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PREFACE

This Memorandum is an input for a larger RAND project on the
electromagnetic signal from a nuclear explosion. The numerical
calculations of the signal are in theory simple to perform, but
in practice are difficult because of the abrupt behavior of the
functions which appear. The role of this report is to present
some ways of overcoming the difficulties so that results are

obtained efficiently and accurately.
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SUMMARY

Two programs are presented which calculate the solution for
a hyperbolic system of partial differential equations with three
constant characteristic directions. The computations are on a net
of characteristics of variable mesh, the size of the mesh being
determined by a criterion of accuracy. The first program ranges

over four mesh sizes; the second, over nine.
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: ok
TABLE OF SYMBOLS AND THEIR DEFINITIONS

Symbol in Symbol in
Listing Flow Diagram Definition

A a Horizontal characteristic bounding
area of interest.

ADIVO aAt/8, where 8 = 1,2,4,6,12,

ALBET o Floating point symbol for g, see
IAB below.

AMU(1, 1) 1:!_l t at index i in the p-file.

AMU(2, 1) X, x at index p in the p-file,

AMU(3,1) v& dv/dt at index @ in the p-file.

AMU(4, 1) ud du/dt at index p in the p-file.

AMU(5,1) w& dw/dt at index M in the u-file.

AMU(6,1) vu v at index p in the p-file.

AMU(7 1) U, u at index M in the p-file.

AMU(8,1) Wu w at index M in the p-file,

B B (w-u) /2x.

CAPU i) Approximate error in the value of u
computed at (i+2q,it+2q¢).

CAPV v Approximate error in the value of v
computed at (i+2q,j+2q).

CAPW W Approximate error in the value of w
computed at (i+2q,j+2q).

DELTAU At

Lito,i+a Ti3"

DELX AX The increment of x between successive
points of the p-file on the first
forward-running characteristic,

Maximum value accepted for U,V,or W,

E e

EPSL@N e e/qQ.

ER ER v/x.

ET ET (wtu)/2x.

I i First subscript of a point in the

289-point array.

*

The absence of a symbol from the table implies that the state-
ment in which the -symbol is found, or one close by, provides a
definition."
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I1 o : ita. -
12 i+2g.
13 ito/2.
14 ‘ i+3a/2.
15 | i
IAB o - The ratio of a side of one of the

squares from the 289-point array
to the side of the smallest square.

TABY?2 al2.

IAL(I,T) aij‘ ' o at the point (i,j) in the array.

IALFAO o ' The value of ¢ at every point of the

o . . .
' . p-file on the first forward-running
characteristic.

IAMU(2,1IN) . Alternate symbol for AMU(I,J). See
comnment in listing for OPEN.

IB B An index associated with o.

16 g A subscript. See XG(IG).

IH h A subscript. See TH(IH).

THALT : ' See comment in lListing of subroutine
HALT.,

IR r ita or it+2q.

ISB A switch set in accordance with the
success or failure of a calculation
to pass a test of accuracy. :

ISIG See comments prefacing the listing
of VERL. : -

ITAUB(IB) T A tally of the successes of a module

- 8 of index g.
ITB(IB) t An index locating a square in its
B module. -

ITEMP ' A fixed point variable of general use.

J j Second subscript of a point in the
289-point array.

J1 , o jta.

J2 ' j+2q.

J4 j+3a/2.

J5 ‘ j-o.

KOOOFX ) A divide-check index.



LAMO
M1
MAL (1)

MAXSIG

MCAP
MUO

S
TABLE(L,I,J)
TABLE(2,1,J)
TABLE (3,1 ,J)
TABLE(4,1,J)
TABLE(S5,1,J)
TABLE (6,I ,J)
TABLE(7,I,J)
TABLE(8 ,I,J)
TEMP1

TH(IH)

TP
uP
V(IN)
VP
WP
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i3
ij
ij
ij
i
ij
ij-
ij
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A fixed point variable of general use.
8 =1,2,3,4,

Index of the first point in the g-
file.

The value of ¢ in the u-file for
index {t.

The number of floating-point quanti-
ties at a point in both the p-file
and the 289-point array.

The number of points in the p-file.
Index of the first point in the k-file.
Running index for the k-£file.

Running index for the g-file.

The number of points in the u-file
open for use.

The running sum of the values of
along the side of a module.

P(t,x).

The maximum value attained by the ab-
solute value of u, v, or w at the
point (17,17) in the 28%9-point array.

S(t,x).

t at the point (i,j) in the array.

x at the point (i,j) in the array.
dv/dt at the point (i,j) in the array.
du/dt at the point (i,j) in the array.
dw/dt at the point (i,j) in the array.
v at the point (i,j) in the array.

u at the point (i,j) in the array.

w at the point (i,j) in the array.

A floating point variable of general
use,

A value of t for which outputs are
wanted.

t-coordinate for an output,
u-value for an output,.

A parametric input array.
v-value for an output.

w~value for an output,
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. =xiv-
XG(1G) X A value of x for which outputs are i
g wanted. : : '
X1 3 t-x.
XIH & The largest value of E assumed to

be of interest.

XP X x-coordinate for an output.
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-I.__ INTRODUCTION

The propagation of radio signals from a nuclear burst in the

*
atmosphere is represented, under suitable assumptions, by the system

ofp 2 ,
>t x B - S(t,x) ER - P(t,x),
JE
T B__B _
t + 3% - x S(tsx) ET’ (1)
e N s
Jt dx x x '

The initial data are: = ET =B = 0, when x = t; and E; = 0, when

Er T
x = const., > 0. The functions S(t,x) and P(t,x), when they resemble
those froﬁ an actual explosion, are abrupt and therefore difficult
to handle numerically. '

A subtraction and an addition of the last two equations lead to

the equivalent system;

BER

=% -
3t % B - S(t,x) ER P(t,x),
At X X X b4 MR
a(ET+B) . a(ET+B) . EE._ E! B S(E.OE
at X b4 X X MR

a system, it will be seen, in which each equation represents the

o L %
derivative of a particular quantity in a particular direction. To

_ *See V. @Gilinsky, The Kompaneet's Model for Radio Fmission from
a Nuclear Explosion, The RAND Corporation, RM-4134, August 1964,
p. 10, Eqs. (3.21), (3.22), (3.23).

For a general treatment of the notions implicit in these maneuvers,

see R, Courant and D. Hilbert, Methods of Mathematical Physics, John
Wiley & Sons, Inc., New York, 1962, pp. 424 ff.
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capitalize on this fact, change the dependent variables by means of ‘E%
the relations
u=E, -B
v = ER’

The new system is

. % (wtv) - % S(t,x) (uhw), if % - -1,
& S (w-u) - S(t,0)v - P(t,x), i & -, (2)
WL -y s (), | if g% - 1.

The initial data become: u =v =w =0, when x = t; and w = - u,

when x = const., > 0. -

The last system can be regarded as three ordinary differential
equations: the first valid along the family of straight lines x + t =
const., the so-called backward-running characteristics; the second,
along the limes x = const,, called here the hdrizontal characteristics;
and the third, along the lines x - t = const., the forward-running
characteristics. 1In the light of the above remarks, consider Fig. 1.

At both A and B, u, v, and v are known so that the derivative of u,

du
dt

— 1
..u‘,

along BC and the derivative of v;

s
]
<
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along AC are also known. Approximate values at C .are

Usp = Yy +rué At/Z, x
Va1 TV, + VPL At’,_

Vel T T Yere

ugy = £Qugys Vops ﬁc1)’

ver = 8(ugys Vops Yep)s

Ye1s Ver» ¥er) e

where f(u,v,w), g(u,v,w), and h(u,v,w) are the right-hand members
respectively of the formulas for %%3 g%; and g%-in system (2).

. —2
Improved values at C, accurate to and including the term in At", are

Ugy = up + (ué+ uél)ﬁm/4,
Vay = VA + (VA+ vél)At/Z,
Ye2 T T Yc2o

uéé = f(u02f Ve2e Vgo) o

etc, .

