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PREFACE

This report is part of a continuing RAND study on the electro-
magnetic signal from a nuclear explosion.

Since 1958 an article by Kompaneets on the radio signal from
& nuclear explosion has been a standard reference in the field. The

burpose of this report is to show that although the basic Kompaneets

model is correct some of his key approximations are wrong and lead
to an incorrect form for the radiated signal. 1In particular, he
obtains an initial deflection in the wrong direction. A better
numerical solution is presented.

This work should be of interest to those concerned with the

detection of nuclear explosions.
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SUMMARY

The electromegnetic signal from a nuclear explosion is camputed
using the same method as presented by Kompaneets (A.S. Kompaneets,
JETP, 35, 1538 (1958)). It is shown that some of Kompaneets' epprox-
imations are incorrect and lead to the wrong shape for the radiated
signal. His work neglects the important first half-cycle of the
signal and hence predicts an initial deflection in the wrong direc-

tion. A more correct solution is presented.
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I. INTRODUCTION

In a 1958 article in the Soviet literature Kbmpaneets(l) des-
cribed the basic mechanism for radio emission from a nuclear explo-
sion. This description, however, is incorrect at several points.

The purpose of this paper is to show that a correct solution for the

.same model differs substantially from the solution presented by

Kompaneets. In particular, he leaves out the important first half
cycle of the signal so that the initial deflection is in the wrong
direction.

We shall use essentially the same method of calculation: We
numerically 1ntegrate*Maxwell's equetions in dipole epproximation,
but with different conductivities and currents. We retain the
electronic conductivity and neglect the ilonic conductivity (he
does the opposite) and we retain the compton current in the field
equations where he chooses to drop it (and therefore loses the first
half cycle).

*
The numerical code was designed by Glenn Peebles and will be
described in another report.



II. RADIATION MECHANISM

The radiation mechanism used by Kompaneets is essentially the
following: A nuclear explosion emits a small fraction (say 0.1%)
of its energy in the form of prompt gammas with a mean energy of

one, or perhaps several, Mev. Kompaneets takes the time dependence

dN -bt
i No be ' (2.1)

with NO k,1022 quanta and b a5106 sec'l. In taking such a simple
expression one hopes that the radiated signal is not very sensitive
to the form of the time dependence.

The gammas travel for appreciable distances at sea level (mean
free path A ~ 3 x th cm) and compton scatter electrons in air
molecules. The scattered electrons acquire energies of about one
Mev and travel predominantly radially producing lsrge numbers of
secondaries (v = 3 x th secondaries per Mev). The compton electrons
travel about a meter in air (range 2 R,loz cm) .

A substential electric field (several hundred volts/cm) is set
up by the resultant charge separatibn. The field immediately causes
an electric current to flow back through the ionized region. At
the same time electrons begin to attach to oxygen molecules with a
time constant of about 10"8 sec.* The electric current, which is
initially electronic gradually obtains a significant ionic contribu-
tion and after several microseconds the electron and ion currents
are comparable. The calculation of the conductivity will be per-
formed in the next section, where we will also eriticize Kompaneets'
approximation.

If the current is asymmetrical then the system will radiate
electromagnetic waves. We will assume (with Kompaneets) that the
asymmetry arises because the gammas emerge preferentially in one

direction.

* -
Kompaneets takes & x 10 T sec which results in a low value for
the saturation field. The more recent value is found in Ref. 2.



After some time (say, tens of microseconds) the current and
the electric field are reduced to & low level so that the system
effectively stops radiating. Eventually the positive and negative
ions recombine.

In an axially symmetric explosion with a compton current which
has only a radial. component the resultant electromagnetic field will
have only the components Er’ Ee, and Bcp' Maxwell's equations in

spherical coordinates become

1o - - 13
T ar ( EO) rad r c at B(p (2.2)
13 _ 13 bn
r sin 6 39 (sin © B ) = c at Er i [O(r’e’t) Er * jr(r’e’t):l (2.3)
13 _13 bm
- T a7 (rBw) =550 By + -3 o(r,8,t) E, (2.4)

vhere jr(r,o,t) is the radial coampton current and o(r,0,t) is the
totel conductivity of the air. We shall take the current and con-
ductivity to be of the form
3.(r,8,t) = (r,t) + 3;(r,t) cos © (2.5)
G(rieJt) = O'O(r)t) + O'l(rJt) .COS e (2'6)
and we shall only keep the dipole part of the electromagnetic fields:
Er(r,e,t) = Eo(r,t) + El(r,t) cos 6 (2.7)

Ee(r,e,t) = E2(r,t) sin © (2.8)

Bq)(r,O,t) = B(r,t) sin © . (2.9)



Then, assuming << Ty we obtain the following four differential

9
equations:

125 -- Mo B+ 3) (2.10)
%%Ef%B“i—"(“o E) + 0B, + 3y) (2.11)
125, --122 () -4, =, (2.12)
235~ - 28 - 13 (5. (2.13)

Before we can solve these equations we must have expressions
for the compton current and the conductiﬁities. The current is a
. relatively simple quantity but the conductivity is obtained by
solving the differential equations which describe the air chemistry.
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ITT. CURRENTS AND CONDUCTIVITIES

The equations governing the behavior of the electron density
n, the negative ion density N_, and the positive ion density

N =N + n are
+ -

d'n' = -
= Sr,t) - on - enl, (3.1)
dN—
rrak - BN N (3.2)
an aN

+ dn -
rra T (3.3)

where S(r,t) is the secondary electron source function. The co-

efficient for electron attachment to 0, is o = lO8 sec:-l and typicelly

2 3 -1 (3,k)

the recombination coefficients are B~ ¢ = 2 x 10-6 cm” sec .

SOURCE OF SECONDARY ELECTRONS

For simplicity let us replace the gamma source with an equivalent
monoenergetic source of one Mev gammas which emits radiation at a
rate Nf(t) where I at £(t) = 1 and N is the gamma yield in Mev
(W=~ 2.6 x 10 Y vhere Y is the gemma yield in tons). At one Mev
the main attenuation process is compton scattering. Let us ignore
multiple scattering (so that all the energy of the gamma is deposited
at the first scattering). The rate per unit area at which gammas are

stopped in an interval dr at a radius r is

e-r/l dr
v £(t-r/e) —5 5 (3.4)
hor v
where A is the gamma mean free path (A = 3 x th cm at sea level).
The compton electron slows down by ionizing atoms (v ion electron
pairs per primery electron, v = 3 x 10 for a 1 Mev electron) so the

rate of production of secondary electrons, per unit volume, is



-r/A

. (3.5)
by r2h

e

S(r,t) = N £(t-r/fe) v

We neglect the electron mean free path compared with the gamma

mean free path.

COMPTON CURRENT

In passing, we can use Eq. (3.5) to obtain an approximate
expression for the compton current. It is convenient (and conventional)
to make some rather drastic simplifications here. One assumes that
the compton electrons move with the speed of light ¢, and that the
electrons moving past a given point r are roughly the electrons that
were produced between r-£ and r where £ is the electron range

(2 k,lOZ cm), From Eq. (3.5) we get

e-r/A £
jr(r,t) = e N f(t-r/c) . - (3.6)

It may be more accurate to use a somewhat different time dependence
in Eq. (3.6) than in Eq. (3.5) to reproduce the effect of & velocity

spectrum.

CONDUCTIVITY

The conductivity is conveniently written in the form
o=-e(ny+ Np, +Nu) (3.7)

where u, N

speaking the mobilities depend on the electric field but for the

, and u_are the electron and ion mobilities. Strictly

present we assume they are constant. The values of the mobilities

are somewhat uncertain but we can take p = 1060gs(5)an
2 ~10

d U, =u_ =
8 x 10 cgs§6)1n these units e ~ 4.8 x 10 ~.
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From now on we shall use a set of units in which distance is
measured in units of A (we let x = r/A), time is measured in units

-6
of AM/e ~ 10 sec. ot

The gamma output is taken to be of the form £(t) ~ e  with
6 1

b =~ 10 sec

In the new units the electron density equation with € = O

%*
. The steeply increasing initiel part is disregarded.

becomes

=X
dn _ MW e _

This equation is easily integrated:

W e b ro-bltx) _-o(t-x)
Eh ot E - e ] (3-9)

and for (t-x) >> oL ye have

o MW e X b e-b(t-x)

A3 b x2 o

n

(3.10)

In the initial phase the ions can be neglected so the conductivity
is given by ¢ = eun. In fact, it is not a bad approximation to
neglect the ion conductivity entirely and to keep only the electronic

%
conductivity. This is exactly opposite to what Kompaneets does.

*In the paper by Kompaneets(]') the time behavior of the system
is artificially separated into two phases: a short electronic phase
lasting about 1076 sec during which a strong radial electric field is
established, and a later ionic phase during which the system radiates
if the currents are asymmetrical. Electron recombination is neglected
(¢ = 0). This is reasomable where ¢ N << a, or N+ << 1013 cm-3,

**A numerical solution of Eqs. (3.1) and (3.2) indicates that
the electronic and ionic conductivities become comparable at about
t - X ~ 10-3 sec.



