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Abstract

The equations for conmservation of electromagnetic energy density and
momentum density are derived in spherical polar coordinates in a Legendre
coefficient expansion assuming ¢ symmetry of the field distribution. These
represent a possible check on the accuracy of a numerical solution of
Maxwell's equations in spherical coordinates, for example, the EMP from a

ground burst.

Foreword

The electromagnetic energy density equation derived in this note is used
in both the Compute and EMP code at AFWL as an accuracy indicator.
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Text

Let W-=-1/2 (EE2 + ullz) be the E. M. energy density (Joules/M3) and
consider Maxwefl.lf;sq equations

- 2
(1) curl H —£c+g_E_:+eat§

oy
(2) curl E =-u T H

if E is dotted in eq. 1, and H dotted into eq. 2, and the results added -

31
at 2
This may be simplified by means of the vector identity div (E x.H) =

-E * curl H+ H ° curl E. Now let us define the electromagnetic
momentum density as -

(3) E-curl E-H* curlE=E * (J_ + oE) + (eE2 + uH®)

_ 1 Keg M
E= 2 Ex 1) M3 se;.‘
Thus eq. 3 becomes
3 A ' =
4) a—tw+c dlvg+§-(£c+og)—Q

Thus, the loss of electromagnetic energy density arises from two terms;
the first is a global loss from radiation (energy flux through bounding
surface at infinity) and the second is Jouleé heat loss.

The momentum conservation equation can be cast into a form similar to
momentum conservation equation of fluid dynamics, with the Maxwell stress
tensor playing the role of the sum of the pressure and shear tensors in
fluid theory. Of course, in this equation, the tramsport term is missing,
just as it was in 4. We begin with Maxwell's equations;

(5) € curl E = - H

L3
2 3t
c

(6) wcurlH=yu (J, + 0’§)+%-a——§ .

, C 1 d o

Now if we operate the E x on the left in equation (5), and with x H on

the right of equation (6), then combining results, we obtain -

(7) - ¢ (E x curl E) + u((curl H) x H) = n (J, + 0 E) xﬂ+%?_g_
ExH
2
c
The term p(J, + ¢ E) x H is easily identified as a Lorentz force. Now
making use of the vector identities -

where g = is the electromagnetic momentum density as defined earlier.

(8) (curl H) x H = - H x(curl H) =-1grad H + (H- -V H

2

(9) E x (curl E) %— grad E2 -(E*V)E

2



we have -

2

(10) —%E&+grad%(eE +uH2) ~-e(E**V)YE~-u(E* V)H + IJ(QC'HIE) xH=0

This may be simplified by defining the stress tensor

=

(11) T=(cEE+nHH -U (e E2 + ui%)/2

where { U },, =6,.
= "ij ij

If we take the divergence of T, we obtain -

(12) V-; =e (V'E) E+ e (E'V) E+p (VeH) H+u (H'V) H

2

- VU (e E" 4y Hz)/z

But (V'E) = p/e, V-H =0,
and therefore eq. 10 becomes
3
(13) 37 a+u (Joc +0 E) x B+ pE=V-T

Thus the time derivative of the momentum density is equal to the divergence
of the stress (electromagnetic ''pressure') tensor minus the Lorentz body
force.

The interpretation of the Poynting vector as an energy flux through an
arbitrary surface is open to question if the surface has infinitesimal area.
The following paradox arises: It is possible to arrange a static magnetic
and electric field such that, on a surface bounding'the fields, the Poynting
vector may not be zero for all points of the surface. Thus, if its inter-
pretation as an energy flux holds everywhere, this means energy is lost to
the static fields. On the other hand, the integral of the Poynting vector
for such a case over the bounding surface is zero because the vector is a
constant. With this as a physical explanation of what is to follow, we
shall then determine the relations on the coefficients_of the pertinent N
Legendre Polynomial explanation by (a) writing out the 2nergy and momentum
equations in component form, (b) substituting the expansions for E and H,
and (c) then integrating over the products of the polynomials. The equations
in question are: . :

Energy conservation -

3

2 19 ,2
3t Yo+ = — (CE

r- or
3 2 2
1 9 (sin 6 E H)+E J +E~" o + E
" an r ¢ r T ba )
r sin © 96

(14) 2 @2+ES + oiiy)

¢

g=20

Momentum conservation; r component

1 23 (E. H) +uw EH =¢E

1 3 3,1 2
23t e 8¢

E ~ ¢ E +'% uH, %)

(15) 38 Er ~ or 2 € Eg

M |

]



Momentum comservation; 8 component

L_ - = g -
(16) AT (B, H) -u (3 +0E) H =¢cE 3= E

The following expansions are introduced:

an =§;:Hn_Pn(l) (cos 6)5 J_ =j;:Jn Pn(o) (cos 8)