The method of numerical integration will be recognized as that of
Heun. Its accuracy cannot be improved if only the two points at the
ends of the interval are used, ‘

If At is chosen small enough to make the last approximation at C
as accurate as needed, the'caléulation of values at E.in Fig. 2 can
begin. Dropping the second subscript at C to indicate that the values

there are acceptably accurate, one has



= u+ uﬁ NES2,

EL D
Vg = vt vé At,
Wpp = wc+ wé OE/2,
u" =

g1 - £(Ug12Vg V1)

etc.

These values in turn give the improvements

Upy = Yp f (uﬂ+ uél)ém/4,
Vpy = Vgt (vﬁ+ vél)At/Z,
Wpq = Wc+(wé+ WE':I)At/ZL,
ugy = £(ugysVp1avgy)s

ete,

It is clear that the values either at H or at F are now ready
for computation and that to reach
the point Z in Fig. 3 some such net
as shown is necessary.

The general outlines of a o

simple procedure appear. There are *;//\\\///\\\//,\\\//,\\\
some decisions to be made on the ///<\\///\\\///\\\///\\\//,Z

storing of the values of u, v, etc,, ///‘(;

at the nodes, but the problem is ///\\\///\\\///\\\///\\\///
straightforward for the simple net ,}}\\\,//\\\///\\\,//\\\//)
“of Fig. 3. A

The numerical solution, however,

is kept from being routine by the FTg.3

nature of the input functioms S(t,x)
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and P(t,x). The latter, when they are defined so as to resemble
those from a nuclear explosion, have an extremely violent behavior
which swamps the simple program described. Solutions of meaningful
problems calculated on a mesh of constant size are either totally
inaccurate or prohibitively long. But a net of variable mesh size
Eurns out to be a very effective way of dealing with the rapid varia-
tions in S(t,x) and P(t,x). That the variable mesh is necessary is
attested by the fact that it is not unusual for the solution of a
problem to use 50 percent of its time in as little as 1/100 of one
percent of its area. See Fig, 4.

It is the intention here to develop numerical programs which
vary the size of the mesh throughout a calculation in such a way
that solutions of system (2) [or (3)] are reached with something
like maximum efficiency,

The schemes for doing this are specifically designed for the
problem of the signal from a nuclear burst. Howevef, the only thing
unusual about this particular instance of one-dimensional wave propa-
gation is the lengths to which it is necessary to go to get a numeri-
cal solution. It is believed, therefore, that the devices developed
below are of some general interest. In any event, it is no restric-
tion on much of what follows to replace system (2) by the more

general system:

du .. dx

at - f(t,x,u,v,w), . if ryliali 1,
.o dx
%% = g(t’x,u,v,W), 1f EE = 03 (3)
d Lo dx
3% = h(t,x,u,v,w), if It = 1,

where the quantities u, v, and w are supposed known on some forward-
running characteristic, x + t = const. > 0 and where a formula, say,
)
. w = A‘;P(t.:“-!sv) 2

supplies w on a horizontal characteristic x =a > 0.



50,000{ -

nodes | !

Of a total of approximately
200,000 nodes, about 50 % are
within the small triangle at the
tip of the trapezoid. By the time
the solution reaches the level of
the obtuse angle, about 75% of
the work is done., The rows of
squares along the top of the area
show the mesh size on reaching
the last forward-running character-
istic.

A factor €™ /x2 gppearing in
both S{t,x) and P(t,x) is respon-
sible for the exireme variation in
mesh size,

50,000

nodes

N

f-x=10

100,000 nodes in

small triangle

0
Fig.4—A not unusual variation in mesh size
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When the argument allows generality, system (3) is the model.

When it is necessary to be specific, the model is system (2).
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II, THE OVERALL PLAN

The most convenient way to change mesh size is to halve or to double.
Doubling is only a matter of ignoring the proper points, but halving
requires interpolation. If the interpolation is two-point, the result
is only linearly accurate. Since the values of u, v, w, etc., are
quadratically accurate, three points are needed to retain accuracy.

This suggests that the calculation should be based on a module of

four squares of the same size as shown

in Fig. 5. Known values of the C

variables are at A, B, C, D, and G,

Values are calculated first at E, B F

then, say, at F, followed by those A At I .
at H and I. But if the simple

module of one square is abandoned, D H

perhaps a meﬁhod of order higher . G

than Heun's could be profitably

used, The difficulty with this Fig.5

expédient is that only two points
of the module are available with which to calculate v at F and H.
Of course it is not strictly necessary to use only the nine points
of the module, but it is much simpler and more compatible with sub-
sequent maneuvers if the calculation is contained entirely within
the module. Four squares and the two-point method of Heun are the
base for what follows.

Suppose now that the values at E, F, H, and I (Fig. 5) are
calculated. Implicit in what has gone'before is a criterion of the
acceptability of their accuracy. The module of four readily provides

such a criterion., Consider the relations

=
|

] T t
3 - Y + (ud+ 4uF2+ uIZ)Am/IZ,

t 1 ]
v, t (vAf 4VE2+ VIZ)Am/G,

and

—_ ' 1 1 ]
Wrg = Vo t (wG+ 4WH2+ wIZ)Am/12.
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As the notation indicates, the values at I given by these formulas

are accurate to and including the term in ZES. If these third-order

values differ by an acceptably small amount from the second-order

values, -there is reason to expect u_,, v..,, and w_, to be sufficiently
g 12 12 12

accurate, Looked at another way, the differences between the two

_approxlmatlons are

— ° o ' = T
Uy " Upg (uC 2uF2+ u 2)A¢/96,
’ —_ ]
Vig " Vg = (vA 2vE2+ V! 2)&m/48
and
- - J —
Wio < Wia (wG H2 )At/96

and they show, not surprisingly, that the criterion amounts to in-
sisting that the second-order differences on u', v', and w' be small
along the directions %%-= - 1, 0, and 1 respectively.:

Suppose it turns out that, according to -the criterion, the
second-order values at I'are. insufficiently accurate. Then the -pro-
cedure used in this program is to subdivide each square of the module
of four into four modules.of four. The values-at E are calculated
and tested on the smaller module. If the criterion is satisified,
the values. at F are attempted,.and so on until the point I is reached.
Suppose, however, that-the module of .four, which is to yield the
values of F, also turns out to be too large. Then its four squares
are each subdivided -into modules of four squares. In theory, sub-
dividing could continue indefinitely, but in practice, three sub-
divisions. seem to be.about the optimum, all things considered. Thus

the. values at I.might, as a consequence .of critical subdivision, be

% ' :
. Similar criteria-are examined and recommended by Mark Lotkin -
1n "On the Improvement of Accuracy in Integration,' Quarterly of
Applied Mathematics, Vol. XIII, No. 1, April 1955, pp. 47-54.
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reached on a network such as shown
in Fig, 6.

It will be seen now what is
contemplated, The area of Fig. 3
is to be worked over in modules of
4 squares (modules of one square
and two right-angle equilateral
triangles at the first horizontal
characteristic), any one of which
can be broken down into 256 sub-
squares (120 sub-squares and 16

sub-triangles along x = a). To

implement this idea a double-

subscripted array of 289 (= 172) Fig.6

points* is set up., Known values of the variables are set in along
-the upper and lower left edges of the array. The operations described
obtain values along the upper and lower right edges of the array.
The quantities on the lower right edge are stored, those on the
upper right are transferred to the lower left edge, and new values
are read into the upper left edge. This process is repeated over
and over until the last backward-running characteristic is reached.
The area covered is a strip whose edges are forward-running charac-
teristics. One edge of the strip provides the known values for the
array} the other edge, as it were, provides storage for quantities
from the lower right edge of thé array. In this way an area like
that of Fig. 3 is covered strip by strip until the last forward-
running characteristic is reached.

