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PREFACE

The Compton current generated by the prompt gamma rays from an
atmospheric nuclear explosion is known to be an important source for
the electromagnetic signals which accompany such explosions.
Theoretical estimates fqr the current and for the energy deposition rate
produced by the gamma quanta usuall& appeal to a variety of simplifying
assumptions. The reason for this is that the multiple scattering of
the gamma quanta introduces an essential complication into the physics
of the problem.

In this work, the space-time dependence of the Compton current
and the energy deposition rate are calculated using the methods of
the Monte Carlo technique. Included are the effects of the energy
spectrum of the gamma quanta and the time-spreading due to the
multiple scattering of the quanta.

The purpose here is to provide accurate estimates for the current
and the energy deposition rate, thereby eliminating one source of
uncertainty in the theoretical estimates of the electromagnetic

fields generated by this mechanism.
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SUMMARY

The Compton current and the energy deposition rate generated
by monocenergetic sources of gamma quanta are calculated for gamma
quanta energies of 1, 1.5, 2, 3 and 4 Mev using standard Monte Carlo
techniques., Histograms of the current and the energy deposition rate
are presented which show the time-spreading of these quantities due
to the multiple scattering of the gamma quanta.

It is found that if the secular time variation of the source
of the gamma quanta is slow relative to the time-spreading induced
by the multiple scattering, then the Compton current and the emnergy
deposition rate are determined by the total flux of gamma quanta,
direct beam plus scattered flux. If the secular time variation of
the source is rapid relative to the time-spreading induced by the
multiple scattering, then there are two cases to be considered. For
a source that is increasing with time, the Compton current and the
energy deposition rate are determined mainly by the flux of the direct
beam. For a source that decreases rapidly with time, these quantities
are mainly determined by the scattered flux.

The properties of the Maienschein prompt gamma-ray spectrum are
investigated and it is found that with this spectrum, the main
contribution to the Compton current in sea level density air comes
from gamma quanta energies of 1.5 Mev at a distance of 500 meters
from the source. At a distance of 1000 meters, the spectrum hardens

and the important energies center around 2.5 Mev.
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1, INTRODUCTION

The gamma quanta from nuclear explosions in the atmosphere

t are known to provide one of the important mechanisms for the generation

- of the electromagnetic fields which accompany such explosions.(l)
The gamma quanta produce Compton recoil electrons which move
preferentially away from the point of the explosion. GSince the flux
of gamma quanta varies with distance from the origin, a monuniform
charge distribution appears which gives rise to an electric field.
The field does not persist since the recoil electrons deposit energy
as they travellalong their paths. Some of this energy appears in
the form of large numbers of secondary electrons. Thus, the air
becomes conducting and currents flow which act to reduce the field.

Theoretical estimates for the space-time behavior of the
electromagnetic field depend gsomewhat sensitively on the assumptions
for the Compton current and the energy deposition rate. These
quantities are usually estimated under a variety of simplifying
assumptions. For example, Kompaneets assumes the current and the
energy deposition rate have the same radial dependence and the same
time dependence.(l) The radial dependence is described by means of
a relaxation distance while the time dependence is assumed to follow
the secular time dependence of the source.
Tt is natural to appeal to simplifying assumptions since an

accurate estimate of the space-time variation of the Compton current

and the energy deposition rate is rather complex. Such an estimate

would have to include the effect of the energy spectrum of the gamma
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quanta emitted by the source and the effect of time~-spreading due
to the multiple scattering of the gamma quanta. These effects,
which have not been treated in any detail to date, will be discussed
in this report.

In general, the Compton current T(;,t) and the energy deposition
rate é(?,t) at the time t and at the position r from a source
emitting ﬁ(t,E) gamma quanta of energy E per unit energy interval

and per unit time interval are,

® t .
e = [ F(F,t-t',E) N(t',E)dE dt', (1.1)
o =«
and
o t ., .
s(f,e) =[] s(r,t-t',E) N(t',E)dE dt', (1.2)
o -

where j(?,t,E) and é(?,t,E) are the current and energy deposition
rate, respectively, produced by a single gamma quantum of initial
energy E émitted from the source at the origin of time. The functions
F and é will be determined here for a number of initial gamma quanta
energies E.