1
r

(18) Ee =;En(e) Pn(l) (cos 6) Uy € constant

6 =0 (r, t) only

(19) E_ =§E:En(r) 9 (cos 0)
n

If these expressions are introduced into egs. 14, 15 and 16 and the resulting
equations integrated over sin 6 d 8, the following averaged equations are
obtained:

Energy conservation

2 2 2
@) 4L g™ v+ @5 ® +un ){} 2D 3 (%, (Dn)
t 2 L L L
+E® 5 4o (r, ) (B ®? @y £, %) = o
L L ? L L '
Momentum conservation; r component
- 2
(0) 0, . _&e . (®) () _23a_ 1 . (8) 1 2
@) = 2 Bt (HeEg™ ") + wo B, 7 7H r By By T - GBFy + g uH )
Momentum conservation; & component
This equation is a bit more difficult to treaty thus it will be dealt
with in detail. Inserting the expansions for Er and H¢, we obtain ~
_1 38 (r) (0) L o (r)
(22) Z 7 Bt (Ek HE) Pk (cos 8) Pﬂ. (cos 6) u (Jk + aEk )
T
0), (1) _ (r) (@) (0)p ) _ L1 (r). ()
Hy P 7Py B Tar By ) BBy r|2 ¢ B TEg
3_p (0 (0, (0)f3 5 (OO} | 1 2 _p (1) (L)
20 "k [Fe- +P 26 to |t 2 ¥ H HBillze z
(L {2, (LN
,Pk 20 PE 0



The products of the terms P ©) Pl(l) may be simplified if the equation

is multiplied by sin 8, for

(23) sin © Pl(l) (cos 0) = (a4 {FPZ;l(O) (coé 8) - P2+l(o) (cos 6{}

2041
Thus
T (1) (0)
(24) j‘ sin 6 d 6 (sin 8 P, (cos 8) P, " (cos B))
0 , ;
_ A |8, .2 2 ’
= T [k’ =1 50T T Ok, e 2£+3]

Note also that - %E Pk(o) = Pk(l) (cos 8)

Some partial results to be used in reducing the sum from a two-fold to
one-fold form:

(25) - %[% e g (PElD L. @ (9 Pl(o))} x sin @

- { -3¢ Ek(r) Ez(r) (sin © Pk(l.)cho) + sin @ Pk(O)PE(l))f

. _ 1 1 ¢r) . (r) |k(ktl) (0), (O (0), (O
__r[(-ZE)Ek Ey [2k+1 By Pyt By B

L(2+1) (0) (0) (0) )
+ ®, P - P Pov1 )

24+1 -1 k
Here we have used the derivative relation and the sin © P(;) operation
as given above, Upon integration we obtain the result.

| - 20 E
_ 1 _ (r) _(r) 2(2+L) -1 %
(26) term = -7 {( €) [Eﬂﬁl E G ) T (@) (28-1) ]*j

A somgwhat more complicated procedure may be applied<to the product -
) H¢ as follows -
27) EZ:L ud H, sin © 2 (P (l)P (l)) sin 9 comes from multiplying
2 k% 30 “'k £ ;
whole eq. by sin q}

k,%
Now )
. _ (1) (1), _ a_ . (L) 1 (1) (1)
(28) sin © 28 (Pk P£ ) = Y] (sin © Pk ) PQ + cos O Pk _ PE
where
1y _ _k (1) k41 1)
(29) cos & B 7 = A Pr 2k Bt



and

1), _ 3| 2(a#1) (0) (0)
(30) g (sin 6 P,77) = 35 { 2o+l (Fg-l ~ Pz+1)JF
_ ) ) _ L)
2err . Fepl ~ Betp)
Thus
3 (L) (1) KQHD) (1) (1) _ (k=1) Getl)
(31) sin & 75 (P, ) = i kel B 2kH1
%.(2+1) (1) o) _ (=) () L) H(D)
2041 Tk Pl 2041 Tg-1 Pk

Upon integration, we have -

(32)<§z: 1

sin 0 ——-(P(l) (l)):>
k, 2

v HEEH,

~ 2(2-1) (4+1) £L(2+1) (242)
= [ HHy 3 T2 e+l T Bt (2z+1)(2z+3)]

p{1) p ()
Pe-1 By

Upon inserting these results in the equation and setting each term to

zero (condition on the coefficients) -~

(33) - L2 2D 2 () po 20D 2 ()
23 2041 22-1 Te-1 B¢ 7 Ton4l 2e43 Cael By

L(84+1) | 2 (r) 2 (r)
B TS [21—1 (Jz 1 Yo E ) Hz 2013 Jo4r ¥ 9Egy? Hz]

2(241) (r) 3 (e) 2 (r) I E(0)