RADIAL, ELECTRIC FIELD

The radial electric field Eo is now obtained by integrating
Eq. (2.10) with

Nel e~
I, = = £(t-x). (3.11)
°© l3 bn x2
Then £
- b dt" o‘(t") x
- T
=J‘ at' e ! lin Ngﬂ < —>5be b(t"-x) . (3.12)
A7 hmox
Since @ > b we have
& uwle e b(t'-x)  -b(t-x)
- bn J. at" o(t") ~ - 35 [e -e ] (3.13)
' a A X
and,
By e~ “b(t-x)
Eo%Ea[l-exp{—-Ez-;e—- 1 -e ]}J (3.14)

- - 3
where E_ = of/uv and E = Nel/A>,

Note that the field is essentially independent of Yield and typically
al/uv ~ 0.5 cgs. For t - x >> b ¥ we have

B ~E [1- e (- ——-—) ]- (3.15)

At relatively close distances the time to reach E_ f/uv is about

(t=x) = (b pv Ne/o ?\3) At greateér distances the time to reach

the asymptotic value is (t-x) =~ L. The electric field is fairly

constant with E_ ~ @f/wv and then drops off rapidly. The effect of
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higher yield is to extend the region in which there is an electric
field and to decrease the time constant for approach to the asymptotic
field .*

If the gamma output is just a very short pulse which can be
approximated by £(t) = 8(t), ve obtain
W _e™  -o(t-x)

(3.16)
l3 L x2

n =

and

X a X

At t = x the field has its maximum value E_ = E_ e*/x® and then it
decays, initially at a rate que/l3. For large t - x it reaches
the value

- e'

E =E S— exp (- E, 2 ). (3.18)
X

This function is zero at x = 0, rapidly increases and reaches &
maximm at (Eb/Ea)e-x/x2 1 and then diminishes. The value at the
maximum is Eo = e-1 Ea' Even though the time behavior of the fields
is quite different the asymptotic results are quite similer. Note
that if B~ (i.e., @ - ») then E - E_ e"x/xe for both inputs.

It is the finite attachment rate o which makes the residual field

depend on the gamms input time behavior. At sufficiently large
distances the fields are again identical because there is very little
current flow before attachment.

*
Actually, Kompaneets disregards the retardation of the gammas
and the decrease of the electric field at large distances,
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ASYMMETRY

Let us suppose (With Kompaneets) that the gammas are emitted
with a small dipole asymmetry,

3. (r,8,%) = j (r,t) + §5 (r,t) cos © (3.19)
where £ is a small parameter. Therefore
o(r,e,t) = O‘O(r,t) + € co(r,t) cos © . (3.20)

If we measure the fields in units of g Ea. then the equationswe have

to solve are

aEl >

S =-B-Uro E -kmo E -luy (3.21)

.:lfﬁ = - %a—x (xB) - ko E, (3.22)

%% =T % E - %c '23:' (xE,) (3-23)
with

b o =y ulx) S [P(EX) | gmalton)] (3.24)

b o E_ = bm o [l - exp {- yu(x) 1 - e'b(t'x)] }] (3.25)

b 3y = = yux) ® e70{tx) (3.26)

=-X
where u(x) = Eé- . In our units @ ~100, b~ 1, and y = E /E_ =~ 100Y

where Y is th& gamma yield in tons.
In this approximation the signal depends only on § Ea, Eb/Ea’

@, and b.
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IV. RADIATED FIELDS

In general, the dipole approximation implies that the size of
the source is small compared with the wavelength of the radiation.
If this condition is not satisfled higher multipoles make significant
contributions, unless they happen to vanish or are very small. In
our model we have assumed a dipole asymmetry and the oniy term
dropped in arriving at Egs. (2.10)-(2.13) is the product t—" LA cos” o
which is proportional to the square of the small asymmetry parameter E.
There is another more important question: How accurately will
the model describe a real source? One can expect that the dipole
approximation will be adequate for a rough description of the signal
but will not, in general, give the detailed shape. In particular
one can expect that the early part of the signal, which arises from
a source which is expanding with almost the speed of light, is not
given correctly at all. However, the closer the asymmetry in the
compton current is to the dipole form the better the ovérall result

will be.

THE DISTANT FIELDS

In the radiation zone (that is, x >> wavelength >> source radius)

we have

sin © (%.1)

where Z is the dipole moment, Z = T ex. It is most useful to present
results for the quantity Z(t-x).

At shorter distances, approximately of the order of the wave-
length but still much larger than the radius of the source, the fields
are somewhat more complicated.

2.2

:B¢ = (J_C. + ;-é') sin © (li—.2)
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Eg = (;ZE + Z—2 + %) sin 6 (4.3)
X X
E_ =2 (@-2- + %) cos © (4.4)
X X

where aééin Z = Z(t-x);-nBy”ektending the numerical ecalculation out

to some intermediste distance (say, x = 10) and comparing with Egs.