The procedure sketched above, when suitably implemented with
subroutines, becomes a program which operates om a wvariable net of
four mesh sizes. This program can do many problems, but there are
also many that are too difficult for it. Implicit in its formulation

is the constraint that all stfips be of the same width. This

%
Since several quantities reside at each point of the array, the
array is really triply subscripted, w
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constraint is not necessary. It is set merely to simplify, Re-
moving it leads to a program more complex and, since it uses more
mesh sizes, more powerful,

The first version described below assumes strips of the same
width; the second version does not. Other versions will remove other

implicit constraints.
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ITI. FIRST VERSION

The main loop begins, as described above, with a file of discrete

values for u, v, w, etc., along

a forward-running characteristic. OFEN

Sets of these values are trans- FILL

ferred to the uppér left edge of '

the 289-point array, where Ehey MOUT

are transformed into another set, PR%)S TRAN
which goes to make up a second file &‘,fr*”’ar
along a second forward-running MUIN ]
characteristic. Another circuit MEND
of the loop is then made in which

the second file plays the role of Halt
the first file, and so on. Hereafter Fi9-7

the first file is called the k-file; the second, the g-file.

The whole system of loops consists of seven major operations or
subroutines (see Fig. 7), called here: OPEN, FILL, MOUT, PROS, MUIN,
TRAN, and MEND. The first routine, OPEN, is the starting routine.
FILL is the operation of making up the first k-file from the initial
values of u, v, etc., given along the first forward-running character-
istic. MOUT is the transfer of the values from tﬁe k-file to the
array. PROS is the process of generating from the transferred values
the values for the upper and lower righthand edges of the array.

MUIN is the transfer of the set on the lower right edge to the g-
file. TRAN is the transfer of the set on the upper right to the lower
left edge.' MEND is the operation of ending the g-file and preparing

it for its role as the k-file,

THE MAIN ROUTTNE

A knowledge of the workings of PROS is preliminary to under-
standing any one of the other suBfoutines, because they serve PROS
by bringing up, preparing, or taking away data., Figure 8 displays

and explains the operations of PROS.
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e=e‘-Q
.
(III)I(]I])
c-"iB
B=1
Vo
B=E+l fB'=tB+2 ti+a,i+aTtii+ At fB=l tB=—1
AP{’]
DRIV 0\ i=j-a
] +
Apfz IF (x;;%0)
[ =jto DRIV i=i+ta
- *”o’/b
IF (t,)
+4P
to=-2
Py
a=a/2 (i, )=(-a,j-a)
IF (4=B) T =T +]
yo p B
I3.=l5’r1
REDO /(B-l) 0
fﬂ-l tB=l tﬁzfﬂi\ u=+2cx (i,)=(i-a,j-a) IF(I:W'WI-Q)
iZiz9 + \o iziﬁseyﬁ:"Z Q=[U]\7‘£|‘°_
IF(xi.—o) . IF (tﬂ) IF(lvi7.71-Q)
P — ! )
i=ita Q=|viz171|2
IF‘(lyr\l/17,|7|-Q)
Q=|W17.17|l‘3

MUIN

Fig.8— Subroutine PROS
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LEGEND FOR FIG. 8

e is the approximate error set for u, v, and w.

e is the approximate error relative to the maximum reached any-
where by |u|,|v|, or |w|. PROS usually obtains u, v, and w
with the accuracy implied by ¢, but sometimes the error be-
comes as large as, say 1l0e. It is, therefore, desirable to

set ¢ at about 1/10 of the acceptable relative error.
Q is the maximum of |u|,|v|, or |w|. It is estimated initially

and is increased when PROS finds the estimate too small,

i,j are the indices affixed to the points of the array of 289.
The leftmost point has the pair (1,1); the rightmost, the
pair (17,17); the topmost, the pair (1,17), etc.

o is the number of points less one along a side of the square
under conéideration. It has four values: 8, 4, 2, 1.

8 is the index for o. ¢ = 28-1.

,»X,. are the values of the independent variables at the point (i,j).

At is the length of the diagonal of a square whose  is 1.

APP1 and APP2 are the subroutines which make respectively the first-
order and the second-order approximations to u,v, and w,.
See Fig. 10.

DRIV is the subroutine which calculates u',v', and w'. Since it is

straightforward, it is not discussed,

t - is the index showing the square under
? consideration in a module of index B.
See Fig. 9.
a is the value of x on the first hori- 0
zontal characteristic., Along this .
Fig.9

TEST is the subroutine testing the accuracy of the results of APP2.
See Fig, 11.

characteristic w = ¢(t,u,v).

HATLF is the subroutine interpolating for the four half-points in
the upper and lower left edges of a module. See Fig. 12,

REDO is a subroutine taking appropriate action when a module of
index 8 = 4 .fails to yield acceptably accurate values. In
the first version it can consist simply of the command to
halt the calculation.

T is a tally recording the number of times a module of index
8 has been accepted.
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,

'QTAf-U' /2

APP1 = P
Ui+c:‘:i+a Ui ta i, j+a
= For o AF oyt
vi+a,i+c vii a 4Lt vii
: lF(xi.-a)
. ., T=u, . . L TW, LtaeAr ew!', .
w|+a,|+a U|+q,|+cx w|+a,f+q W|+a,| oAt W'|+cx,|/2
RETURN
APP2 e LmuL L taeAr(u FUL
- U1+a,|+a U|,|+a a Ai(ui,i+a v |+a,|+a)/4

v, L Sy ta sAf (v !
1 ta, jta i “ i(v 1 v

‘//9—-/ \‘*..
v, . w, ., TwW, Lta At {w!, Ltw!, .
i ta,|ta ita, jta ita, | Yo ta, |+a,[+a)/

—_— e
RETURN

Fig.10—Subroutines APP1 and APP2
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U=G'Af|U'i , +y! '

u', .
,it2a " i+2a,|*2a

-2u',
i

+r',i+2u|/]2

IF(U;é%_;
(_)_‘ : fClll
V=a'At|vHi+vH . -2v, . |/6

|+2\&},|+20 i+a, |ta
|F(2*-e)+\&1”
=a

a. .
i ta, jt+2a

a., A =a
i+2a, |t2a

IF(X.*.—O 0
+v pass
o At | W - ~2w!
W= -At] i+2c,i+Wi+2*a,i+2q Wis2a, j+al /12
IF(gilﬁl-t—i“““-———-_liﬂ_
ai+2%,i+a_u
r=i+2a r=i+ta
+ \
s IF( +20—r) gil
h=h%¥1° F(x =-x . )
\ g Yit2a - -
IF (tr-—tri) PRINT iF (xg'-gri)
=2“ﬁi-)-ﬁ w_=D w_+D w +D_w y4 —2(’!9""”
077 p 0"k i r,fi+ct 2%, j+2a 0" —&xT—
/ VP_DOVi+D‘ r,jta D2Vr1i+2°‘ \
= + =
xp Doxri D1xr,i+a+D2xr,i+2a tp Donﬂ+D1n,i+a+D2nyi+2a
ﬂx —
* F (S,
D,=Z Z 2
! 2= 4o i/ !
h=h+1 Dy =-£o72 g=%+1
=] DO=Z]Z2/2 S ="1

Fig. 11— Subroutine TEST

e

: y
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LEGEND FOR FIG, 11

g and h are subscripts. The first ten lines of TEST accomplish
its previously stated purposes, which are testing the values
obtained by PROS for acceptability and recording acceptance,
when found, by storing the value @ at each node on the peri-
meter of the module. After its first ten statements, TEST
turns to the ultimate purpose of the program, namely, the
production of visible results. The program assumes that
results are wanted on lines of constant x and constant t
and gives a way to obtain them in the case of the dependent
variables u, v, and w., The constants associated with x and

" those associated with t are ordered according to their magni-

tudes and set in the subscripted quantities xg and th. Two
dummy values, larger than the program can possibly reach in
its run, terminate the set of constant x and the set of
constant t. The reason for these large terminating values
is most easily discovered by studying TEST's flow diagram.
Quadratic interpolations, once on the points (itw,j), (ity, i+a) »
(i+q,j+20), and once on the points (it+2¢,j), (it2a, jt+a) ,
(i+20,3j+20) , yield up, vp, and wp, the values of the dependent
variables at the points,where the lines of constant x or
constant t intersect two of the forward-running characteristics
of the module.