We will congider an isotropic, point source of monoenergetic
gamma quanta in a uniform atmosphere of sea level density. Under

these conditions the Compton current has only a radial component,

the azimuthal and polar components vanishing from symmetry. The

method of calculation, which is described in the next section is
based on the standard Monte Carlo techniques. Section III presents
the numerical results for gamma quanta of energies 1, 1.5, 2, 3 and

4 Mev, respectively.



The basic results of the calculations are histograms which show
the quantities J(r,t,E) and é(r,t,E) as a function of time at selected
distances r from the source. It should be remarked that the time
dependence in question here arises from the time spreading due to
the multiple scattering of the gamma quanta. Once the energy spectrum
and the secular time dependence of the source of gamma quanta are
specified, the current and energy deposition rate may be determined
according to Eqs. (1.1) and (1.2). The quantities J and é give the
current and energy deposition rate generated by a source which 1is
a delta function in time.

If the source function ﬁ(t,E) is slowly varying in time relative
to J and é, then the integral of J and é on time is important in

determining the time dependence of the current and energy deposition

t t.
rate. We will therefore also display the results for ﬁ] dt and ES de
o o

in the section on numerical results.
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11, METHOD OF CALCULATION

Let us briefly describe the principal assumptions and the basic
steps of the calculations. The details of the problem formulation
are given in the Appendix.

We begin by considering an isotropic, point source of mono-
energetic gamma quanta in an atmosphere of sea level density. Since
we do not examine the effect of the air-ground interface and since
we limit the region of interest to a distance of 1 km from the source,
we may treat the medium as being homogeneous and essentially infinite
in extent. Thus, the deposition of enexgy depends only on time and
on the distance r from the source. The Compton current generated
by the gamma quanta also depends only on r and t and, from symmetry,
the current has only a radial component. Since the range of a
Compton recoil electron is quite small relative to the mean free
path of the gamma quantum producing the recoil, we treat energy
deposition and Compton current as local quantities. 1t should be
emphasized that the variation with time of the energy deposition
rate and the Compton current comes from the multiple scattering of
the quanta and not from any assumed secular time dependence of the
source. The problem we solve is for a source which is a delta
function in time.

A TYPTCAL GAMMA QUANTUM HISTORY

We assume that a gamma guantum may be affected by two processes,
(1) Compton scattering and (2) photoelectric absorption. Since we

will be interested in gamma energies of 4 Mev and less, the effects
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of pair-production are negligible and pair-production attenuation
is ignored. The steps in the calculations are as follows:

(1) Starting with a quantum of energy E traveling in the
radial direction from an assumed source origin, the distance to the
first collision is determined by a random choice and depends on the
total mean free path of the quantum. The survival probability,
which is the ratio of the total Compton (Klein-Nishina) Scattering
cross section to the total cross section (Compton plus photoelectric
absorption), is computed as a weighting function. The use of this
weighting function is described in the next step.

(2) The energy of the gamma quantum E' after the first collision
1s determined by a random choice and depends on the cross section
for scattering from one energy to a smaller energy. The new energy
uniquely determines the angle through which the quantum scatters
and also determines the angle between the direction of the Compton
recoil electron and the radial direction. The energy deposition is
given by the energy of the Compton recoil electron, E-E', and the
contribution of this event to the radial Compton current is obtained
by projecting the range of the Compton recoil along the radial
direction. These quantities are weighted by the survival probability
computed in Step (1).

(3) As we continue to follow the gamma quantum, we now have
the typical case of a quantum of known energy E', originating at a
known radius and whose direction of motion is at a known angle with
respect to the radial direction, As in Step (1), the distance to

the next collision is determined by random choice and the survival



probability is computed. These quantities are functions of the

gamma quantum energy E'. The radial distance to the collision point
is easily found.

