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ABSTRACT ]

Methods are developed for extrapolating electromagnetic fields from values
of the spherical harmonic expansion coefficients of the spherical components
on a sphere surrounding a source region. The region outside the sphere is
considered to be homogeneous, isotropic, source free, and nonconducting,
except that application of the method of images allows the introduction

of an infinitely conducting ground plane. Solutions of the scalar wave
equation are made applicable by expressing the spherical harmonic expansion
coefficients of the rectangular components in terms of the coefficients of
the spherical components. Two methods are developed for obtaining time
dependent solutions for fields at points outside the sphere without invoking
Fourier analysis. One method results from inserting the expansions of the
rectangular components into the Kirchhoff integral solution of the wave
equation. The other method involves eliminating the explicit frequency
dependence of the eigenfunction solution of the wave equation by introducing
a differential operator to replace the Hankel function. These methods are
useful when the source hes a very wide-band frequency spectrum, so that it
is best described in the time domein. This is the case with electromagnetic
.pulses from nuclear detonations.:
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EXTRAPOLATING ELECTROMAGNETIC FIELDS FROM
VALUES IN A SPHERICAL REGION

Kenneth D. Granzow
David D, Babb
1. INTRODUCTION
A. Motivation
A companion report by Lt. W. R. Grahaml of the Air
Force Weapons Laboratory describes a me;chod of calculation of elec-

tromagnetic fields within the source having the degree of complexity

~associated with a surface nuclear detonation. The transient conductivi-

ties and currents associated with such a source make the solution of
Maxwell's equations a matter for numerical evaluation using difference
equations and a high-speed digital computer., However, in the region
outside the source region, where detectors or targets might be located,
the fields obey the wave equation.. It isr possible, in principle, to con-
tinue the solution of Maxwell's equations to any distance of interest.” How-
ever, the limitations of present day computers make it desirable to
explore the possibility of analytical solutions for extrapolating the solu-

tions to points far beyond the source region. This report describes two

1 Graham, W. R., The Electromagnetic Fields Produced by a General
Current Distribution in a Conductive Environment under Certain
Symmetry Conditions, Air Force Weapons Laboratory, Air Force
Systems Command Report WL~-TR-64-153 (Dec., 1964), U,
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methods that have been found to be practical solutions to the extrapola-

tion problem. These methods were designed to utilize field values in : *
the form generated by Lt. Graham's computer solutions, but are thought

to be of more general interest, '

B. Problem Postulation

Tt is assumed that electromagnetic fields are known within
and.on the surface of a sphere whose center lies iﬁ an infinitely conducting
- ground plane. There may be current Ssources, charges, and conductivity
: in the space within the sphere and above the ground plane, but these must
be negligible outside the sphere. The problem is to find the fields as a
function of position and time in the upper half space outside the sphere.

Using the method of images the problem may be replaced by one having'

only a spherical boundary in which the fields in the lower half space are

- the images of those in the upper half space. The material outside the sphere
is assumed to be homogeneous and isotropic. Attention shall be restricted
to those problems where the field possesses azimuthal symmetry about a
vertical axis and is zero before the initiation of a disturbance inside the

sphere at a time designated by t = 0.

C. Review of Separation of Wave Equation

For such a problem the fields, E and H satisfy the vector

wave equation without conductivity or sources which has the form

— e 2A
VO E-vxvxE -+ ZE - o :
c atz ~

-2-
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A further simplification can be made if only the rectangular components

of the fields are considered. These scalars, E , E , E , H, H , and
X 'y oz %Xy

Hz’ (as well as the corresponding components of the electromagnetic

potential), satisfy the scalar wave equation

2
2 1 o
vy - -3 —22 = 0 s (1)
c ot
where ¥ is any of the components mentioned, and c¢ is the velocity of
propagation in the medium.
" It is still possible to describe the rectangular components in terms

of the spherical coordinates, r, 6, and ¢, if the correct form for the

- . Laplacian operator is used:
vy - L ) 20y + 1 ) .63111 + 1 82y
=73 %r | Br 3 . 56 |°"7T06 3 2 p)
r r- sin@ r sin" 0 9 ¢

The usual method of solving this equation is to reduce it to the Helmholz

equation by Fourier analjsis of the time dependence of the variable ¥, such

that 0
v = [ vEwetta
-0
and

(V2 + ) v (X, 0) = 0,

with k2 = wz / c2 . The separation of the Helmholz equation into three
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equations by use of the substitution

¥ (x,w) = £(r) © () 3 (¢) : o

yields the differential equations

2
,-d—§+ m2¢:=0
dé
1 d de m?
<7 35 (smB )+ n(n+1) - . © =20
sin 0
1 d 2 df 2 n(n+1l) o
—2ar & o)k T | t=0

r
where m and n are integers. The equation for f is identified with
Bessel's equation, and the © equation can be reduiced to Legendre's

equation. The @ equation has normalized solutions of the form

The general solution of interest for © is the normalized associated

Liegendre function of the first kind:

AL oM _ 2n+l (n-m)! _m
6 = Pr1 {cos @) = V 5 (o) P_n (cos 0) .

