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THE ELECTROMAGNETIC FIELDS PRODUCED BY A
GENERAL CURRENT DISTRIBUTION IN A CONDUCTIVE
ENVIRONMENT UNDER CERTAIN SYMMETRY CONDITIONS

"

ABSTRACT .- -

The detonation of a nuclear weapon near the surface of the ground generates large electro-
‘magnetic fields. The distributed current and time and space varying conductivity caused by the
detonation make analytic solutions to Maxwell’s equations intractable. A numerical technique is
presented in this paper which allows one to find the nuclear-weapon-generated electromagnetic fields
with the aid of a high-speed digital computer. The technique is also applicable to problems of antennas
in conductive environments subject to certain symmetry conditions. Stability and accuracy of the
numerical technique are discussed, an internal consistency check is derived , and a test problem for the
technique is developed. It is concluded that this numerical technique has proved successful in cal-
culating the electromagnetic fields generated by a nuclear weapon detonation.
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SECTION I

INTRODUCTION

It has been observed that the detonation of a nuclear weapon c;eates large
electric and magnetic fields. The most significant part of these electromag-
netic fields is produced by a neutron- and gamma-ray-induced cﬁ;rent. This
current comes from the outward motion of electrons ejected froﬁléir molecules
by hard radiation through the process of Compton scattering. Since the mean
free path for this hard radiation is much greater in the atmosphere than it
is in the ground, a detonation neaf the surface of the ground will create a
hemisphere of outward-moving electron current sbout the burst point (see
figure 1). If the ground is of sufficiently high conductivity, then, in
solutions for the fields in the upper hemisphere, the ground may be repiaced
by a perfectly conducting ground plane. This ground plane in turn may be
replaced by a lower hehisphere wherein currents are the image of the currents

in the upper hemisphere again as long as only the fields in the upper hemis- '
phere are to be found (see figure 2).
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Figure 1. The Electromagnetic Environment of a Nuclear Detonation
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Figure 2. Simplified Schematic epresentation of the EM Environment
Produced by a Surface Nuclear Detonation '
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these equations ana.'l.yticallr the e,jected electrons lose energy by ionizins

many air molecules in their paths, and this ionization makes Vthe a.tmosphere
conductive. Thke conductivity is a function of both space and t:lme,' and such
a8 conductivity greatly complicates finding the solution to Mmell'j_l equa.tions.

Even though the equations are for the most. part. :I.ntra.cta'ble anﬂlyticﬂlly’
their solution can be found numerically with the assistance otf _g«lliah-speed
digital computer. This report presents a. numerical technique ror so;vins
Maxwell's equations for the area adjacent to a nuclear detona.t:l.on. “ 'The
technique described is applicable as well to a wide variety of problemﬂ

concerned with the operation of antennas in conducting en?'ironmen'l;s..
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SECTION II

DEFINITION OF THE PROBLEM

A straightforward application of the theory of the vector potentiel allows
one to calculate the electromagnetic fields from ah arbitrar¥‘cgrrent distribu-
tion, provided that the conductivity, dielectric permeabilié;:‘nnd magnetic
permeability of the propagating medium are uniform and time'indepen&ent.

The problem is much more difficult when the conductivity is an arbitrary
function of space and time. 1In such a case, no general analy{%cal formalism
for the solution exists. The numerical technique discussed 1ﬁ.this report has
been developed to solve Maxwell's equations in a conductive environment under
certain restraints upon the symmetries of the currenf distribution and the

electrical properties of the surrounding media.

The required symmetry conditions are most easily expressed in terms of

functional devendencies. The one symmetry vproperty common to the entire ji
method described is azimuthal symmetry. Thus, for each parameter P in the %
problem it is required that g
(in spherical coordinates) %

P(r,0,é,t) = P(r,0,t) (1) '
For the radial current Jr,_a,further condition is S -

J'r(r,e,t') = J_(r,7-8,t) _ | | (2)
and for the polar cﬁrrent Je

Tolr,8,t) = J (r,m-0,t) S . (3)

These symmetry conditions are met by an arbitra:y;.azimuthﬁlly independent
current about a point on the surface of a perfectly conducting plene, if one
uses the method of images to find the fields above the plane;
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The remaining conditions are J¢ =0,
o(r,6,t) = o(r,t); ¢ = & constsnt, u = a constent. (L)

Thet is, all electrical properties of the medium are spherically synmetric
about the origin. These syrinetry conditions are also met by fhe imepe model
which mey be used to cslculste the fields shove an infinitely conducting plene
given that the conductivity in tha* helf space is hemivpherically symnetric
about the origin on the plene. Under these symmetry conditions the nonzero

field componcnts chl

'H¢(r,8,t) = +H¢(r,1r-6,t) , (5)
Er(r,ev,t) = —Er(i:,n-s,t) (6)
Ee(r,e,t) = +Ee(r,u—0,t) o (1)

The detlexuinetion of Jr, Ja, and o for the cese of a nuclear detonation

is beyond the scope of this work, end will be teken up in & later publicetion.