(4) Now the energy of the quantum E" after the collision is
determined by random choice as dictated by the scattering cross
section. The energy E" uniquely determines the angle between the
initial direction of motion and the direction of motion of the
scattered quantum. A random choice is then made for the azimuthal
angle of the scattering relative to the original direction of motion,
uniform in the interval 0 to 2m. The geometry of the collision now
determines the angle between the direction of motion of the scattered
quantum and the radius vector through the collision point. In
addition, the angle between the direction of motion of the Compton
recoil electron and the radius vectox may be computed. Thus, as
in Step (2), the energy deposition and the contribution to the
Compton current may be calculated for this collision,

Steps (3) and (4) are now repeated until the gamma quantum
degradeé in energy to below some prescribed minimum value. Experience
showed that a choice for the cutoff energy of 5 per cent of the
initial enmergy provided accurate estimates for the total energy
deposition. The accuracy of the Monte Carlo calculations reported
here was judged by comparing the total energy deposition, or more
precisely, the build up factors with results given by other workers.
The comparison, which is quite favorable, is shown in Section I1I.
Presumably, the results for the Compton current given here are of

similar quality.



The method described above for calculating the Compton current
does not account for the multiple scattering of the Compton recoil
electron. The scattering reduces the projected range of the recoils
to about 0,63 of the practical range for recoil electrons in the
energy range of 0.5 to 2 or 3 Mev. The multiple scattering correction
has not been included in the results for the Compton current presented
in the following section.

PROCESSING THE DATA

We have described the procedure for following the history of
a typical gamma quantum. Some 40,000 histories are followed for
each problem and, since between 10 to 20 collisions take place before
the quantum degrades in energy to below the cutoff, we have of the
order of one million data points in energy deposition and Compton
current to process.

To convert these data to energy deposition rate per unit volume
at a given point in space and to determine the Compton current as a
function of time, the medium was divided into a series of concentric
shells or radial zones about the source. The radius of a given
collision determined then the zone in which the collision occurred.
The total energy deposition per unit volume per initial quantum was
obtained by accumulating the energy deposition for all the collision
events taking place in the zone and then dividing by the product
of the zone volume and the number of histories. The total Compton
current was processed in a similar fashion. The radial thickness of
‘the zones was chosen so that the zone size was small compared to the

scattering mean free path of the initial gamma quantum and yet not



so small as to give poor statistics in a given zone. A zone thickness
of 25 meters was found to satisfy these requirements.

The total energy and the total Compton current aré accumulated
in a zone over an extended period of time due to the multiple scattéring
of the gamma quanta. To determine the nature of this time spreading,
the age t of a gamma quantum was computed for each history and the
delay time T of an event was measured relative to the transit time

of light to the radius of the event. That is,

T=t - xr/c, 2.1
where ¢ is the speed of light. A set of time zones of width Ar
was carried with each space zone and the delay time 7 of an event
determined the time zone with which an event was associated. 1In
this way histograms were constructed to show the rate of energy
deposition per unit volume per initial quantum at each space zone,
as a function of delay time 7. The area under a histogram gives,
of course, the total energy deposited per unit volume. Histograms
for the Compton current were determined in a similar fashion. A
time zone size of 10-8 sec was found to be adequate for describing
the general variation with time of the energy deposition and the
Compton current.

The contribution of the direct beam to the energy deposition
and the Compton current was computed separately and was not mixed

with the contributions from the scattered flux.



SMOOTHING THE HISTOGRAMS

The histograms giving the energy deposition rate and the rate
of arrival of the Compton current at a given space zome usually
exhibit some fluctuations among adjacent time zomes. The fluctuations
are most pronounced at large delay times and for the space zones at
large distances from the origin. 1Im this space-time regime the
statistics are naturally the poorest.

In order to improve the statistics and "smooth out' the
fluctuations, the following averaging procedure was followed at the
‘suggestion of J. I. Marcum. The histograms for three adjacent space
zones were averaged together, time zone by time zomne, the result
then giving a smoothed histogram for the middle zone of the three.
This was done for all the space zones in the grid, the final result
yielding a "£irst-smoothed" set of histograms for the grid.

This procedure may be iterated giving the second-smoothed
histograms, etc. Experience dictated that four smoothings represented
an optimal smoothing for the histograms and the results presented
in Section TII were smoothed four times. This method of smoothing
conserves the area under the histograms and therefore dqes not change
either the total energy deposition or the total integrated Compton
current.

THE ENERGY DEPOSITION RATE BY THE ONCE SCATTERED BEAM

The general solution of the gamma ray multiple scattering
problem may be expressed in integral form. However, the evaluation
of these multiple integrals is quite laborious and, as is dome here,

one usually turns to the straightforward Monte Carlo method.