S is an integer used as a switch.

and D, are Lagrangian interpolation coefficients.
1? 2
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“i,iva/2"%/

% i+3a,2 072

=3P, /8+3P, /4—P“i+2q/8

Cba
Vrl

P“i+3a/2=-P”/8+3Phi+d/4+3Phi+2c/3

Pi,i+a/2

a, ta/2, i'-:a/2 RETURN

-
% +3a/2,i /2

Pivay2, =30/ 830 o 1/ 4P, /8

arl

./8

2a, |

RETURN

Fig.12—The Subroutine HALF

Stored at each point of the array are the local .values of t, x, u, v, w, v',
v', w', and a, The last is defined as the value of a used in obfaining the

stored valves of u, v, etc. The symbol Pi' represents the entire set of nine

quantities residing at (i,j). The symbol T)ii is Pi' without a. When the set
I

I-’ii is acceptably accurate, a.. is set to a, A zero value for aii signifies that
- |
P.. is not yet accurately known,
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IHE SUBROUTINES FILL, MOUT, AND MUIN

The two files, the k- and g-files, which contain the values for
and from the edges of the array, are themselves sub-files of one large
file. Let the latter be called the p-file, Then a point of the
p-file P , or alternatively P(y), holds nine quantities: t,x,u, etc;,
the sameuas Pij does. The smallest value of y is 1_and fhe largest
is, say, M.

The subroutine FILL fills the first k-file, starting with index
kb = 1, with enough points to reach as far along the first forward-
running characteristic as the backward-running characteristic which
bounds the area of interest. PROS, receiving inputs from the k-file
via MOUI, generates values from which MUIN sets up the g-file with
the first point following immediately after the last point in the k-
file. When the g-file is complete, it becomes the k-file., If this
circuit is repeated enough times, the g-file rums out of space in the
u-file.> That is, MUIN may call for a point beyond j, = M. When this
happens, MUIN sets w to 1 and continues. MOUT must be able to make
the same maneuver.

Figure 13 displays the flow diagrams for the three routines.

THE SUBROUTINES TRAN AND MEND

After MUIN has completed its operations, the array is prepared
for its next turn with PROS, This preparation consists of MOUT's
operations supplemented by those of TRAN. TRAN performs the traﬁsfer
of values from the upper right to the lower left edge and sets to zero
all o 5 except those on the line i = 1. The latter operation is
necessary because the test of whether or not a point in the array
contains correct information is whether or not its @ is non-zero.

Figure 15 shows the flow diagram for TRAN.

When the end of the k-file is reached, a contingency revealed
by the equality of Hy and My > MEND begins the operations associated .
with changing the g-file to a k-file. First, however, MEND makes
sure that these operations are needed by determining whether point
(17,17) of the array lies on or to the right of the last forward-

running characteristic bounding the area of interest. If the solution



MOUT w%]
w=w+q(pk)
T~
Pm’f(“k)
+ szl-‘kG)l
|F(1‘7)/
-w
POR'OS ‘
=1 + IF(17-1) MUIN
Lt
IF (a }7 .) / 0
+ .__!L_g___*
P . =
(P/)%‘/l_i: lF(oPl Pk)_'__
pZ:p'e@] MEND TRAN

Fig.13—Subroutines FILL, MOUT, and MUIN

My is an index from the k-file

|.|2 is an index from the Z-file
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ﬂ LEGEND FOR FIG, 13
Ho is the first index of the k-file.
W is the running index for the k-file.
a is the value of x on the first horizontal characteristic.

x(uk), t(y ), and d(pk) are respectively the values x, t, and g
for index by *

VALU is the subroutine which supplies u, v, w, u', v', and w' at by -
o is the value for g which FILL assigns to every point in the

first file. It is an input and is given a small or large
value according as the first forward-running characteristic
is in a region of bad or good behavior.

Ky is the first index in the g-file and follows immediately
after the last index of the k-file.

JAVd is the increment in x between successive values of Bt Wy
and Ax are inputs which must be so chosen that the solution
can develop over an adequate area. It is also necessary that
u1-2 be a multiple of 28, where g corresponds to oy This
insures that the last point in the k-file falls on the top

corner of the array.

® is the symbol used here for
uw=ptl
addition with modulus M. It
is shorthand for the opera- IF (M-u)
tions of Fig. 14. - 0
8 k=1 +
ty is the running index for the

g-file, Continue

Fig. 14
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TRAN

-
||
Al - O

isial Fla )
IF (1853)
0

MOUT
MEND. .. Pug)=P17,17

o

["ifo] all i and j
P,e I-',(@]
) Po Pl

1 THY
\

PRINT " Ty, T2, T3, TAlI_POI Hiyr Q"
E=ty7,17 ~x17,17 ~
FEn=t) .

M ‘po o -Halt -

[15=014)

a(pg)=0

TRAN

Fig. 15— Subroutines TRAN and MEND

£ corresponds to the last forward-running
characteristic bounding the area of interest,
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is not yet completed, MEND sets all the ¢'s to zero, including, now,
those for i = 1. MUIN does not transfer P17 17 to the p-file, since
-
. MEND makes the transfer.
1,17

Next MEND. sets [L_ to K, and gives [, its position immediately after
o 1 1 y

P”,17 goes in from the next array as P

the last index of the new k-file, MEND also prints out information
‘relative to operations for the strip just finished. This, of course,
is optional, but experience is that T_, 8 = 1,2,3,4, and Hos Hyps and
Q are likely to be interesting quantities to have available.

The flow diagram for MEND, always the final routine, the one

out of which comes the command to halt the calculations, is in Fig.
15.

THE SUBROUTINE OPEN

Twelve quantities receive initial values at the beginning of
a run. Of these, nine, oys AL, His €5 Q, a, xg, th’ and gH
are chosen by the operator according to the requirements of the run,

Three are always given the same value:

t
il
1
[\
-
™
|

=1, 2, 3, 4,

=1, 2, ..., 17,

Q
I
o
-
e
.
.

T =0,8=1, 2, 3, 4.
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IV. SECOND VERSION ) ﬁ
/}

The effectiveness of the first version is limited at one end
of the range of mesh size by failure of one of the smallest moduies
to pass TEST and at the other end by its inability to take advantage
of larger modules. The processing of the k-file depends on the qo's
in the k-file and on the At chosen for PROS, but the formulas of
PROS show that as long as the product ¢.At is constant the results
are the same.. That is to say, if all the ¢'s were doubled and the
At halved, the results would be the same except that the strip covered
would be half as wide, and two strips would be needed instead of cne.
Again, if all the ¢'s were halved and At doubled, the chief consequence
would be a strip twice as wide. '

This suggests a means of expanding the range of the first version.
Suppose that TEST is failed when ¢ = 1, and suppose further that
instead of halting the calculations, At is halved, all the o's are
doubled, and the processing of the k-file is started again. On this
passage through the k-file, ¢ = 1 corresponds to a smaller diagomal,
and TEST may pass the module. The only difficulty .is the possible
existence of g's of 8 in the original k-file. But this difficulty
can be got around by interpolating so that each pair of points having
o's of 8 is replaced by a set of four points with a's of &, All
o's can then be doubled. o

Doubling the width of the strip is always possible when no o
in the k-file is 1. To be sure, after doubling, the error criteria
may shc that halving, not doubling, is the correct change in At,
but it is so inefficient to use modules smaller than necessary that
strip width is doubled, whenever possible. To cover an area with
modules whose diagonals are. twice, four times, or eight times too
large is, respectively, a waste of about 25, 31, or 33 percent. On
the other hand, to cover an area with modules half as large as necessary
is 300 percent wasted effort., In view of these percentages it is

best to fall on the large side of the optimum size module.
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THE NEW AND MODIFIED SUBROUTINES

The main changes in the program in the second version (see the
overall plan of Fig. 16) are in the new subroutines REDO and HAFM,
shown in Figs. 17 and 18 respectively.

These two subroutines make the arrange-

OPEN

ments for starting over with a narrower ‘ ‘

strip, whenever PROS finds that its FILL

smallest module cannot pass TEST. MOUT

The program is also modified to

guard against a rather disastrous con- HAFM PROS TRAN

sequence of halvipg the strip width, ‘r///’/tl//,/’/’\\\\‘/////'

Halving, repeated enough times, over- Halt REDO MUIN

flows the -file. Both HAFM and MUIN,

the latter slightly modified, (see Halt MEND
" Fig. 17) keep watch on the unfilled Fig.16

space in the -file.