_ 1hese stetencnts follovw divectly from Maxwell's equations and the asswiizd
symietrics, es will be demonstrated in the next section.
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SECTION IIX

MAXVELL'S EQUATIONS

The basic equations which govern the behavior of the electromagnetic

flelds are

Mexwell's equetions, commonly written in the vector equation

form, in the rationelized MKS system,

Wl = T+ of + 53 . s (8)
WiE = 2 - | ()
where . H = the magnetic field intensity
3& = the driving.current. In the nuclear detonation, 3& is the
"Compton" current
E = electric field intensity
D = electric flux deasity
B = magﬁctic flux density
¢ = electrical conductivity
Meking use of the corstitutive equations
B =yl : (10)
D=cE, - - | S (1)

whera u

3D

{ihe magneﬁic permnesbility of the medium

¢ = the electrlc veriizability of the medium?

then Maxwel

1's equations msy be written

12) .=, =, eE) 12

vx[-‘-l- B] = T4+ oF + ¢ (12)
- BB .

VE = 3T (13)

2: is . somet
medium.

imes mislesdingly referred to es the dielectric constant of the

< '-ﬂ’.i&:‘-,w‘;‘é-‘):':"-" PP U AR AT

o :WMMT—'!H"'!!'!‘#&"#"?;' A
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If one now assumes that u and ¢ are constants, the eqﬁa.tions reduee to the
final form: '

s

—

- = = . :
%sz = T+ oF + €5 R $ 1%
VxE = _G_E ' - ;1‘
at L - (15)

From the assumed symmetry conditions, the first equs.tion has only r ang ©
components and the second only a ¢ component. All terms of the 0 compcnent
of the first of Ma.xwell's equations and of the r and 8 componenta of the
second equation contain either E ¢, e OF Ha If the initial conditions
specify that all these fields are zero, then Maxwell's equations predict
that these field components will remain zero. Thus, the sca;gx’-_;gqms of the
=2 rJr)ﬁ- EJO, L

sbove equations are, with' Fd

r component:

9E,
1 9 X 16) .
T 36 (Bsine] J +oE +ep (16)
8 component:
' aE
L2 -2 (17)
“ur Ir (rB¢] Jg ¥ uE +e5¢
¢ component:
(18)

r ar( a] 380 T - e e e

S 3
first representing each field as a series expansion in Legendre polynomiala.
Under the assumed symmetries, only the odd n coefﬂcients v111 ‘be nonzero.

_ 0 (19)
Jr = n-zsl Jrn Pu _(cosﬁ)
T . | (20)
J, = J. P (cose)
0 n£1 en n

3These expansions were first proposed by Dr. B. R. Suydam
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0, i

Er = n£1 Ern Pn (cos®) (21)

By = E, P (cose) o | . (22)
n=1 n . - .

B, =nzl B¢ P (cos 0) | . . * (23)

Using the above Legéndre exp;ansions of the fields, the three coupled
partial differential equations become:

r component:

1 3 B P (cos6) sin8| = ] J_ P_ (cose) +
ur siné 38 n=1 n . n=1 1'n n
D) E, Pg (cos0) + ¢ = Z E P (cos&) (24)
n=l n Tn '
Since .
pl (cosf) = 2 p (cose) o (25)
n 30 o o e ,

, & -
This may be put into the left hand side of the r component equation giving :

1__ 2 Y B sinO—P (cose) =

Tur sin® 30 =, 4, 20
17 1.3 K : :
T nzl B STn6 30 sin® 53 P (cosﬂ)] : (26)

Difi_’érent_iating this with resﬁ'ect to 8 gives

l‘See Appendix

ey
.
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1 3 v 2
-iF oino 36 Z B¢ sin@ 30 P (cosB) =
=1 n
1 ® 32P0 an
- z ¢ >+ cot® 3o . (21)

Since the defining equation for the Legendre polynomial is

2 (0] 0
3P
_—-52‘- - cot® —= = n(n+1) P0 H (28)
90
20
thus,
1 E 0 _ v 0
— B, n(n+l) P ={ J P (cos®) +
Br n=1 ¢n n n=1 I.n n
- - - -] ’
o zl E, Pg (cos8) + ¢ —a- Z E, Pg (cose) (29)
n= n

Integrating the above equation multiplied by Pﬁ {cos8) siné from O to w,
the final result is i

n(n"'l) B =J + oE + E_Q.E (30)
ur $ T r ot 'r . & o

Similarly, the 8 equation becomes

ur r ( ¢ ] = Jen M OEBn te at : ‘ (_31)

and the ¢ equation becomes

aB¢

n

o |
[a—r (2, * Err;| = -5 | (32)

M|~
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The equations may be written more simply with the substitﬁtions

B = rB

(Where the . designates the
o variable as the one used '
) e previous to this point in
the discussion)