(k.2)-(4.4) one can extract the quantity % (t-x). Note that the

above fields are exact solutions to Maxwell's equations in free space.
The solutions are required to satisfy the boundary condition

Ee = 0 at x = a for all +, where a << 1. In other words we assume

that at the center of the explosion there is a small perfectly con-

ducting sphere.

NUMERTCAL SOLUTION

We shall now present a number of solutions. The fields El’ E2’
and B are obtained by integrating out along characteristics. The
fields satisfy the boundary conditionEa(a) = 0 with a = 0.5. (The
results of several cases with a = 0.1 were not significantly different.)
The center of the burst has in effect been replaced by & perfectly
conducting sphere.

To compare with Kompaneets we shall take b = 10%sec™! and the
attachment coefficient o a=108 sec-l. Since € E& is simply a scale
factor we are left with only one paremeter, Eb/Ea, to vary. In
Fig. 1 we present 2 (t-x) for several values of Eb/Ea (essentially
the yield).

Kompaneets entirely neglects the direct effects of the comp ton
current and he therefore obtains an initial downward deflection
(positive EB) for the case where the initial asymmetry results in an
excess of electrons moving upward. One would expect to get the

opposite result as in Fig. 1.
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Appendix
REVIEW OF KOMPANEETS' SOLUT ION

For the purpose of solving Egs. (2.11)-(2.13) Kompaneets dis-
regards jl’ the asymmetric part of the compton current, and he neglects
the electronic conductivity. That is, he imagines that the compton
current has died out and all the electrons have attached to oxygen
molecules before the system starts radiating so that for the purpose
‘of computing the radiation source we need only use the ionic con-
ductivity. This last approximation is poor but the first is even more
serious. It causes Kompaneets to miss entirely the first main half-
cycle of the signal. His initial half cycle is therefore in the
wrong direction. We shall, however, make the same approximation in

order to check his numerical results.

IONIC CONDUCTIVITY

When all the electrons have attached there are equal numbers of
positive and negative ions which disappear through recombination at
the rate 8:

dan
+
5 = - g8 Nf . (A.1)
One has immediately
Nb
N = - . (A.2)
+ N _B(t t )+l

Kompaneets treats the case of small dipole asymmetry in the gamma,
source which results in a small asymmetry in the initial ion density:
N = ﬁo (1 + § cos 6). Expanding Eq. (A.2) in € yields for the
conductivity o; = ekn

No eui N en

o, = + 2 2 cos © (A.3)
_ — > .
No B(t-to)+1 [No B(t-to)+ﬂ

]

+
O gy €os *]
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Kompaneets puts to = 0 and
X
- N
8 = "—3 = 5 . (A.4)
AY hmox

The ionic current leads to =a gradual decrease of the large
radial electric field. Since the compton current is absent we have

BEO
aT+ by O E0=0 {(A.5)
and £
- by J’ at' o (t')
Eo(t) mE e o (A.6)
~E 1
& (N gt + 1)
o]
el
where B = ot and w = by —= .
a  uv . B

Note that at the beginning of the radiation phase we have a
spherically symmetrical radial electric field and an asymmetrical
conductivity resulting in a net current which is the source of the
radiation.

NUMERTCAL INTEGRATION

Kompaneets then integrates the following equations

JE
1_2 -
aT-—J{B--lh'rcro E, 1I-ncl Eo (A.7)
oF
2 13
3 "X (xB) - bn Iy E2 (A.8)
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vhere
e o = B x ulx) (A.10)
™% m u(x) t+1] ]
b o, E = —Txulx) (A.11)

7o moux) t+112™

with u(x) = e-x/x2 and m u(x) = ﬁOB. The fields E,, E,, and B are
now measured in units of g Ea. Kompaneets computes the radiated
field for three sets of values of the parameters m and x:

1. m=1, » =1,

2. m=10, n =1,
200, u = k4.
The actual numerical process is not described.

I

and 3. m

In Fig. 2 we reproduced the figure fram Kompaneet's article.
He presents the second derivative of the dipole moment (which he
calls T (x-y), where y = ct) for several values of the parameters
® and m.

We have also computed Z{t-x) for the same values of the para-
meters and the results are presented in Fig. 3. The results differ
in several respects. First, our results are smaller by a factor
of about four. Second, the shape of the signals is different in
that our signals are relatively steeper at the leading edge. And
finally, the two sets of curves do not have the same relative

positioning. The discrepancy is hard to explain.
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®

fix-y)

0.3

Fig. 2 - Second derivative of the dipole moment as obtained
in Ref. 1. vValues of parameters: (1) k = i,

m=200; (2) k=1 m=1210; (3) k=1, m = 1.
r
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