HAFM's function is modifying the k-file for the narrower strip.
It begins with an attempt to double all the ¢'s in the k-file, which
is the correct operation unless the k-file contains an ¢ of 8. If
HAFM encounters. an ¢ of 8, it sets all the doubled ¢'s back to their
original values and then constructs an g-file. This it does when
o < 8, by a simple transfer of data from the k-file to the g-file
with ¢ doubled. When ¢ = 8, HAFM transfers and interpolates, pro-
ducing in the g-file double the number of o's of 8. The completed
4-file is converted to a k-file in the usual way.

The operations doubling the strip width are an addition to MEND
(see Fig. 19). Two criteria must be met before At can be doubled.
T, must be zero, showing that no ¢'s of 1 are in the k-file, and the
sum of all the g's in the k-file must be evenly divisible by 32.
Unless the last criterion is satisfied, the k-file does not hold

enough points to fill the edge of the array on doubled spacing.
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REDO | (7% a1i i and |
[*B:"f]an B ,
PRINT "REDO" i
At=At/2
PR:P]:}JO
IF(PR)
+ I
0 pR=M+|JR
PR=M'fO"PR
HAFM
MUIN =1 IF(17-1)
IF(GI7 -) / }"IR=p “H
1] k
T T y
P(pj)=P,7’i =1+ |F(PR)
\/ +\
b =pe @1 ° HR=M g
PR:M-fo_PR
IF (pg)
/%‘
halt |F(p]-pk)

4-"'0'/ —~
MEND TRAN

Fig. 17—Subroutines REDO and MUIN. Second version

MR is an underestimate of the number of unfilled points remaining

in the p-file.
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Pk:P (Fk IJk)/ A THo
‘ > \/O//—L‘

pk e RETURN/  IF (uo=p ) AopTw

| |
a(p )= 20(pk) |F(p]ﬁ/p:+f(' e H

ECRA a i) T2a ()

P( P( A=A
I-‘[)* Pk) /4' 1

IF(x,=X) p A3= Ay A =p
?\]—pk 0 |F(|1 ) =A

i~ "4
\)\2‘Epk I_’()\S)=3P '}8 3 ()\2)/4-F’.(pk)/8

a (p'e)=8

A3y O‘(Pﬂ)
Pk ;'k&)] IF (A= 7‘)

0
o =p D1 ‘/”:(PR)

halt p_R=|..|R-2
.- IF(8zc (b))
IF (uu‘- M)
ngpl
Pl{i{g
RETURN

Fig. 18— Subrouting HAFM



P{pg)=P17,17

[2;=0d 11 ¢ and g _ | '

| Y
R
B
uotp1
P]ijr
PR'NT "T] I T2, T3, T4, po, P],Q "

E=ti7177-%1717

IF (uy=55)

FOI M

M. "Ho
lF(w—32(w/32))

[TB=0]0“ B (’(Pk):f"(Pk)/2

MOUT L, 2 @1
.

At =*2 At
TRAN

Fig.19—S_ubroqtin¢ ME_ND. Second version
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Appendix

*
LISTING OF THE ROUTINES

c THESE STATEMENTS APPLICABLE TO ALL ROUTINES, BOTH VERSIONS.

COMMON
COMMON
COMMON
COMMON
COMMON
-COMMON
COMMON
COMMON
~ COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

COMMON

COMMON
' COMMON

(1,J) IN

(22N aKeXg]

/AMUX/AMU(8,1000) /TABLX/TABLE(8,17,17)
/MALX/MALL 1000) / TALX/ TAL{ 17,17)
/ITAUBX/ITAUB‘4,/ITBX/ITB(4)/THX/TH‘lB)[VX/V(30'IXGX/XG(lB,
AsADIVL,ADIV2,ADIV4,ADIV6,ADIV12,ALBET
CAPU,CAPV,CAPW ' '
D0,01,02,DELTAU,DELX

E+EPSLON
It[l0120131I#oIS'IAB’IABYZ,]ALFAO'[B.!G'nglRp1531|SEND
ISIGIST,ITEMP

JeJdled24J34J4,J5

KOOOFX

M1 ,MAXSIG,MCAP,MUOD , MUK, MUL

NE

p

Q

S

TP

ur

VP

We

X1 XTH,XP

YOsY1l,Y2

10,421,222

P-BAR QUANTITY NOS., ISIG, AS ORDERED AT THE POINTS MU, NU, AND

THE ARRAYS AMU(ISIGyMU), ANU(ISIG,NU), AND TABLE(ISIGyI,J).

QUANTITY= Ty XyV ', Ut Wt ,V,U,W
ISIG= 14243 94 5 3697,8

- . ‘ .
A change of the dependent variables of system (1) from E,, E_, and
B to xE_, xET, and xB makes the calculations easier. In the following

routines

u = XET - XB,
v = xER,
w = xET + xB.



rw N

-4

143

=32~

..QVERIQQ.

I

SUBROUTINE APP1

TABLE(7,11,J1)= TABLE{(7,1,J1)+ADIV2 *TABLEC(4,14J1)
TABLE(64114J1)= TABLE(641,J)+ADIVLISTABLE(3, 14J)
IF(TABLE(2,1,J)-A)1+2,3

CALL HALT {68)

TABLE(8,11,J1)= =TABLE(T,11,J1)

GO TO 4

TABLE{B8,I1,J1)= TABLE(8,11,J)+A0IV2 #TABLE(S,1I1,J)
RETURN

END

SUBROUTINE APP2 '
TABLEI?.Il.J1)=TABLE(7rlle)+ADlV4-(TABLE(4v11J1!+TABLE(4nIanl))
TABLE(&-II.J1)=TABLE(6.I.J)+AD]V2|(TABLEI3.loJ)4TABLE|3-lle1))
IF(TABLE(2,1,J)~A)4,1,2 : .

CALL HALY (73) )

TABLFI{B,11,J1)= —=TABLE(7,1I1,J1)

RETURN :
TABLE(8,11,J1)=TABLE(8,11,J ) +ADIV4= (TABLE{S,11,J)+TABLE(S,11,J1})
RETURN

END

SUBROUTINE DRIV :

CALL SP(TABLE(I.lngl)-TABLE|2:ll.JlioTABLE(ZoIloJlJJ K

TABLE{4,y11,J1)= TABLE(G6sT1,J1)/TABLE(2,81,J1)-0.525»
{TABLE(T7,11,J1)4TABLE(8B,11,J1))

1
TABLE(B;!I,JI!S{TABLE(B.lngl)—fABLE(TyIloJl))lTABLE(Z'Il'Jl)-

1 SeTABLE(6,11+J1)~TABLE{2,11,J1)nP

TABLE(S,I1,J1)= -Z.O'TABLElboll.Jl)ITABLE(Z.II.J1!+7ABLE(4-lloJl)
RETURN '

END

SUBROUTINE FILL

MU0 =1

MUK = ]

AMU(2 ,MUK)= A
AMUL1sMUK) = AMU{24MUK])
MAL {MUK)= TIALFAO

CALL VALU

MUK = MUK+]
TF{ML-MUK)}4,3,2

CALL HALT (22)
AMU{2,MUK) = AMU(2,MUK~1)+DELX

GO 70 1

MUK = 1
MAL (MUK) = O
MUL = M1
CALL MOuT
END

SUBROUTINE HALF
IFLIALLIT,3J03))143,36,62
CALL HALT (43)
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36

53
18

=33

TAL(1,J3) = 1ABY2

TAL(I,34) 1ABY2

DO 52 ISIG=1,MAXSIG

TABLE(ISIGs19J3) = 37S«TABLELISIG,1,J)}+.754TABLELISIG,1,J1)
-.125#TABLE{ISIG,1+J2)

TABLE(ISIG,1,J4) =-.1252TABLE(ISIG,1,J)4.75#TABLEC{ISIG,1,J1)
+.375«TABLE{ISIG,1+42)

CONTINUE
IF{TABLE(2,1,J)~A)142,18,64
CALL HALT (42)

IF(TAL(13,J0))63,39,18

CALL HALT (45)

IAL(1I3,J) = TABY2

IAL(14,4J) = JABY2

DO 53 1SIG=1,MAXSIG

TABLE(ISIG,I34J) = o375eTABLE(ISIG,I4J)}+.75+TABLE(ISIGs11,J)
~o125%TABLE{ISIGy12,J) '

TABLE(ISIG,144J) =-,125#TABLE{ISIG,4J)+.75*TABLE(ISIG,I14J)
+.375#TABLE(ISIGy12,J)

CONTINUE

RETURN

END

SUBROUTINE HALT (IHALT)

THIS ROUTINE PRINTS A *HALT NUMBER® AND CALLS EXIT. *HALT NUMBERS'
IDENTIFY THE ROUTINE (VIA THE FOLLOWING VABLE) AND THE TRAP (VIA THE
CALL STATEMENT) WITHIN THE ROUTINE. TRAPS ARE LACED THROUGHOUT
CODE TO DETECT, ABORT, AND IOENTIFY ILLOGICAL BEHAVIOR. SELECTI

PRINT-DUTS, OR LIMITED CORE DUMPS,

S8EHAVIOR 1S ANTICIPATED.