=
[}
B

t=3
n
=

giving for the equations to be differenced the following set of three
coupled, first-order, partial differential equations in two independent

variables, r and t, and three dependent variables: &

3 %, »
__.n+g.E + —p'._cn(L*'L).B =0
€ € r at 2 ¢
n r n
3E,
b g n, 23
cJg *TBg t 3 *C 3By =0
n n
3B
2E +E + 0 _ 0
ar 8 ot

vhere, of course,

c=

-
Yue

(33)
(.:?xh)

(35)

(36)

(37)

(38)

T

R ST Sy

o
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SECTION IV

THE FINITE DIFFERENCING FORMALISM

To solve a set of differential equations with the aid of a digital
computer, the differential equations must first be approximated by finite-
difference equations. The resulting finite-difference equations must be

numerically tractable and stable. In addition they should give solutions

21-11

which converge to the correct solution within a reasoneble computation time.

This section will discuss the finite-difference equations to be used and

their accuracy, while the next section will consider the closely related

topic of stability.

To understan& the constraints on the differencing scheme, an inspection
of the domain over which the differential equations are to be solved is in
order. PFigure 3 shows the domain for the problem (c is the sveed of light
in the medium):

PROBLEM

t

Figure 3. The Domain of the Problem
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Without loss of geherality, it may be specified that the source for the fields,
J, is turned on at the origin at time t = § 'g.nd elsevhere (r) at “a
retarded time of & (i.e., t-r/c = §). Along the curve t-r/c = 0,. all
fields are zero, since the fields will propegé.té no faster than ¢, the speed
of light. Therefore, we have the condition that for.t-r/c = 0, all fields
are zero. ' )

To avoid numerical difficulty along the r = 0 boundary, the veriables

used in the computation,

must approach the r origin in the following menner:

Lim Er = a, Lim rﬁ‘e = b, Lim rﬁ¢ = ¢ (39)
™ “n r+0 n 0 n

(a, b, ¢ finite)

and a, b, and ¢ must be known. These conditions are not very restrictive;
they apply, for example, to the linear dipole antenna of finite length (i.e.,

any physical linear dipole). =

In general, the electromagnetic fields will propagate. to infinity in both
r and t, so we cannot close the third side of our boundary in the r, t plane.

The differencing scheme is built upon the grid shown in figure 4:




AFWL EMP 2-1 ' 21-13

A | P

f(r+ar,h)
’
firs)
—_—— AP | *—o— ¢ (r,t+AL)
Ar
— , — f (r-Art+at)
| ) t
At

Figure 4. The Grid for the Differencing Scheme

An inductive process will be used to show how the electromagnetic fields
are found. Assume that by the process to be described, the fields (denoted
by f(r,t) in the figure) at all grid points (intersections of two grid lines)
to the left of the point f(r,t+At) and directly Yelow the point f(r,t+At) have
been found. Then the next point at which the fields must be found is the
point £( r,t+At). To do this a set of difference eguations are written which

are centered sbout the point x on figure 4. Expli®itly, the equetions are =

1 ANES (AR SR A
U [r,t+ 2]"2; [r,t-l- 2] [Er (r,t)+Er (r,t+t\t)]+m
n n n
2n(n+1) '
B (r,t+at)-E_ (r,t)|-S22==4B, (r,t)+B, (r,t#st)| =0 (ko)
T r 2 ¢ ()
n n 2r n n
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r At], o . At], 2
EJBn[r t+= 2] 5o [ b+ 2] n(r ,t)+E n(:z- SLHat) [+ 25

2
[ ] c '
Eg (r,t+At)—Ee (r,t) ?A—;% (r+Ar,t)-—B¢ (;-,t)
n n L n n

+13¢ (r,t+At)-—-B¢ (r-Ar,t+at)| = 0 (41)

n n

1 ) 1
it B¢ (r,t+at)-B n(r ,E) |45 Ern(r,t+At)+Ern(r,t) T

=

(r+Ar t)—E (r t)+E (r, t+At)-—E (r-Ar,t+8t)] =0 (u2) -
n n n n . :
:

Multiplying by various constants and resrranging terms, these equations are

conveniently written ' g
2 i
(r,t4+4t) gé-tﬂ -B, (r,t+at) 9——61“—(-2—*9- 4
n ‘n - - 2r : - 2
| . _ - Z
&
. - 2 §
= -—“—EJ -Er (r,t) °—Ll13~1 +B, (r,t) 9—-A—-t-"—(-'21+—1)- . (13) g
n n n 2r %
}’:A
czAt gt rit caAt -

(r t+At) | —— -iE ( JEt+AL) —-+1 —-Jg o A B (r+ar, t)-B (r,t)

n n n
(r—Ar t+At) -E (r t) géﬁ—l (4k)

n n
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E. (r,t+at) A; +B, (r,t+8t) + By (r,t+at) zpo At
n n n
- -5 p (Tst)By (r,t)-; el (r+Ar £)-E, (r,t)-Ey (r-dr,teat)| (45)
n

l'l n n n

A1l of the fields on the right-hand sides of the above equations are known,
and all of the fields on the left-hand sides are unknown. Thus, there are
three independent linear algebraic equations and three unknowns, which may
immediately be solved for

E. (r,t+At)
n .

Eq (r,t+At)
n

B, (r,t+At) - | ;
¢n .