-10-

The energy deposition rate by the once scattered beam is
rather simple to formulate, though, and we include it here in order
to compare with the Monte Carlo results. One would expect that at
a dist;nce of about one mean free path from the source, the dominant
contribution to the scattered flux would come from the once scattered
~ beam.

Consider then the energy deposition rate at a distance r from
the source and at a delay time T where T is measured from the time
of arrival of the direct beam. Let O denote the source point, Q
the deposition point and P the point in space where the gamma quantum
first scatters and then subsequently scatters at the point Q. It
is evident that the locus of points formed by the points P is an

ellipsoid of revolution with the points 9 and Q as foci. Let ¢ =0

and £' = PQ. 0Q is the distance r and
r'g=z+g', (2.2)

is the equation of the ellipsoid. The gamma quantum has its initial
energy E over the path OP and scatters to an energy E' over the path
Fa. Let  be the ratio of the gamma quantum energy to the rest

2
energy of the electron, me . The quantity o' is related to the

delay time T by,

.:_L.. = .]_' 4.2&.&2—. 2.3)
"o 24(rrpe-2) :

where, for convenience, we define

o = 1lc. (2.4)
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Let k(q) be the absorption coefficient (cmql) of a quantum with
b (dimensionless) energy «, p(~';o) be the probability of scattering
to energy o' within dn' from the energy ¢ and let (o) be the average
i energy after a collision of a quantum of initial emergy ~. The
average energy is,
o
() = [ o plr';adde’. (2.5)

o
12«

It may be shown that the energy deposition rate at the delay

time T is,

0
. . 3 r+-2— 1y gt
§(tir,0) = Eﬁzgégl i o’ 50k (v o' (o' - (o' pye K (@ he TR %%, ,
2
(2.6)

where ¢' is defined by Eq.(2.2).
The above integral was evaluated numerically and the result
will be compared with the Monte Carlo calculations which we now

present in the following section.
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TIII. NUMERICAL RESULTS

We present here the numerical results for a total of five
problems corresponding to initial gamma quanta energies of 1, 1.5,

2, 3 and 4 Mev, respectively. For all problems the space around
the source was divided into 30 spherical concentric shells, each
shell or space zone having a width of 25 meters. We are thus able
to process data out to a maximum radius of 1225 meters from the
source. Collisions which take place at distances greater than 1225
metérs are followed in case back scattering produces an event in the
region of interest.

Associated with each space zone were 50 time zomnes, each with a
time-width of 10_8 sec. All events occurring with a time delay
greater than 5x10-7 sec were accumulated in the last time zone. We
remind the reader that the time delay of an event is measured relative
to the arrival time of the direct beam at the radius of the event.

The limitation of a 50x59 space-time grid was dictated by the
desire to keep the problem within the fast memory of the IBM-709)
computer at The RAND Corporation and thereby avoid the use of magnetic
tapes in the data processing. This resulted in a considerable saving
in machine time. For example, 47,007 histories for a gamma quantum
with an initial energy of 3 Mev degrading to a cutoff energy of 0.15
Mev took 26 min of computer time. The same number of histories for
a 1 Mev gamma degrading to 1.05 Mev took 58 min. The reason for
this increase in running time is the relatively small fractional

energy loss per collision of very low energy gamma quanta.
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The energy deposition rate and the radial Compton current have
been calculated at twelve stations in the interval from 0 to 1712.5
meters from the source for the five gamma quantum energies considered.
Rather than display all the results in this report, for illustrative
purposes we will show the data for a 1.5 Mev source at a distance of
512.5 meters from the source, and a 3 Mev source at a distance of
1012.5 meters. Results for other energies anddistances are available
on request,

Figures 1 and 2 show the energy deposition rate é(r,t,E) and
the radial Compton current J(r,t,E), respectively, as a functiom of
time for E = 1.5 Mev. Figures 3 and 4 show the data for E = 3 Mev.
The data in the figures are for the contributioné from the scattered
flux. The contribution from the direct beam is as indicated on the
figures.