TABLE OF HALT NUMBERS..

0 1 2 3 4 5 6 1 8

0 MUIN HAFM MUIN REDO STOR STOR OPEN MEND
10 VALU OPEN JUMP PRDOS PROS DISC MEND REDO
20 FILL PROS
30
40 HALF HALF TEST HALF FILL PROS PROS
50 MOUT MUIN TRAN NUIN NUIN NUIN NOUT
60 NOUT NOUT  NOUT FIXN FIXN HAFM APP1
70 NEND NEND NEND APPZ TEST TEST HAFM HAFM
80 HAFN HAFN TERP TERP
90 NEND

PRINT 1, IHALT

FORMAT (/33H =«sPROGRAMMED HALT#ss HALT NO.=13 )
CALL EXIT

END

SUBROUTINE MEND

MAL (MUL)= TAL{17,17)
DO 4 ISIG= 1,MAXSIG
AMUCISIG,MUL)= TABLELISIG,17,417)
DO 33 I=1,17

DO 3 J=1417
TAL(I,J)= O
CONTINUE

MUL = MUL+1
IF(MCAP-MUL) 5,646
MuL =1

Muo = Ml

M1 = MUL

THE
VE

EXECUTE NATURALLY HERE WHEN SUCH

9
MEND

PROS
NOUT

SP
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25
28
26
51

999

35
999
36

43

41
37

20
10
100
200

INPUT READ-IN AND PRINT-0UT, BEGIN.
BEGIN, STD+MOD INPUT

NOTE.. THIS INPUT ROUTINE UTILIZES SPACE, AMU(1,J), ASSTGNED FOR

3=

PRINT 7 ﬁ
FORMAT (3X4HT(1)3X4HT(2)3X4HT (3)3X4HT(4)2XSHMU{O) 2X5HMU(1}12X1HQ) '
FORMAT (617,E13.4)

PRINT 8,(ITAUB(IB)+1B=1,4),MU0,M1,Q

X1 = TABLE(Lg1T417)-TABLE(2,17,17)

IF(XIH=XI)1,1,2

PRINT 10 :

FORMAT (//65XSHFINIS//) .
CALL EXIT

MUK = MUO

D0 9 IB=1,4

ITAUB(IB)= ©

MAL (MUO)= 0

CALL TRAN

END

-

SUBROUT INE MOUT

NE = 1
NE = NE+MAL{MUK)
TAL(1,NE) = MAL (MUK)

DO 28 ISIG=1,MAXSIG
TABLE{ISIG,1,NE) = AMULISIG,MUK)
MUK = MUK+1
IF(MCAP-MUK)26+514+51

MUK = 1

IF(17-NE)}999,29,25

CALL PROS

CALL HALT (51)

END

bt mem e L

SUBROUTINE MUIN . ) ]
J = 1 !
IFLTALEL1T7,J))999,37,36

CALL HALT (52)

MAL{MUL) . = JAL{1T7,J)

00 43 ISIG=1,MAXSIG .
AMU{ISIG.MUL) = TABLE{ISIGy17,J)
MUL = MUL+1

IF{MCAP-MUL)41,37,37

MUL =1

J = J+}

IF(17-J)20,410435
CALL HALT (3)
IF{M1-MUK)}200,100,200
CALL MEND
CALL TRAN
END

sesOPENee. THE INITIATING ROUTINE
DIMENSION TAMU(8,1000)
EQUIVALENCE (SYMBOL,ISYMBL),{AMU, IAMU)
MAXSIG= 8
CALL DVCHK {(KOOOFX)
GO TO (1,1)4K000FX

LATER USE. IT REQUIRES A STANDARD DATA INPUT DECK, DEFIN-
ING DATA INPUT NAMES AND STANDARD VALUESs AND A MODIFYING
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DATA INPUT DECK. THE MODIFYING DECK CARD FORMAT 1S, FOR ALL

INPUTy (A6,1X4EL12.8)...MODE DISTINCTIONS ARE MADE IN THE

CODE. ADVANTAGES ARE FLEXIBILITY, EASE OF INPUT,
DIFFERENCE TO SEQUENCE.

1 READ 4, {AMU{]1,IN),IN=1,73)
4 FORMAT (/(6EL2.8))
READ 1100,{AMU(2,IN),IN=1,73)
1100 FORMAT (12A6)
READ 2
READ 2
1004 FORMAT (A6,1X4E12.8)
00 1005 MODIN=1,300
READ 1004,SYMBOL s VALUE
IFCISYMBL)1101,1007,1101
1101 DO 1103 IN=1,T73
IFCISYMBL-TAMU(2,IN))1103,1102,1103
1103 CONTINUE :
CALL HALT (7)
1102 AMU(1,IN}=VALUE
1005 CONTINUE
1009 CALL HALT (1l1)
1007 A = AMU(1l, 1)}
DELTAU= AMU(1l, 2)
EPSLON= AMU(l, 3)
AMU(l, 4)
AMU(l, 5)
AMU(1l, 6)
AMU(1, T}

MCAP

4]

PRINT

00 1001 IN=8,25
1001 TH{IN- T7) = AMUC(1,IN)

D0 1002 IN=26,55
1002 VIIN=-25) = AMUL1,IN)

DO 1003 IN=56,73
1003 XG{IN-S5S) = AMU({1,IN)

IF{TH{1)2XG(1)-1.E7)2000,1009,1009
2000 DO 1008 IN=1,7

IF{AMU(1,1IN)}1009,1009,1008
1008 CONTINUE

END, STD+MOD INPUT

2 FORMAT (72H

1
FORMATY (/7/77117777)
FORMAT (7/7/7/71)
FORMAT (6E20.8)
FORMAT (12110)
FORMAT(/B8X2HM16X4HMCAP)
PRINT 9
PRINT 8,M1l,MCAP
10 FORMAT (/19X1HAL4X6HDELTAUL4X6HEPSLONLIIXIHQLTX3IHXIH)

N’ RN

O @~ O

PRINT 10
PRINT T.A,DELTAULEPSLON,Q,XIH

13 FORMAT (/16H TH(I1), 1=1,18 }
PRINT 13
PRINT 7,(TH{I),1=1,18)

14 FORMAT (/13H vil), I=1,30 )
PRINT 14 . :
PRINT T'IV'I,'1=1'30' .

15 FORMAT (/14H XG(I),y I=1,18 )
PRINT 15
PRINT 7,IXG{I},1=1,18)
PRINT 6

INPUT READ-IN AND PRINT-0UT,. END.
®# = » INITIALIZATION, BEGIN = = =
DO 260 IB=1,4

AND IN-
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260 IT8{1IB)= -2
IALFAO= 8
DELX = 4.=DELTAU
c -  » & INITIALIZATIONy, END & = #
CALL FILL
END

SUBROUTINE PRNT

ER = VP/XP
TEMPL = 2.#XP
ET = (WP+UP)/TEMPL
B = (WP=-UP)/TEMPL

201 FORMAT(/)
91 FORMAT (9XBE15.7)
92 FORMAT (1H 22XLHT14X1HXL1IX4HE (R)11X4HE(T)14X1HB)
1F(MSAVE—-MU0) 203,204,203
203 MSAVE = MUO
GO 10 211
204 IFLILABEL)I211,211,212
211 PRINT 201
PRINT 92
ILABEL= 25
212 PRINT 91,TP,XP,ER,ET,B
ILABEL= ILABEL-1
RETURN
END

SUBROUTINE PROS

3 = EPSLON=Q
1 =1
J =1
TAB = 8
ALBET = 8.0
18 = 1
1 ISEND = 2

1003 11 = J+1AB
J1 = J+1AB
ITEMP = 2#]AB
12 = [+ITEMP
J2 = J+ITEMP
1ABY2 = 1AB/2
13 = 1+1ABY2
J3 = J+IABY2
ITEMP = 3#]ABY2
14 = [+1TEMP
Jé& = J+ITEMP
15 = [-1AB

J5 = J-1AB

GO 7O {1001,1002),1SEND
1002 ADIV]1 = ALBET«DELTAU

ADIV2 ADIV1/2.0

ADIV4 ADIV1/4.