The solutions are

2 2 7] )
.1 cAt c”Atn(nt1) oAt | oAt _ b
(r,t+At) = 55T Dl[—2Ar] -1)3 5 271Dy [ 5t (46)
n , 2r
i - ,
- F 2
R At|oAt At|oAt oAt -
B%(r,tﬂst) = 557 | Dozag l_ 95241 [+, " T2 oltsy) Dy 5+l (47)
A | _ . I

n

2 2 2
1 I c“At|oAt cAt c“(At)
By (r,t+8t) = gr ) Dy 2ArL 2¢ " P [ 2 ] n(n+1)-D, 442

oAt : .
Da|T2e*t | (48)

where 2

2
= [ebt]) |oAt, chAt oAt _|oat,
DET = [EAr] [ ] n(n+l) |S50+1 | 504 (49)
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b, = -2 £ (r,0)[%Eales, (r 4)Ebtn(nel) (50)

£Er r 2
n n 2r
rAt.  coAt
D, = --E-Je T 1315 (r+Ar,t)—B¢ (r,t)-—B¢ (r-Ar,t+At)
n n n n :
E, (r,t) ! “ (51)
n
_ At At
1)3 = -3E. (r,t)+B¢ (r,t)-zAr Eg (::-'r.eu-,t)-t:e (r,t)
n n n n
-Ee (r-Ar,t+At) (52)
n
In this menner the calculation advances the field solufions, progressing §

outward through the range r at a fixed origin time t until the light cone
is reached, then advances the time by At, and progresses outward from the
origin once more. The principal machine memory requirement is that each of
the three components of the field be stored for each n considered at the

latest time for which it is available. - 7 ' % . -

TSRO TR vis - s

The Truncation Error. of the Differencing Scheme

It is of interest to find the order in At and Ar to which the. finite-
difference equations are accurate. If the equations were accurate to all
orders, one would obtain the exact solution 1ndcpenden‘l_; of the grid size,
so long as the dlfferencing scheme was stable. Practical differencing schemes
will be accurate only to some finite order'-the higher the order, the larger

the At and Ar steps that maey be taken to obtain answers within a specified

accuracy. To demonstrate the method for determining the order of accuracy, 4
detelled calculations will be performed with the equation
BEe ¢
o r: L0 n 2 n _
e *e * ot ¢ ar 0 (53)

o 44~\Ahim&;ﬁ’;~%mwwhvﬁinﬁaw\ B T T
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"Let J, end be the current and conductivity at the point about which the

)
n

equetions are differenced. Call this point (r,t). let B¢ s EB ’ Er be the
- 'n n n A

exact solutions to Maxwell's equations at this point. Then, using a Taylor
expansion for the variebles appearing in our finite differencing scheme in

two dimensions,

3B, 3B, "B,
At} _ n At n ArAt n
B¢n(r+“r’t"3] B ¥ " 2w 7 Tarat
2 2 !
3°B 3°B
2 ° ¢ 2 ° %
+ XAt n, (ar) L 0[(Ar,At)3) (5k)
2l'2) .2 2 2 ,
t ar

Expanding the finite difference form of the equation under consideration in

this manner, the truncation is found:

2 2
3°E 9E a“E
At 9n+;{a_1-._]2 en_A_t- °n+19_g]2 ®
2\ 2 2 2 ot 20 2) .2

pg' ' _— e

3E 3°E IE,

- 8 2 % By
- 3}, L At _n LAt} - m At _n
+ of (s3] + it|®e * 2 Tt *'E[ 2] 2 8’ 2 3t

2
3°E . 3B 3B
o % By 2 Pe ¢
1! At n [ 3] [« n At n
‘5[ 2] 2 ° (A0)7)[* za5| By * O 57 - 7
n -
22 G g 3B

B 3
_Ar| AL ¢n.._lg_t_.2 ¢n+(Ar)2 * 5 s At n
arat 2|l 2 32 2 - N
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3B 3B 3 B 9B
st _%n o, arat %n o afat 2 _ () 0{(Ar At)3]
2 ot 2 arot 2| 2 2 ~ 2 .2 ’
at ar
=0+0 [(At)z, (Ar)3] - (55)

Therefore, the equation is accurate to order (At)2 in time and to order
(ar)3 in r.

A similar reduction of the other two equations shows that they are

sccurate to the same order in time and to at least an order of (Ar) in r.
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SECTION V

STABILITY

Stability of a set of finite-difference equations is the properfy that
perturbations of the solutions do not grow as the cqumutatioﬁ pProceeds.