The data have several interesting features. It may be noted
that the energy deposition rate decays more slowly with time than
the current. This is a reasomable result since one would expect that
at long delay times, after a gamma quantum has suffered many collisions,
the quantum would be relatively ineffective at producing an outward
radial current. On the other hand, the energy deposition continues
until the quantum finally dies. The time spreading resulting from
the multiple scattering is shown in Figs. 5 and 6 where the ratio
of the accumulated energy depositiqn to the total energy deposition
is given as a function of time for E = 1.5 and E = 3 Mev, respectively.
The analogous quantity for the current is also shown. It may be noted

that for E = 1.5 Mev, about 7.5 of the total energy is deposited
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; within about 5 shakes and about 1.7 within 17 shakes. There is

a rather long tail on the energy deposition rate since about 0.14 of

the total enmergy is deposited after 50 shakes. The integrated

Compton current accumulates more rapidly with about 0.75 of the total

‘ arriving in 5 shakes and only 0.013 accumulating after 50 shakes.

It is of some interest to examine the radial dependence of the
Compton current and the energy deposition rate since the convenient
approximation is often made that these quantities have the same
radial dependence. However, as Figs. 7 and 8 indicate, the ratio
of J(r,T,E) to é(r,T,E) for fixed delay times T, varies rather
strongly with radius.

A convenient approximation that is often invoked in estimating
the energy deposition is to assume an exponential variation with
radius. It is also usually assumed that the Compton current varies
in the same manner. In order to provide an estimate for the appropriate
relaxation distance, in Fig. 9 we show the total energy deposition
times the square of the radius as a function of the radius for the
five gamma quanta energies considered. Figure 10 shows the total
current and, as may be seen in Fig. 11 which shows the ratio of
the total current to the total emergy deposition as a function of
distance, the radial dependence of the two quantities is somewhat
different.

We have been examining the current and energy deposition rate
generated by monoenergetic sources of gamma quanta. For a source

& with a prescribed energy spectrum of emitted gamma quanta, the current

and energy deposition rate must be determined by folding the results
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given here with the spectrum as indicated by Eqs. (1.1) and (1.2).

In order to get some feeling for the important gamma quanta energies
involved, we have examined the integrated Compton current per unit
energy interval for the Maienschein prompt gamma ray spectrum.(z)
Figure 12 shows the results at selected distances from the origin.
In the figure, the points indicated by triangles were obtained by

o

2 A
plotting r  J(r,t,E)dt as a function of energy and interpolating.
o
It appears that for the Maienschein spectrum the important energy

group centers around 1.5 Mev for distances out to about 500 meters
from the source and at 1000 meters from the source the spectrum
hardens and the important energy interval peaks at about 2.5 Mev.

We complete the discussion of numerical results by showing the
build up factors for energy deposition as a function of distance
from the source measured in units of the Compton scattering mean
free path. The build up factor is defined as the ratio of the total
energy deposition to the energy deposition by the direct beam §

d

where
-k r

S =“-E":_'2" kte s (3-1)

where ks is the Compton scattering absorption coefficient and the
-1

values for the energy absorption coefficient kt(cm ) are shown in

Table 1. Figures 13 and 14 show the build up factors. Also shown

é are the build up factors reported in Ref. (3) which are in substantial
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Table 1

Energy Absorption Coefficient kt(cm_l) as a
Function of Gamma Quantum Energy E(Mev).

E (Mev) kt(cm-l)

3.43x10
.5 : 3.14x10
2.86x19
2.51x10

Z5
-5
-5
-5
2.29x10"°

S~ OWON = e

agreement with the present Monte Carlo results. The bulld up factors
computed here are slightly smaller than those of Ref. (3) since, in the
interest of shortening the machine time, we followed the gamma quanta
down in energy to 5 per cent of the initial energy.

Finally, in Fig. 15 we show the comparison of the analytic
results for the once scattered beam with the Monte Carlo calculation
of the energy deposition rate for E = 3 Mev at a distance of 287.5
meters from the source. The Monte Carlo calculations for the energy
deposition rate are somewhat larger than the results given by the once
scattered beam. This is reasonable since the Monte Carlo results
include contributions to the energy deposition rate by higher order
scatterings. However, as indicated by Fig. 15, the general shape

of the curves are quite similar.
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IV. DISCUSSION

We have determined the Compton current and the energy deposition
rate generated by monoenergetic sources of gamma quanta, emitted
instantaneously in time. These quantities, which we denoted by
J(x,t) and é(r,t), respectively, are essentially the "Green's
Functions" of the problem. Once the energy spectrum of a source is
specified together with the variation of the source strength with
time, then the actual current and energy deposition rate at any space-
time point may be determined as indicated by Eqs. (1.1) and (1.2)
of the text.

