.

The initial value function, A J(E, R) can be approximated by

7 1
AJ(E,R) = 2.055(10") Rxo E) Zeo s (11)

and the exponential decay parameter, KJ(E, R) is given by

1

KJ = (1.0 + b(E) X R/)Lo) X 10-4 (seconds?) . (12)

-14-



Here, also, the coefficient b(E);‘ was fit by a polynomial.

9 .
b(E) = Z biEi'l . (13)
i=1

The bi are given in the following table.

TABLE 2
. b, . b,
i i A i
-1 . -9
1 2.072634 (10 ") 6 5.845509 (10 %)
4.621258 (1074 -7, 705808 (10™°)
-1 -4
-8. 721357 (10 ) 5. 449037 (10 )
4 6. 476889 (107 1) 9 ~1. 599049 (1079
5 -2. 562205 (10'1)
IV. Extension of the Curve Fits to Other Than STP Air Electron Densities

Let us define p. as the electron density relative to that in STP air

(~38.75(10 5) electrons/meters), and, also define a distance R which

equals R/pr meters from the gamma source. Then we would expect the

1
same number of gammas and electrons to reach R in a differential solid

angle as reached R at STP in the same solid angle. This is because the
same numbers of mean free paths are traversed with scattering at the same

1
angles in both cases. Hence, the time integrated fluxes at R will be

s

" See Fig, 5.

-15-



multiplied by pi over those at R and STP because of the area scaling. The
time dependence is also affected because gammas take different times tra-
versing the "equivalent'' distances. The rates are altered by an additional
P, factor because groups of gammas or electrons arriving in At at STP
arrive in intervals equal to At/ Py at Rl . Also, the time of arrival of the

gammas is changed to t/ P, rather than t. Consequently, the non-STP,

indirect contributions to electric current density, J. .. , are related to
indirect

those at STP by
1 1 1 3

Jindirect (R,t) = Pr Jindirect (R, %) ’ (14)

and the indirect contributions to ionization rate density Q re

. g a
indirect

related to those at STP by

Qindirect R.t) = pi Qindirect (R, ) o (5)
where
1
R = R/pr = .
1
t =t /pr .

But, these relationships do not describe the dependence of our delta function
responses f(E,R,t) and g(E, R, t) because we have not considered the effects
on the direct beam contributions. The direct beam contributions to current
and ionization rate at RT will equal those at R at STP multiplied by pi

and pi respectively because of the area and volume increments in the

scaled geometry.

-16~-



Jdirect (R) = Pr Jdirec’c (R)
and
' ! 3
Qdirect (R) = Py Qdirect (R)

1 I ! ]
Therefore the f(E,R ,t), g(E,R,t) responses are related to f(E, R, ),

g(E, R,t) at STP by the following equations:

3
' p_J. .. (R, 1)
f(E,R .,t) = r 21nd1rect ,
pr Jdirect (R)
I 1
f(E,R,t) = p. X f(E, R, t) P
and
I !
g(E;R .It ) = prx g(E; R:t) ]
where
I
R = R/pr
[}
t = t/pr

More explicitly, the indirect beam responses to a delta function

sk
source at any electron density in a monogeneous Compton scatterer, are

g(E,R,t) = p_(1.186 - . 062E)(2.055(10 1)) ~NR~ o TA (B

Sec

X exp(—'\/t-pr /KQ(E,R) L ,

ale

" The primes have been dropped for clarity.

-17-
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where

KQ(E,R) = 1.1 + a(E) X

and a(E) is as given in Eq. (8), and

7 . 1
f(E,R,t) = pr-2.055(10) NR-p X _(E) exp (- Nt pr‘/KJ) o

where
R-p r -4
K (E,R) = | 1.0 + b(E) X 10
J A
o
and b(E) is as given in Eq. (13). Note that
NR- pr/ko(E)‘ = NRIX(E)
where
AE) is the mean free path length at relative
density .-
V. Comparison of Curve Fits with the Monte Carlo Data and Analytic

Buildup Factors and Extension of Applicability to & Mev_and 10

Mean Free Paths

*

Figures 6 - 9 contain histograms representing the thrice-smoothed
Monte Carlo results compared with the curve fits as expressed in Egs. (20)
and (21), The histograms were made compatible with the units of the curve

fits by multiplying the curve fits by the appropriate direct beam effects.

e
oy

-18-

" For an explanation of smoothing, see page 9 of RM-4151-PR cited earlier.