Convergence is the somewhat more nearly ideal property in that as the
grid size (At and Ar in this case) aoproaches zero in some specified manner,
then the solutions to the finite difference equations approach arbitrarily
close to the solutions of the differential equations upich they approximate.
A theorem, known as Lax's equivalence theorem, ties toééther these two
properties: given a properly posed initisl value problem and a’ finite-
difference enprouimation to it that satisfies the consistency condition,

stability is the necessary and sufficient condition for convergence.

Two conditions must be met before this theorem is nnplicable first.
the initial value problem must be properly posed, and second, etcopeistency
condition on the finite-difference equations must be'satisfied:m?iruronerly
posed initial velue problem is one in which the fields on the beuhHEries
satisfy the equations to be solved (i.e., are physically possibie) Stated
more completely, a properly posed problem is one for which a unique solution
exists, this solution being a continuous function of the 1nitial data. The
consistency condition requires that as Ar and At soproach zero, the finite-
difference equations ‘approach the original differeatial equations. Since N
these conditions are met in the scheme proposed then by Lax's theorem they
should converge to the correct solution as the grid size anproachea zero.

It should be kept in mind that in actual numerical computation, the grid
size must not become too small, or differences taken between t!elds at twvo .
adjacent grid points will be overwhelmed by the roundoff error of the machine.

ll

Therefore, the problem remaining is to understand the stahility of the
scheme. The subject of stability is best approached through a consideration
of small perturbations, &6f, upon the exact solution to the differentiﬂ-l

equations, wherein




Y
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B, goes to B, +6B
¢n d’n .¢n

Ee goes to Ee +6Ee
n n n

E_ goes to:E +$E
r r r
n n n
These variational fields satisfy the homogeneous form of the ofiginal
equations. Furthermore, in the finite-difference scheme, the variational
fields will satisfy the homogeneoﬁs form of the difference equations.

Consider a perturbation of the forms

ot
<

§£(r,t) = afoeikr+“t » (56)

where k may have any velue from zero to infinity. This expression is one
term of a Fourier series in r (k is real) and to achieve stability, the

real part of a must be less than or equal to zero for any k. The relation

o flerAnr YAty L.

between a and k can be found through the homogeneous finite-difference
equations. First, expand the variational fields about the point (r,t), so
that, for example, '

SE(r+Ar,t+At) = SE(r,t)elRATTEA ' (57)
Using this expansion, the vapiational equations become J
][ o  in(nen) B
SE (r.t) - aAt gbt),, abt +[eudt_l] 8B, .(r,) | SAtalntl) ) astil _ 4
b o ¢ 2 :
n . n . er 3
(58) ;
‘ .
2
SE, (r,t) g%§_1+eaAt +(eubt-1] +6B, (r, t)c At e1KAT 1408t
n _ n
-1kAr+aAt ) ,
e TiKETY =0 - o (59)
B
5 .
For & detailed discussion of the theory of the stability of finite-difference B 3
equations, see Richtmyer, R. D., "Difference Methods for Initial Value Problems," ;
Interscience Publishers, 1957.

e
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.} At] aAt alAt At ikAr_
GErn(r,t) 5 e' +1 +dn¢ne e =1 +6Een ek

(60)

1}
o

aAt 1kAr+aAt
+e -

For these equations to have a nontrivial solution, it is necessary that the
determinant of the coefficient matrix be zero. For ease in ménipulation,

the following variables are defined:

aldt
x=e
oAt
as —
€
2 .
b = S Atn(n+l)
2
r
=£n§-
B Ar
m = kAr
A= l-eim
A® = 11T (61)

Substituting these varisbles, the determinantal. equation becomes,

2 ,
alx+1)+2(x-1)| | c2e?| -arxa®| -bat(x+1)2-2(x-1)|al(x+1)+2(x-1)| } = 0
. _ J . iﬂ. b . .
(62)
If the first factor is to be zero, then
x = 2=8
2+a
arAt+iaibt i 0
Since x = e’ © = Ret » & general representation of a complex number,
then the mamnitude of x is
a At
|x| = IeuAt' = 'Reiel = Ie r I (63)
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Clearly, if there are to be no growing perturbations in the computed solutions,

then the real part of a must be less than or egual to zero. This is always

the cese for the above equation, so that for this factor, the stability

condition is met. If the second factor is to be zero, then

2 2nnrsoat-tt v o2gPoat (aram) Zlic? g2 (A-a%)242ac?s 2( 42 A‘2‘+he ~16bAt

x'_‘.
' czgaA*z-hAt 2a-L

" (6w
The stebility given by this equation will be considered for very small and

very lerge conductivities. The: first step will be to find the ste:bility with

the conductivity set equal to zero, in vhich case

- c252AA*+bAt L+ \/; bAt(A+A*) 211262 (A-AR)2-16bA% ©(65)
2 g2 A"2 _bAt-b

Then the maximum velue of the sum under the square

Assume that czg2 is < 1.
Therefore, the condition for

root must be less than or equal to zero.
stebility, found. from considering the squere of the magnitude of x, is

[c232A*2 bl!ﬂ;--h][cageﬁl2 -bat- ’-l] [c g 2 AA®+DAt- h][ M‘H-bht-h)—c g bAt(A+A*)

' -hczgz(A-Aﬁ)2+16bnt o ) < (66) ‘

Expanding this one finds thet there is an equality between the mugn:ltudes of
the numerator and the denominator, and thus the stability is. marginal, That

is to say, an error introduced into the field values neither grows nor decays

with advancing time. Now assume that there is & small nonzero conductivity.