The work presented here brings out a very important coupling
between the secular time dependence of a source and the relative
importance of the contributions made by the direct beam and the
scattered flux. For a source whose intensity is increasing with
time, we may state this coupling as follows: (1) 1f the intensity
of the gamma quantum source varies rapidly with respect to the timer
variations of J and é, then the actual current and energy deposition
rate, which we denote by j and &8, respectively, are determined by
the direct or unscattered beam and the contributioms by the scattered
flux may be essentially ignored. (2) 1f, on the other hand, the
source varies slowly with respect to J and é, then j and 8 depend

on the total integrated contributions of the direct beam plus the

scattered flux.
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This result may be established as follows: Let us examine the

energy deposition rate for a monoenergetic source and write

é(r,t) = Sl(r)f)(t) + éz(r,t), (4.1)

where Sl(r) is the energy deposited by the direct beam, éz(r,t) is

the energy deposition rate by the scattered flux, s(t) is the delta-
function and the time t is measured from the arrival time of the direct
beam at the position r. According to the results shown in Figs. (1)

and (3), the function Sz(r,t) may be crudely represented by,

AL

éz(r,t) = 5,00 e (4.2)

where ) is a constant and Sz(r) is the total energy deposited by the
scattered flux. 1If we imagine that the number of gamma quanta emitted
by the source per unit time is

N(E) = 0e®F,

where v is a constant then, according to Eq. (1.2), & is

§(r,t) = aeyttsl(r) + E%I 5,(r) 1. (4.3)

It is immediately obvious that if the source varies rapidly with
respect to 52, that is, o >> )\, then the direct beam contribution
Sl(r) dominates. On the other hand, if & << A, the actual energy

deposition rate & depends on the total energy deposited, direct beam

plus scattered flux since imn this limit Eq. (4.3) becomes

§(r,t) = We”t(sl(r) +8,(0). (4.4)
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The relative importance of the direct beam and the scattered

flux may be shown by writing Eq. (4.3) in terms of the build up
factor which we denote by B(r). Recalling that Sz(r) = (B(r)-l)Sl(r),
we have,

8(r,6) = ae®s (01 + l%(i);l)].

(4.5)
If one ignored the effect of multiple scattering, the energy
deposition rate would simply be,
. ot
$(r,t) = ne 8, (r)B(r) (4.86)

and it is evident that the multiple Scattering reduces the energy

deposition rate by the factor

, 1 A(B-1
| f=30 +J,,,Wl]- (4.7)

As a numerical example consider a 3 Mev source at a distance of

1000 meters. The build up factor B is about &4 in this instance and

from Fig. (3) we find A k,9.35x108 sec-l. Thus the above factor is,

8
£ = g1+ 2:05x10° =1 (4.8)
o+ .35x10

The correction factor depends on 4, ranging from 9,445 for o = 1x108

sec to 7.31 for = 4x108 secﬁl.

For a source whose intensity is decreasing with time we take

N(E) = 00 @ 0 < ¢, (4.9)
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and find

$(r,t) = a5 (r) + 25 (r) (TN, (4.19)

Again, if ~ is small compared to ), then the energy deposition rate
depends on the total flux and $§ is given by Eq. (4.4). On the other

hand, if the source strength decreases rapidly (o >> 1A), we have

S(r,t) a 0o ™8, (1) + ae ™M, (x), (4.11)

and it is clear that for large times the scattered filux dominates.

In general, there does not appear to be any particularly simple
relationship between the Compton current generated by monoenergetic
gamma quanta sources and the energy deposition rate generated by such
sources, For.example, the assumption that the current and the energy
deposition rate have the same radial dependence is clearly not valid.