ADIVé6 ADIV1/6.

ADIV12= ADIV1/12.

TABLE(2,11,J1)

TABLE(1,81,J1)

CALL APP1

CALL DRIY

CALL APP2

CALL OR1Y

IF(ITB{IB))6,748

6 J = Jl

TABLE(241,4+J)
TABLE{14+1,J)+ADIV1




131

10

1001

143
11

;37;

1TB(1B) = ITB(IB)+2
GO 10 1

1 = 11
IF‘TABLE‘Z'leJ'A)l3l.9!10
CALL HALT (47)

ITB(1IB) = ]

GO TO 1

J = JS

1T8{IB) =1

GO TO 1

17T8(18) ==2

O = 15.

J .= 08

ISEND 1

GO TO 1003

CALL TEST
IF{ISBY11,19,143

CALL HALT (49)

CONTINUE

C FAIL TEST,

132
13

12
19

IF(4-1IB)132,13,12
CALL HALT (48)

18 = [B8-1

CALL REDOD

CALL HALF

- GO TO 18

CONTINUE

C PASS TEST.

- ITAUB(IR) = ITAUB(IB)+1

‘20
23

134
28

24

25

135
26

27
18

40
41
42

43
44

45
46

136
47

IF(IB~1)134,40,23
IAB = 2#]AB

ALBET = 1a8

I8 = IB~1
IF{ITB(IB))24,25,28

CALL HALT (27)

1T8(18)  =-2

I = I-1a8

J = J-1A8

60 TO 20

J = J+l1AB

ITB(18) = ITB(IB)+2
GO TO 18

1 = I+1AB

IF(TABLE(2,1,J4)- AllepryZ?
CALL HALT (14) :
ITB(IB) =1

GO TO 18

J = J-1AB

1TB(18B) =]

1AB- 1AB/2

ALBET IAB

18 IB+1

GO TO
TEMPL ABS(TABLE!T:I?:IT')
IF(TEMP1-Q)42,42,41

Q = TEMP1

TEMP1 = ABS{TABLE(6,17,17))
IF{TEMP1-0) 44,4443

Q = YEMP]

TEMP] = ABS(TABLE!B.IT'lTl)
IF(TEMPL1-Q) 46,46,45

Q = TEMP1

CALL DVCHK (KOOOFX)

GO TO(136447)KO0OFX

CALL HALT (13}

CALL MUIN

END

= i "
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SUBROUTINE REDO
CALL HALT (4)
END

SUBROUTINE SP (XISP,XSP)
AS DEFINEOD.

EXPERIENCE DICTATES THE PRESENCE OF THE FOLLOWING DVCHK~—-
A CONSEQUENCE OF THE HIGH CALL FREQUENCY UPON THIS ROUTINE AS WELL
AS THE FREQUENT REDEFINITION WITH EACH NEW PROBLEM.

CALL DVCHK (KOOOFX) -

GO TO (11,12),K000FX
11 CALL HALT {99)
12 RETURN

END

SUBROUTINE TEST
REAL LAG
LAG{YOyYLl,Y2)= DORYO+DlaY1l4D2eY2
TEST, ENTER,
CAPU = ADIVlziABS(TABLEl4.l.J2)+TABLEl4'lZ'J?) =2.00 TABLEI4 11,J2)
1)
IF{CAPU-E}50,50,11
50 CAPV = ADIV6 #ABS(TABLE(3,1 ,J)+TABLE(3,12,J2)-2.0% TABLE(3,11,J1)
1) '
IFICAPV-E)34,34,11
34 1AL(11,J2)= 1AB
TAL(12,J2)= 1AB
IF(TABLE(241,J)-A)60,103,61
60 CALL HALT (44)
61 CAPW = ADIV12#ABS(TABLE(5,12,J)+TABLE(S, 12'J2) 2. 0' TABLE(5,12,J1)
1)
IF(CAPW-E)200042000,11
2000 IAL{TI2,J41)= IAB
TEST, EXIT.
INTERPOLATION (AT XG, AND TH), ENTER,
IR = 11
200 16 =1
IH = i
19 IF(XG(IG)*TABLE(Z,IR.JZI1103'3
1 TEMPL = XG{IG)~TABLE(2,IR,J)
IF(TEMP1)2,13,13
2 16 = JG+1
GO To 19
13 70 = TEMP1/ADIV2
xp = XG{IG)

16 = [G+1
18T ==}
GO 10 12

3 IF{TH(IH)- TABLE(I,‘R:JZ))Bv‘o#
4 TF{12-1R)66,4 103,5
66 CALL HALT(76) .
6 CALL HALT (75)
S5 IR = I2
GO TO 200
103 1S8 = 0
RETURN




=30

11 1sSB ==1
RETURN

8 TEMP1 = TH{IH)=TABLE(1,IR,J)
IFI(TEMP1)9,10,10

9 IH = [H+1
GO 70 3 e
10 20 = TEMP1/ADIVZ2
TP = TH{IH)
IH- = JH+1
IST = 1
12 21 = 10=-1.
¥4 = 10-2.
DO = lle22/2.
01 =-10872
D2 = I0=21/2.
IFLISTILO 6414 :
14-XP = LAG{TABLE(2,IRyJ)sTABLE(2,IR,J1),TABLE(2yIR,yJ2))
GO TO 16 . )
15 TP = LAG{TABLE(L14IR,J),TABLE(L,IR,J1),TABLE({1+1IR,J2))
16 UP = LAGITABLE{74IRs+J)sTABLE(T,IRyJ1),TABLE(T7,IR,J2))
ve = LAGITABLE(6,IR,J),TABLE(6,IR,J1),TABLE(64IR,J2))
WP 3 LAG(TABLE{B4IRsJ)TABLE(B,IR,J1),TABLE(8,1IR,J2))
CALL PRNT
C INTERPOLATION, END,
GO 70 19

END

SUBROUTINE TRAN

1 =1

105 IAL{I,1) = [TAL(I,417)
00 112 IS1G=1,MAXSIG

112 TABLE(ISIG,1,1) = TABLE(ISIGe1,1T)
J = 2

106 TAL(T4J) =0

IF{17-01)999,108,107
999 CALL HALT (54)

107 4 = J+l
G0 10 106
108 1 = [+1

IF(18~-1)999,109,110
110 IFLIAL(I,17))999,111,105

111 J =1
GO TO 106

109 CALL MOUT
END

SUBROUTINE VALU
XIFILL= O.
CALL SP {XIFILL,AMU(2,MUK))
AMU(3,MUK}=~AMU(24 MUK) =P
DO 1 ISIG=4,+MAXSIG
1 AMU(ISIG,MUK)= 0.0
RETURN
END

VERL STANDARD DATA INPUT-DECK, BEGIN,

+0 +00+0 +00+0 +00+40 +00+0 +00+1000 +04
+0 +00+1 +06+¢1 +06+1 +06+1 +06+1 +06
+1 +06+1 +06+1 +06+1 +06+1 +06+1 +06