Then, keeping only the two lowest order terms in a, the numerator of our

stability exps2ssion is, schematically

N =wtVutiv (67)

r

1/ 2 1/2
wt[u2+v2] cos-g- +[u2+v2] sin2 9— =.v *2w(u +v

]l/h 2}1/2

cosd +{uev
4

n

|n|?

T
AR R iR B R s L e

gar

Ay

o (68)
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where
52 = hag
w o= czgeAA'+2bAt =4
u-= o? gszt( A+ANW) % hczgg( A-A%) 2_16bat+e
v=eE czga(AQ—A'2]

- -liv .
¢ = ten [u] (69)
Note that %is of order- €.

Since the real part of the expression under the square root sign in the

numerator is still negative, ¢=mand tan-1¢ is 7 plus terms of 0(e). Therefore,

cos% is of 0(e), and soA2w(u2+v2]1/hcos§ is of 0[63], as cen be seen from a
binomiel expansion of [u2+v2]1/h. But [u2+v2]l/2 is of O{ezl; therefore,

only the term [u2+v2]1-/2 will be kept, and higher order terms will be disre-

garded. Thus

.
»

1/2

In|2 = w2+[u2+v2] (70)
2 2 1 72 ’
|N| =W +|u|+é- Hl (71)

Under the small conductivity approximation the msgnitude of the denominator
of equation (64) squared may be written

ID|2 = (s+e)2+t? - (12)
where
22
s = k- c_g_(A,2+A2) >0,
2 2
t = e [Ala_Ae] (73)
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Therefore, the stability condition is

2
2 2.,2.2 1
s“+2se+e“+t 2w +|ul+ ﬁl | (Tb)

From the results of the discussion of the zero conductivity case, this reduces

immediately to
2 lv c
2se+e” > E-Fﬂ | (15)

This is a strict inequality for nonzero &, and therefore, the fini;e-difference_
equations form an unconditionally stable system. Now consider the opposite
limitiqg case, where the conductivity becomes arbitrarily large. Only the
two highest order terms in "a" will be kept. As before, the two highest
order terms are necessary, since keeping only the highest order term predicts
merginal stsbility, and it is desirgble to know whether marginal stsbility is
approached from a condition of stability or instability. In the limit of

large a, the nunerator of expression (64) is approximated by

/4 ¢

N = wt(u2+v2] el2 ' (76)
where

v = g AAR+bAL-Y ==

u = ha

v = 2ac232(A?—A*2]

$=tan™t X (77)
then

Ly 7?2 Y
1/ 1/2
|N|2 = wi[u2+v2] 'cosg' +[u?+v2} singg' (78)
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The terms in this which are of the highest order "a" are

1/2

18] 2= w2 2cose (w47 (19)
Squaring this again, and keeping only the two highest order terms in "a"

|N |h 2*hwu3/2cosg' B (80)

y 2 2 3 22 )

IN| =[ha ] $30a” | - g AA*-DAL+L cosz (81)

By a similar process applied to the denominator,
N 2 22

0| % {1a2] +3203|DAt+1S £ av24a2) - (82)

The stability expression becomes
|N|h [ha t32a [;-bbt -c ngA* cosﬂ
|x| | | (83)
D 2
[ha ] +32a [h-i-bAt-—-E—[A*z ]jl

Since

2 2 .

A +:* = 2 cos8{cos8-1) (8h)
and .

AA® = 2 (1-cos®) » (85)
then —
hht 243 h-[bAt+2c252( 1-cose):|:| cosg-
|x|¥ = . (86)
a.h+2 a3 h+bAt+2 cegacose( l-cosﬂ)]

bt
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Sinée ah > 0, the differencing scheme will be stable so long as

h+bAt+2c2 gacos 8(1-cos8) > + { b- Emt+2c232( l-cos 9):| cos-ét ' (87)

The right-hend side of this expression will be grea.test' for eitﬁér._ '
¢ =0o0r ¢ = 2n

Therefore, the two possible forms of equation (87) are
\ 22 2 2 o
+bAt+2¢ g cos8(1-cos8) > h-bAt-2¢“g“(1-cos8) (88)

2bAt > -2c°g°(1-cos-8) (89)
(This is & strict inequaelity and implies stability.)
And _

h+bAt+2c232cos 8(1-cos0) 2 -h+bAt+2c252( 1-cos8) (90)

oy

8> 2¢2g%(1-cos8)? ' - (91)

(This is a strict inpciua.lity for cap_:2 <1.)