2041 —1 Eol o Bv 0 T 243 Eovl or En

| - “
L) ()
1) _2¢e (E(rj (r) (4+) . 2= 15y ) 4 p L&) (-1
r 20+1 Bt By U 213 281 ) Belleg 201

(a+2)
+ HHp ) 2943 2= 0
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The equations for conservation of electromagnetic energy density and
momentum density are derived in spherical polar coordinates in a Legendre
coefficient expansion assuming ¢ symmetry of the field distribution. These
represent a possible check on the accuracy of a numerical solution of
Maxwell's equations in spherical coordinates, for example, the EMP from a
ground burst.
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Text

Let W = 1/2 (e:E2 + uHZ) be the E. M. energy density (Joules/M3) and
consider Maxwell's equations

- a_
(1) curl H —_{c+g§+aat_}§:_

——y
(2) curl E =-uw T H

If E is dotted in eq. 1, and H dotted into eq. 2, and the results added -

. . =F ° a_1 . g2 2
(3) E*-curlH~-H " curlE=FE (£c+a§)+at2(sE + pH®)
This may be simplified by means of the vector identity div (E x.-H) =
-E " curl H+ H ° curl E. Now let us define the electromagnetic
momentum density as

M

3 sec

4

g ExB

=

Thus eq. 3 becomes

a_ 2 44 : -
(4) a':W+c: div g+ E - (gc+cr§) —Q
Thus, the loss of electromagnetic energy density arises from two terms;
the first is a global loss from radiation (energy flux through bounding
surface at infinity) and the second is Joule heat loss.

The momentum conservation equation can be cast into a form similar to
momentum c¢onservation equation of fluid dynamics, with the Maxwell stress
tensor playing the role of the sum of the pressure and shear temsors in
fluid theory. Of course, in this equation, the transport term is missing,
just as it was in 4. We begin with Maxwell's equations;

(5) € curl E = - = —=

]
=
~ 0
L‘—u
+
Q
=i
~—
+

(6) w curl H 5 3
. T c ot =

Now if we operate the E x on the left in equation (5), and with x H on
the right of equation (6), then combining results, we obtain -

(7) - € (Excurl E) + u((curl H) x H) = p (J. + 0 E) xﬂ+-g—gg
ExH .
where g = 2 is the electromagnetic momentum density as defined earlier.
c
The term p(J, + o E) x H is easily identified as a Lorentz force. Now

making use of the vector identities -

(8) (curl H) x H= - H x(curl H) = - %- grad w + (H*V)H

(9) E x (curl E)

%gradEz-(E'V)_li

2



we have -

2

(10) %g_+grad12‘(EE +uE?) - &+ VE - u(@ V)H + p(d +oE) x H =0

This may be simplified by defining the stress tensor

(1) T = (e E+ug_g_)—_g(eE2+uH2)/2

where { U },, =6,
= "ij ij
If we take the divergence of T, we obtain -
(12) V-T=¢ (V-E)E+e (EV) E+u (V'H) H+u (V) B

2 + u H2)/2

- V-U (e E
But (V:E) = p/e, V:H =0,

and therefore eq. 10 beconmes

im

9
(13)3_(:-3-4.” (Jo + 9 E) xH+ pE = V.

Thus the time derivative of the momentum density is equal to the divergence
of the stress (electromagnetic '"pressure'') tensor minus the Lorentz body
force.

The interpretation of the Poynting vector as an energy flux through an
arbitrary surface is open to question if the surface has infinitesimal area.
The following paradox arises: It is possible to arrange a static magnetic
and electric field such that, on a surface bounding the fields, the Poynting
vector may not be zero for all points of the surface. Thus, if its inter-
pretation as an energy flux holds everywhere, this means energy is lost to
the static fields. On the other hand, the integral of the Poynting vector
for such a case over the bounding surface is zero because the vector is a
constant. With this as a physical explanation of what is to follow, we
shall then determine the relations on the coefficients_of the pertinent
Legendre Polynomial explanation by (a) writing out the energy and momentum
equations in component form, (b) substituting the expansions for E and H,
and (c) then integrating over the products of the polynomials. The equatiouns
in question are:

Energy conservation -

1) =13 (&

2,52y + wHl+32 2 ?en)
8 ¢ 2 8¢
r or

1 9 (sin O E H)+E J +E z g+ E 2 g =20
- T A ~a r ¢ r r r -]
r sin 6 90
Momentum conservation; r component
L2 g L2 a1 2,1 2
(15) cz Y (Ee H¢) + uo EeH¢ =g Ee 38 Er e (2 € Ee + 2 uH¢ )