+1 +06+1 +06+1 +06+1 +06+1 +06+1 +06
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&

+1 +06+0 +00+0 +00+0 +00+0 +00+0 +00 g

+0 +00+0 +00+0 +00+0 +00+0 +00+0 +00

+0 +00+40 +00+0 +00+0 +00+0 - +00+0 +00

+0 +00+0 +00+0 +00+40 _ +00+0 +00+0 +00

+0 +00+0 +00+0 +00+0 +00+0 +00+0 +00

+0 +00+1 +06+1 +06+1 +06+1 +06+1 +06

+1 +06+1 +06+1 +06+1 +06+1 +06+1 +06

¢l +06+1 +06+1 +06+1 +06+1 ) +06+1 +06

+1l +06 :

A DELTAUEPSLONXIH M1 MCAP Q TH1 TH2 TH3 TH4 THS

THé THT TH8 TH9 TH10 TH11 TH12 TH13 THI4& THLS TH16 TH17
TH18 V1 v2 v3 Va4 v5 vé v? Vs v9 V10 vlil
V12 V13 Via V15 V16 V17 V18 vio v20 va2l v22 v23
V24 va5 V26 va1 vas v29 V30 X6l X62 XG3 XG4 XG5
XGé6 X671 XG8 XG9 XG10 XGll1 XGl2 XGl3 XGl4 XG15 XGl6 XGl7
X618 -

VER1 STANDARD DATA INPUT DECK, END.

C eee EXAMPLE OF MODIFYING DATA INPUT DECK...
1RUN 112/VERL1/T-28-65/TEST CASE
A =45 +00
DELTAU=+15625 =01

EPSLON=+5 -02

XIH =4+24999 +01

Ml =+18 +02

Q =+1 +01

TH1 =+1 +01

TH2 =+15 +01

TH3 =42 +01

XG1 =+1 +01

000000= ENDMOD INPUT
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VER2 IS CONSTRUCTED FROM VERL AND THE FOLLOWING ROUTINES BY
SUBSTITUTION WHEN ROUTINES DF THE SAME NAME APPEAR 1IN BOTH GRODUPS,
BY ADDITION WHEN THE ROUTINE APPEARS ONLY IN THE LATTER.

SUBROUTINF HAFM
COMMON /VER2X/LAMLoLAM2 ,LAM3, LAM4 , MUR

1

8

9

3
151

4

5
152
10
11
6

7
100
110
111
120
130
131
132
133

134
140

150
153

20

21
160
170
180
181
190
191
192
200

210

MAL (MUO) =0

MUK = MUO

MUK = MUK+1
IF{MCAP-MUK)B,9,9

MUK =1

IF{M1-MUK)3,2,3

IF(8~MAL (MUK))151,5,4
CALL HALT (67)

MAL (MUK ) =2&MAL (MUK)

GO TO 1

MUK = MUK-1
IF{MUK)152,10,11

CALL HALT (77)

MUK = MCAP

IF(MUO-MUK) 6,7,6

MAL {MUK)= MAL(MUK)/2

60 TO 5

LAMEI = MUO

LAM2 = M1

MUL = Ml

MAL (MUL) = 2#MAL{MUYK)
00 111 IS1G=1,MAXSIG
AMUCTISIG,MUL)=AMUCTSIG, MUK)
TFILAM2-LAM1) 120,130,120
LAM1 = MUK

LAMZ = MUK

MUK = MUK+]
IF(MCAP-MUK)131,132,132
MUK =1

MUL = MUL+1
IF(MCAP-MUL) 133,134,134
MUL =1
IFIMI-MUK)150,140,150
Myo = Ml ’

M1 = MUL

RETURN
IF{8-~MAL(MUK))153,20,100
CALL HALT (78)

MUR = MUR-2

IF(MUR) 21,160,160

CALL HALT (2)
IF(LAM2~1AM1)180,170,180
LAM3 = MUL

GO TO 130

MAL (MUL)Y=8

00 181 ISIG=1,MAXSIG

AMULTSIG,MUL)Y= AMU(ISIG,LAMZ)

LAM4 = |LAM3

MUL = MUL+1]
IF(MCAP-MUL) 191,192,192
MUL =1

IF{LAM4-1 AM3)210,200,210
LAM4 = MUL

GO TO 190

MAL(LAM3)= §



42

MAL{LAM4)= 8
MAL{MUL) = 8
220 DO 221 ISIG=1,MAXSIG
221 AMUCISIG,LAM3)= .3758AMUIISICLAML)+.758AMULISIG,LAM2)
1 —.125%AMU(TSIG o MUK)
IF{MUK=LAM4) 240,230,240
230 MUK = LAM1
GO TO 110
240 LAM3 = LAM&
LAM4 = LAM1
LAM1 = MUK
MUK = LAM&
60 TO 220
END

SUBROUT INE MEND
COMMON /VER2X/LAMLyLAM2,LAM3, LAM4, MUR
MAL(MUL)= TAL{L17,17)
DO 4 IS1G= 1,MAXSIG
& AMU{ISIG,MUL)= TABLE{ISIG,17,17)
DO 3 I=1,17
DO 3 J=1,17
3 TAL(I,J)= 0O

MUL = MUL+1
IF(MCAP-MUL)S5,6,6
5 MUL =1
6 MUO = Ml
M1 = MUL
PRINT 7

T FORMAT '3X4HT|1)3X4HT(2,3X4HT(3)3X4HT(4JZX5HHU(O)ZX5HHU|l)IZXIHQ)
8 FORMAT (617,F13.4)
PRINT B,{ITAUR(IR) ¢IR=1,4)},MUN,M1,Q
X1 = TABLE(Y,1T7417)-TABLE(2,1T,17)
IF{XIH=-XI)Y1,41,42
1 PRINT 10
10 FORMAT (//65X5HFINIS//)
CALL EXIT
2 MUK = MUO
IF{ITAUB(4))11,20,13
20 MAL{MUO)= O

NE = 0
21 NE = NE+MAL{MUK)
MUK = MUK+1
IF{MCAP~-MUK)?24,425,25
24 MUK =1
25 IF(M1-MUK)21,422,21
22 MUK = MUO

IF(NE-328(NE/32))23,12,413

23 CALL HALTY (9)

11 CALL HALT{8)

12 MAL{MUX)= MAL{MUK)/2
MUK = MUK+1
IF{MCAP=-MUK)14,15,15

14 MUK = 1

15 IF(M1-MUK)12,16412

16 MUK = MUO

~ DELTAU= 2.=DFLTAU

13 DO 39 IR=1,4 ’

39 ITAUB(IB)= 0
CALL TRAN
END




C VER2 STANDARD DATA INPUT AND MODTFYING DATA INPUT DECKS IDENTICAL

c

35
999

43

41

37

998
38

20

100
200

403

10

3=

SUBROUTINE MUIN

COMMON /VERZ2X/LAM]1 4LAMZ ,LAM3, LAM4, MUR
J =1
IF(TALt17,4))999,37,36
CALL HALT {52)

MAL {MUL) = TAL{17,J)
D0 43 [SIG=1,MAXSIG
AMU{ISIG,MUL} = TABLE(ISIG417,J)
MUL = MUL+1
[F{MCAP-MUL)41,37,37
MUL =1

J4 = J+l
IF(17-J)998,38,35

CALL HALT {1)

MUR = MUL-MUK
IF(MUR)3,44,4

MUR = MCAP+ MUR

MUR = MCAP-20-MUR
IF(MUR)Y20,10,10

CALL HALT {3)
IF{M1-MUK) 200,100,200
CALL MEND

CALL TRAN

END

SUBROUTINE REDO
COMMON /VERZX/LAML oL AM2,LAR3, LAM4 4 MUR
DO 2 I=1,17

00 2 J=1,17
TAL(1,4)=0

00 403 IB=1,4
ITBLIB)= -2

PRINT 1

FORMAT {/763X4HREDO//)
DELTAU= DELTAUL/2.0
MUR = M1-MUO

IF{MUR) 344, 4

MUR = MCAP+MUR

MUR = MCAP-20-MUR
CALL HAFM

END

VER1.