(21)



S(t) (Mev/cm3 sec)

X1079
2.0
(.5
E =15 Mev
r =512.5 METERS
DIRECT BEAM DEPOSITS
5.3 x 10”17 Mev/cm®
1.0
-CURVE - FiT
< Eq. 14
05 b
\
l_-‘_"———
00 [ 10 15 20

TIME (1078 sec)

FIGURE 6. ENERGY DEPOSITION RATE AS A FUNCTION OF TIME

-19-



x 10716

3.0

’;'IL

E =1.5 Mev
r =512.5 Meters
DIRECT BEAM:
7.3 x IO'24 statcoulombs/cm?

g 2.0

Nlh

£

:

a

S

g 15

2

1.0 \\

& %

00 5 10 15 20
TIME (107%sec)

FIGURE 7. RADIAL COMPTON CURRENT AS A FUNCTION OF
TIME



3.5

3.0

2.5

g
o

o

S{t) (Mev/cm3 sec)

0.5

0

l
E=3 Mev
r =1012.5 Meters
DIRECT BEAM DEPOSITS
8.2 x10™® Mewem®
\ CURVE FIT Eq. 14
ml\\
M
0 I 5 10 15 20 22

, TIME (10°® sec)
FIGURE 8. ENERGY DEPOSITION RATE AS A FUNCTION OF TIME
_21_



x 107"

6.0
50 E=3 Mey
r = 1012.5 Meters
DIRECT BEAM:
1.4 x 1024statcoulombs /cm?
4.0
2
E
S 3.0
2.0
\_ | CURVE FIT Eq. 15 | . )
0 \\
L
0
0 | 5 10 15 20 22

Time (10-8sec)

FIGURE 9. RADIAL COMPTON CURRENT AS A FUNCTION OF TIME
-292-



The buildup factors implied by the curve fits expressed in Egs. (20)
and (21) can be easily calculated. The buildup factor for energy deposition
or radial charge transport is defined as the sum of contributions due to the

direct beam only. Examining Eq. (3) for the case that So(t) = §(t), we see

that the buildup factor for radial charge transport, 'BJ , is
[+ o]
B, - S J}R, t) dt
_ direct
2 [ + (B, R, ) at]
ae |
direct Jdirect
=00
o0
=1 + S‘ f{(E,R, t) dt
= Q0
00
BJ =1 + S‘ f(E, R, t) dt . (22)
= Q0

Similarly, the buildup factor for energy deposition, BQ’ can be expressed

as

o0
BQ = 1 4+ S‘ g(E, R, t) dt . (23)
0

Note that the form of f(E, R,t) and g(E,R,t) is A-exp(-~Nt'/K). The

2
value of this integral can be expressed in closed form as 2+-K - A. Thus,

-23-~



Bl = 1+2-p 2,055 (10") NETN(E) © K (G (24)

and

By = 1+2:p, (1186 - .062E) 2, 055(10") NRTX(E) - KB B 2 . (25)

These buildup factors are plotted as function of mean free path

with moments method results of Goldstein and Wilkinsm for the

( VR/ME)

dose buildup factor from a point source in water) in Figs. 10 - 14,
The delta function response fits given by Egs. (20) and (21) were
based on Monte Carlo data assuming source gamma energies of 1, 1.5, 2,

3, and 4 Mev. However, the K_ and K. decay parameters were extrapo-

J Q

lated to 5, 6, 7, and 8 Mev -~ see Fig. 5. Figures 10 -13 indicate that the
buildup factors based on Egs. (24) and (25) are too high for mean free paths
greater than about 103 meters/ ?LO(E). This inaccuracy is particularly obvi-
ous at higher energies (Figs. 12-14). Therefore, a correction factor to
KQ and KJ as given in Egs. (7) and (12) was devised which insures suffi-

cient agreement between the curve fit buildup factors and those calculated

by the moments method. This correction factor, Fc, for both KQ and
KJ, is
F =1 / [1 + F(E) X (R/ME) - 103/)L0(E)H . (26)

" Goldstein, H. and J. Ernest Wilkins, Jr., Calculations of the Penetration
of Gamma Rays, NYO-3075, Nuclear Development Associates, Inc., White
Plains, New York, June 30, 1954.

~-24-
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The coefficient in the denominator, F(E), was fit by a polynomial

as were a(E) and b(E) -- (see Egs. (8) and (13) ).

9

Z fiEi'l . (27)

i=1

F(E) =

The fi are given in the following table.

TABLE 3
. £, ) £,
A i i i
-9 -3
1 -1. 955758 (10 ) 8 5, 632172 (10 °)
2 1. 237809 (10‘1) 7 -6. 678283 (10'4)
3 -1, 323847 (10'1) 8 4, 279942 (10'5)
4 8. 040323 (10'2) 9 -1.144781 (10'6)
5 -2, 774780 (10'2)

This F(E) function is plotted in Fig. 15 along with the fixed values upon

which the polynomial fit was based.

Vi. Conclusions and Summary

Curve fits to the radial charge (or electron) current and ionization
(or energy deposition) rate due to a point, isotropic, monoenergetic, source
of gamma rays in homogeneous air are given in Eqgs. (21) and (20) respec-

and K parametefs are to be corrected by the factor,

Q J

These curve fits are adequate for gamma energies

tively, where the K

Fc , given in Eq. (286).