Momentum conservation; © component

L_ - = 2 19 1 2,1
(16) ~c2 (E ¢) N (Jr + 0 Er) 1-I¢ = g Er e Ee L 30 (2 eEr + 5 uH¢
The following expansions are introduced:
i, ¢)) TIOREAL
(17) - Fl¢ Zﬂn' Pn {(cos 0); Jr = Jn Pn (cos ©)
n n
(18) Ee =§£:E (6 P 1) (cos 6) Uy E constant
= 0 n
g =g (r, t) only
- (r) , (0)
(19) Er —Z:En Pn {cos 8)
If these expressions are introduced into eqs. 14, 15 and 16 and the resulting
equations integrated over sin 9 d 6, the following averaged equations are
obtained:
Energy conservation
2 2 2
200 3045 P e g0+ un)fe HED 2 2 Oy
at | 2 L 2 2 r
+E, 5 40 (r, t) (E (r)2-+ L (441) E (9)2) =0
2 A ? L 2 ‘
Momentum conservation; r component
2
13 (9) (0, . _e,(®) (r)_3 1. (8) 1 .2
(21) c- (H ‘ ) + uo Ez HZ - EE Ez 5T (EEEE + 2 uHZ )

Momentum conservation; 6 component

This equation is a bit more difficult to treaty thus it will be dealt
with in detail, Inserting the expansions for-Er and H¢, we obtain -

(22) Z - ;'2'%'2 (Ek(r)ﬁg) Pk(d)(cos 8) 2, (cos 0) - u @, + uEk(r))
k,o ( €
5, 7, @p, () _ g D2 (5 () p @p ) 111, (D) (0
_g_e_ Pk(O) Pz(‘0)+P1£0) ,g_epl(o) 1 WE_H __. (1) g,( )
b @ (2 OW. o

k a8 " 2



© , @)

The products of the terms P e

is multiplied by sin 8, for
23) sin 6 2,1 (cos 0) = 2L {Pm'-l(o) (cos 8) - B, (P (cos a)}

may be simplified if the equation

2041
Thus
? (1 (0)
(24) J‘ sin 0 d 0 (sin 6 B,  (cos ) P " (cos 8))
(¢] . .
(1) |8 2 2 )
T 2841 [ T i S 2z+3]

Note also that - %E-Pk(o) = Pk(l) (cos 6)

Some partial results to be used in reducing the sum from a two-fold to
one-fold form:

(25) %Iz Ek(r) () 3 (Pk(o) Pz(o))} x sin @
{ (- % £) Ek(r) Ez(r) (sin 6 Pk(l.)Pz(o) + sin 8 Pk_(O)Pl(l))j

=_%[}-§e)%“&5ﬂ Pwuzw (0 ©) _p (0 (0

M |-

2k+1 k-1 L k+1

L(2+1) (0) 0) ) (0)
(P P -P P£+1 )

28+1 -1 k
Here we have used the derivative relation and the sin @ P( ) operation
as given above. Upon integration we obtain the result. '

| | 1 ) (o __2qmy By By
(26) term = - {(- €) [Egﬂ ;Eg; (2%+1) (22+3) * 2 (22-1) ]t}

A som&what more complicated procedure may be appliedsto the product —_
]
30 ¢

27) 5::2 WH H, sin 9‘—— (P 1 )Pz(l)) {sin 8 comes from multiplying
whole eq. by sin 8

as follows -

Now _
(28) sin B'%E (P (1) (l)) = (51u 8 Pk(l)) P (1) + cos © Pk(l) Pz(l)
where
a _ (1) (1)
@9) cos 0 7 M = i pl] ¢ TR



and

30) 2= (sin 6 M) = 2 {.&Lﬁiil,(P(O) (0))J}

28+1 241
_ 2(a+1) (1) 1
= T2err (Poyp - Pz-i)
Thus
3 p() gy | kGeH) (1) (1) _ (el () H(1) (1)
(L) sin 6 35 (B BT = 51 P By 2+l k-1 T2

L(8+1) (1) (1) _ (2-1) (&+1) (1) (l)
25+1 k £+l 22+1 2 1 k

Upon integration, we have -

(32)<Z Ly g, sia o 22 @® 23N>

~ 2(2-1) (2+1) L(241) (4+2)
= [ HoHo 1 T2 @+ T Helo (21+1)(21+3)J

Upon inserting these results in the equation and setting each term to
zero (condition on the coefficients) -

Gy LA (a0 2 ) p 2D 2 () y
2ot | 2 281 Pe-l T T2ee zz+3 Bl By

_ At |2 (r) 2 (r)

LYy [22-1 (Jpop ¥ 9 Epy) H - 5513 Jpar T 9Epp) Hn]
_ . A SO 20 2 @) 2 (8

20+1 2 17 Ba-1 ar B 2543 Eg4l 3 B2
E(r) (r)

1 _2e (E(rj g(r) G+ o Te- 15¢ )+ 2Dy ﬂ (2-1)

r ) "2t Bt Eo U 243 20-1 Gy Moy 2977

2728+l 2443