However, on the basis of the results obtained in this work, it appears

that the following prescription provides fairly accurate estimates
for the Compton current and the energy deposition rate. (1) For a
source whose intensity increases with time and if the source varies
rapidly in the sense described above, compute the energy deposition
rate from the direct beam only. The Compton current is then
proportional to the energy deposition rate and the constant of
proportionality for a given initial gamma quantum energy may be read
from the r = 0 intercepts of Fig. (11). (These values should be
reduced by a nominal factor of .63 to account for the multiple

scattering of the Compton recoils.) (2) 1If the source is slowly
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varying with time, the current and energy deposition rate do not have
the same radial dependence. Figure (l1) shows the relationship
between the two quantities. It may be noted that for distances greater
than 200 or 309 meters the ratio of the current to the energy depositionm
rate charges rather slowly with distance from the source.

It may finally be remarked that in cases (1) and (2) above,
the current and the energy deposition rate follow the secular time

dependence of the source.
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APPENDIX

We present the equations used in the calculations more or less
in the order in which they appear in the numerical work.

Consider a gamma quantum which has had a collision at a distance
r from the origin of coordinates. The quantum has an energy E after
the collision and the direction of motion is at an angle 8§ with
respect to the radius vector to the collision point. If x is a
random number, uniformly distributed in the interval 0 to 1, the

distance the quantum travels to the next collision ¢ is

¢ == o) Inx, (I.1)

where «~ is the energy of the quantum in units of the rest energy of
the electron and (o) is the total mean free path of the quantum
given by
-1 -1.-1
N Dy T Al (1.2)
Akn and Ape are the Compton scattering (Klein-Nishina) mean free
path and the photoelectric absorption mean free path, respectively.

is determined from the total Compton scattering cross section

(4)

xkn

o(g) which is,

o) = 2nr2 Hnf2(+e) zn(1+2a)]'+ m(1+2¢) 1 + 3o
' 211 +

ol | Ll + 2« v 2¢ (1420y2) (13
where r, is the classical electron radius. The photoelectric‘
absorption coefficient was calculated by the following interpolation

formula, fitting the data given in Ref. (5).



- -8, 3.222 -
)\pi = 1.608x10"% /4> 22 (Y. (1.4)

The probability p(~',~) of a gamma quantum scattering from

energy (dimensionless) ¢ to energy o' 1is,

-

L ]

o4
p(c,'l,n,)_-____._._.___.'+....__+.__._....'_+g'+.__.
v o4

4

] [o3
for N2 Y 2 "——1+20[,

o
12

=0 for o' < or o' > w. (1.5)

To determine the energy o' after a collision we first compute

a provisional value of o' by

o' = i [2ex41], (1.6)

where X is a random number between 0 and 1. Choosing another random

number we find the quantity xpmax(a) where pmax(a) is p(eo',q)

evaluated at o Then, provided xpmax(q) is less than

-

142y
p{~',a), o' is taken as the energy after the collision. This procedure
is repeated, if necessary, until a value of «' is found which satisfies
these requirements.

We may now compute the angle ¢ through which the gamma quantum

scatters from the relation

1

cosl =1+~ - =, (1.7)

R
R_|+

and the angle 8 between the direction of the recoil Compton electron

and the original direction of the gamma quantum is determined from,
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o' sin®

{(1+a*a')2-1}%’

1

sin R

(1.8)

and

=o' cosd

{(1+a-a')2- 1}%

cos R . (1.9)
The directions of the recoil Compton and the scattered gamma quantum
lie in a plane and there remains to determine the angle 91 between
the direction of motion of the scattered gamma quantum and the radius
vector and also the angle ¢ between the direction of motion of the
Compton recoil and the radius vector. These are determined by
cose1 = cosg{cosd cos’ + sinp siny cosy)
(1.10)
+ sin6(sing cosy - cos$ siny cosy),
and
cosg, = cosb(coss cos3 - sing sinf cosy)
(r.11)
+ sin@g(sin§ cosf + cosh sin? cosy),
where  is the azimuthal angle of scattering of the gamma quantum,

chosen at random in the interval 0O to 27, and the angle § is defined

by
Sin6 = f’_.s_-%..n—e , (1.12)
T
2
cos§ = r 1 4 cosp , (1.13)
T
2
where
rg = r2 + £2+ 2r) cosb. (1.14)
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The energy deposited at the collision point r, is, of carse,

(5

a-n' . The range of the Compton recoil R, i

131.5 (m—q')l'38, a~n' < 1.565,

it

Re. (cm)
(I1.15)

226 (w-o') -108.5, 4-a' > 1.565.

(~v-~' is the emergy of recoil electromn.)
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