-30-
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between 1 and 8 Mev and ranges between .6 and 10 mean free paths.

They are based on gamma scattering in air, and hence are not necessarily

adequate for scattering

in more dense materials where photoelectric and

pair production collisions are more probable,

Given an isotropic, monoenergetic, gamma ray emission from a

point source into a homogeneous scattering medium of low A (e. g., air),

with relative electron density, [ relative to STP air, one can express

the air ionization rate,

Ee- - e
pr

-R-pr/k,t

. . 3
Q, in pairs/meter - sec, as

t

Q(R) t) =

Eip)'t ’

2

S [6(m) + g(E, R, ] - So(t- 7) dr
4rR )

. . 3
(ion-pairs/meter - second),

where

Ee

ip

is the average energy lost to the recoil
electron in first collisions of E Mev
gamma rays (in Mev),

is the average energy required to Torm an
electron-ion pair in air or other low Z
material (in Mev),

is the electron density relative to STP
air (unitless),

is the gamma mean free path for all types
of collisions including pair production

(At < Ao),

* These total cross sections can be found in National Bureau of Standards
Circular 583, April 30, 1957,

-392-
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R is the distance from the gamma source
(in meters),

t is the time since initial direct beam
gamma ray arrival from the source (in
seconds),

. . . . -1
&(7) is the Dirac delta function (in seconds ™),
So(t) is the rate of gamma emission from the

source (in v's/ second), and
g(E,R,t) 1is the ionization rate delta function

response, which this note purports to
have fit (in seconds™ ~).

For scattering in air the total collision mean free path length can be

approximated by

lo for E < 2 Mev
174.8 + (E-2) X 40.3 meters for 2 < E < 4 Mev
255.4 + (E-4) X 28.6 meters for 4 < E < 6 Mev

?Lt(E)

tl

312.6 + (E-86) X 20.7 meters for 6 < E < 8 Mev

The adjusted version of g(E, R,t) to use in Eq. (28) is given here:

% .
g(E.R,1) = p_- (1.186 - .062 X E) X 2.055(10") X NR-p /X (ET (29)
X exp(—W/KQ(E, R) ,
where
KQER) = (1.1 +a(E) X (R-p /) 107 % F_ (30)
and
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and

Similarly,

as

where

-2. 774780 (10"2)

a(E) = z aiEl_1
i=1
a. . a.
1 __1._ 1
1. 565706 5 3. 875632 (10’1)
-2. 774190 6 -17.185585 (10'2)
2. 529891 7 8. 005050 (10'3)
-1. 280640 8 -4, 921981 (10'4)
9 1. 283994 (10”°)
_ 3
F_ = 1/ 1 + F(E) X (R pr/).t 10 /ko)
9
F(E) = zg fiEl'1
i=1
£, . £,
1 L 1
-2 ‘ = -3
-1. 955758 (10 ) 6 5.632172 (10 °)
1.237809 (10°%) 7 -6, 578283 (10'4)
-1, 323847 (10'1) 8 4, 279942 (10"5)
8. 040323 (10'2) 9 -1, 144781 (10'6)
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(31)

(32)

(33)

the radial charge current, J(R,t) amps/rne’cer2 , can be expressed



f(E, R, 1)

-R- pr/ht t

[6(t) + £(E, R, 7)] So(t -7 dr
47R

is the electron charge (in coulombs),

is the average radial distance traveled

by recoil electrons from first collisions

of E Mev gamma rays at STP (in meters),
and

is the radial charge current delta function
response (in seconds™ 1),

and all other variables are as defined for Eg. (28).

The adjusted version of f(E, R,t) to be used in Eq. (34) is given here:

H(E R, 1) = p_- 2.055 (10 ) - VR, ¢ exp(-NTp /K

where
-4
K; = (1.0 + b(E) X (R pr/lt)) 10" F,

and

9

b(E) = Z biEl—L .=

i=1
) b. . b.
i i A L
1 2. 072634 (10'1) 8 5. 845509 (10'2)
2 4, 621258 (10’1) 7 -7, 705808 (10'3)
3 -8. 721357 (10"1) 8 5. 449037 (10'4)
4 6. 476889 (10'1) 9 -1. 599049 (10'5)
5 ~2. 562205 (10‘1)
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(34)

(35)

(36)

(37)



Equations (28) and (34) assume a monoenergetic gamma ray source.
For use with non-monoenergetic gamma sources, So(t) should be replaced
by SO(E, t) gammas/Mev-second, and the right-hand sides of Egs. (28) and
(34) should be integrated over energy.

The limits of integration in Egs. (28) and (34) assume that the gamma
source function is zero for negative arguments. The ionization rate and
charge current expressions assume that the air density is high enough that
the recoil electron can be assumed to travel radially at the speed of light
without distorting the time dependences significantly, This condition is met

if

i

< the time in which So(t) varies significantly.

THE END
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