Thus, the finite—differéhcing scheme 1s stable for large velues of the

conductivity , as before, under the condition that c232<1.
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SECTION VI

A QUADRATIC ACCURACY INDICATOR

Lax's equivalence theorem gives an indication that as long as the compu-
tation converges, one need only use a fine enough mesh size to obtain any
desired accuracy. But the question that still remains is how small that
mesh size should be for a particular accuracy requirement on a particular
problem. The following discussion will derive a rglationship which can be
used to check the internal consistency of a solution as that solution is
being computed, so that both the solution and a check upén its consistency
may be taken as the problem output.

Returning to Maxwell's equations

L of o T oeqTeedl
. VxB = J 0E+eat

= BB
IxE = -3t °

one forms the scalar product of E with the first equation, and B with the
second equation. The two resulting equations are then subtracted, giving

' 2 2
R = 1= =_ T . ¥ 2,1 3E 1 9B
uE VxB-uB Vx.E—Jd E + oE +2E__at+2u—at

Since
v+ (ExB) = BeUxE-E+VxB,

2.1 9 2.1 .2
JdE+aE+23—{E+“ ] = g«(ExB) = 0

This may be interpreted as a statement of the conservation of energy. The
first term is the pover being taken from the flelds by the current J a5
~the second is the ohmic power loss; the third is the rate of change of
energy in the fields; and the fourth is the divergence of the poynting

vector.
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Remetnbering that only the Er’ Ee, and B¢ components of the fields exist

according to the original symmetry conditions, the expression beccmes

2 2 1 a2 1 3.
J E +J E +oE +oE + [r E.B ]_ Eﬁ{sineErB¢] ‘

8 r2u ir 0 ¢ ursing .
1l_3 2.2, 1.2 i
+ 5 3t Er-l-Ee + B¢ 0

If the field components are then replaced with their Legendré'expansions,
and the result is multiplied by sin @ and integrated over 6 from zero to w,
the integrals to be evaluated are essentially the Legendre orthogonality
integrals.6 Thus, the quadratic expression ebove results in a separate

equation for the coefficients of each order of polynomiel, the equation deing

2 2 na(n+1) 3f 2
Er Jr +n(n+1)Ee Je +0Er +on(n+1)E6 = ar[r Ee B¢ ]
n'n n n n n ur n'n

) 2 2 12 _
5t | °Ep +n(n+1) eEg + uB¢ =0
n n n

+

N =

If now part of this equation is transposed to the right-hand side and the
equation divided by’ that trensposed quantity, the comparison of the resultant

quotient with unity gives a check on the internal consistency of the solution.

To obtain a scnsitive accuracy indicator, care must be taken to subtract

dominant terms in the above expression.

6See Apﬁendix
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SECTION VII

TEST PROBLEM

In numerical analysis, a test problem is a problem whose solutign is
known analytically but which still closely approximates the more difficult
problems that cannot be solved analytically. The folloﬁiné problem was
chosen because it is typical of a large class of electromagnetic problems
and because its solution requires the use of all of the parameters in the
problem; furthermore it gives a clear indication of the effeét of grid

size upon accuracy.

It was decided that an exponential time dependence for the test problem
fields would be used. Such a time devendence can be used to represent
either periodic or pulsed fields, and furthermore it simplifies the analysis
of the effects of grid size. An H¢ and Ee distance depen@ence whose leading
term was 1/r is desirable in that this dependence represents the radiation

field.

If the form

—

= ¢B ea(t'r/C)Pr];(cose) ;

=4
¢_ r

is assumed, and o restricted to an arbitrary real positive constent, the

equation satisfied by J is A & -
UxJ = VxVxB+gB+eB

Substituting the above form for B, we find that an appropriate J is, with J

2
J =-]1 % . E-(-x-l-ﬂ)— ~ (o+ae)ap ea(t*r/c)Po(cose)
r c2 r? n

Then from the r component of the equation

%-Vx§'= 340§;eﬁ.

21-29

=0,
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a solution for Er of the.form

2
1 . _ (o+ac)a
r o+ac c2 H

ea(t‘r/c)Pg(cose)

Veew o

i1s obtaineéd. Finally, from the 6 component of the same equation,

- eg(t"r/C)Pi(cose)

8 rc{o+ace

To this point, we have exhibited a varticular solution to Maxwell's
equations. There are still an infinite number of solutions to the hcmogeneous
eduation which may be added to this particular solution, the sum still
satisfying Maxwell's equations. These solutions to the homogeneous equationsi
mey be set to zero by a particular specification of the ﬁoundary condition
and initial conditions. Both the field values and their derivatives must de
speclified at the origin. This is done in finite difference fbrm.by specifying
the fields at the origin and on the first grid line away from the origin.

Since the field variables actually used are rB,, rEe, and Er,‘all variables

$

are finite at the origin and elsewhere.

Actual calculastions are run forward from some starting;time_to. The -
example, howvever, assunes that the current source has been 1n,existen¢e from
t = -, Therefore, it is necessery to insext the analytic values for the
fields at the first grid points such that tb;r/c < 0 in order to conform to
the analytical problem. The problem nowv has a properly posed set of boundary
and initisl conditions, and its solution may be compared directly to fhe_
analytic solution. ‘ .

Example:

The curves shown in figures S, 6, and T are the results of a numerical

caleulation performed on the test problem with the following parameters:
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Figure 5. Test Problem, Er vs. Time
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E P (volts /metar)

~f~ —— —+ i .
o 05 10 1.5 20 25 3.0 35 4.0
RETARDED TIME {pusec)

5

Figure 6. Test Problem, Eg vs. Time
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N=1.

= 8.85 x 10~° [am]™t

Q
.

€E=E .
(o] 2

=
n

Yo

10? sec L

2.0 x 10_8 sec

Q
[}

At

Ar

12 mete;s

The range for the fields in the curves was 120 meters. The exect solutions
for the fields fall directly on the numerically calculated curves over the
18 decades shown. To give'a better indication of the convergence of the

numerical solutions in this problem, the relative error,

where

fN = numerical fielu solutions

e

is plotted in figures 8, 9, 10, 11, 12, and 13. In figures<§, 9, end 10, -

a grid size of

exact field solutions

At -8 sec

2.0 x 10

Ar 12 meters

wes used, while in figures 11, 12, and 13 a grid size of

-8
sec

At = 4,0 x 10

Ar = 24 meters

was used. In both cases, the range at which the fields were taken wes 120 m. A
As expected, the relative errors were grester when the larger grid size was
used, but even a time step of hO percent of the current efolding time gave

answers correct to within hO percent.
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Figure 8. Finer Grid: rhql:nril;i'iré'Errbi- in E, .
 Computation vs. Time, Range = 120m -
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Figure 10. Finer Grid: Relative Error in
Computation vs. Time, Range = 120m
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Figure 11. Coarsef Grid: Relative Error in Er

Computation vs. Time, Rangé = 120m
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SECTION VIII

CONCLUSION

This numerical technigue has proved successful in.calculating the
electromagnetic fields generated by a nuclear weavon detonation. A report
covering the results of these field calculations will be available in the

near future.
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APPENDIX

LEGENDRE POLYNOMIALS

Ordinary Legendre Polynomials: The ordinary Legendre polynomials P (cose)
arise as the theta denendent component of the orthogonal fUnctions into which

Laplace's equation,v f = O separates in the spherical coordinate svstem. The
equation satisfied by P (cose) is

2 .0
d Pn(cose) 1 dPs(cose)

o —
d92 Afrwery <8 + n(n+l)Pn(cosG) =

N -ﬂ"u(‘ AR T A A WL LA ey s e s ey e R

A general relatlon for finding the ordinary Legendre polynomials is

n

o 1 d [ 2 ]n
Faleom®) = = = Weosey| leos e-1f . -~

2 'n!

The ordinary Legendre polynomials form a complete set for expanding bounded
functions in the interval 0 <8 < w7, Over this range, the orthogonality
condition is

LS TSR (W RN

Pg(cose)P:(cose)sianB =0 (mf) ‘ féh

o 2 .2
[%n(cosei] sinode = Sntl

Q*———xd O *——x

The first few ordinary Legendre polynomials are

Pg(cose) 1

Pg(cose) = cosf

]

l'(3cosae-1)

Pg(cose) = %{Scos 6-3cos6)

o
P2(cosB)




AFWL EMP 2-i

Pg(cose) = SCOShe 30cos 0+3)

3
63cos 8- 70cos3e+15cose)

e s

o] -
Ps(cose) =

Associated Legendre Polynomials: The associated Legendre polynomial is a

more generel type of Legéndré polynomial and arises in the separation of
variables in the solution of the Helmholtz equation,

V2f+kf=0

when performed in spherical coordinates. It is obvious that the ordinary

Legendre polynomials result from this equation in the special case of k = 0.

The equation satisfied by the associated Legendre polynomial P};(cose) is

dE[P::(cose.)] X dl:P:(cosB)] [ 2
— + |n(n+l)-

k -
5 Pn(cose) =

+
2 tanb dae 8in<e

de

A general relation for finding the first associated Legendre polynomials
is .

-,

Pr];(cose) - —Q Po( cos@)

The first few associated Legendre polynomials of the first kind are

1
Po(cose) 0

sin e'

1
Pl( co.se)

P;'(cose) = 3sin6cosd

3sine('jcosae-l]

| | P;( cos) = 3

3

| Pi(cose) = gsine['rcos e-3c036]

P;‘(cose) = 1gsinelze'1cosha-1hcosze+1]