Since the present problem is confined to outgoing waves, the radial func-

*
tion of interest is the spherical Hankel function of the first kind:

The fact that an outgoing wave is associated with a Hankel function of
the first kind rather than of :c‘he second kind is associated with the choice
of convention for defining  (x, w) in terms of ¥ (x, t) using a negative
exponential, . :
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f(r) = h(l) (kr)
n

1/2

T Jn+%(kr)+1Nn+%(kr) s

where Jn+1 and Nn , are the half-odd-integer order Bessel and Neumann
z 2

functions that arise in problems of cylindrical symmetry. Thus the general

solution of Eq. (1) may be written in the form

o0 [+0] n
V(% 1) = — y Z z A (@B r) P™ (cos o) B g, (2)
| ‘\]-2—1-1-_ . nm n n _

©w n=0 m=-n
where the Anm are arbitrary complex functions of w.

D. Expansion of the Rectangular Components

The general eigenfunction method of solving the postulated
problem would then proceed from a knowledge of the function ¥ only on
the surface of the sphere for which the fields are specified. Assume that

the fields are given as spherical components expanded in a Legendre series:

0

Z E (r,t) P (cosf) (3)
nr n

n=1
v o]

z Ene (r, t) Pi {cos 8)

n=1

E (r, 6, t)
r

Ee(r, 6, t)
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o0
Hy 0,6, - N B, (@) Pl (cos0)
n=1
Note that Er is expanded in the normal Legendre functions,

whereas E6 and H¢ are expanded in the associated Legendre functions with
index m equal to 1. This assumption results from the formulation of the
near field problem. It turns out to be a quite fortunate choice for present
purposes. All the other spherical components are zero since azimuthal
symmetry is assumed. It is desired to find the fields at another position
(r', 6', da') outside the sphere. The aésurnption of azimuthal symmetry permits

.
¢ to be chosen to be 0 without loss of generality. Some of the geometric rela-

tions are illustrated by Fig. 1. The fact that it may be desirable to obtain

Fig. 1 - Problem Geometry
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as results Er" E_,, and H,,, rather than the rectangular components

0

causes very little difficulty, since one has the relations

E, = E, sing' + E_, cos 8! (4)
Eg, = EX, cosf' - E , sing’
Br = Hyi

and the only rectangular components one must solve for are EX,, Ele

and Hy.i,i- e., these are the functions ¢ in Eq. (2).
At point Q on the sphere the situation is more complicated.
First, one needs field values for all ¢ to describe the boundary condi-

tions. The rotation matrix yields

Ex = (Er sin 6 +E9 cos 6) cos ¢ (5)
E = E cos8 -E_sin@

Z T 0
H = H, cos

y $ ¢

Next, the method calls for the boundary conditions to be expressed in

terms of the spherical harmonics:

Y o (6, 9) = aim(¢)9nm (6)

and simply inserting Eqs. (3) into Egs. (4) does not yield answers in this

form. For the E components one obtains 6 functions of the form sin 6

?n (cds 0), cos @ F_n (cos 0), sin @ PII1 (cos 8), and cos 6 Plll (cos 8). These

@
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- can be put in the form of the associated Legendre functions using the fol-

lowing relations, given by Condon and Shortley2 on page 53,

) m : (m+n+1 )(m+n+2) “mtl
sin 6 Pn (cos @) = @nti)ent3) Pn+ (cos 6)

/(n m)(n-m- 1) m+1
\/ (2n- 1)(2n+1) n 1 (cos )

(n'm+1)(n—lm+2)‘ m-1
@n+1)(2n+3)  Tn+1 (€08 6) (6)

a /(n+m)(n+m 1)
B 2n-1)}2n+1) n (COS 6)

m (n+1- m)(n+1+m)
and cos 6 P (cos 0) = \[ 2n+1)(2n+3) P, (cos )

1

or - sin @ 'Pn {(cos @)

[(n+m)(n-m)"
on-1)2nt1) Ffn-1 (€08 6)

+

Combining Eqgs. (3), (5), and (6) one can obtain the desired forms
- VE)mZ Sk
- ) S [Yn’1(6,¢)+YnJ1(9,¢)]
n=2 ' ‘

Ez N z EznZ (6 ¢) ' )

2 Condon, E. U., and Shortley, G. H., The Theory of Atomic Spectra,
Cambridge University Press, London (1953).

_-8-
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%k
1(9, ¢)+Yn,1(9’ 9 ;

’

@ Ho= ) 2|y
_ v 5
n=1
where the coefficients are given by:
NS 7 - . (ntl) n (n-1)(n+1)
271 Ee * " V@mm-nee D Fo-1,r TV GeoDeerDd Fo-1, 6
(n+1) n - / (nt+2) n
+ (2n+1)(2n+3) En+1,r * (2n-1)(2n+3) En+1, 6

(8)

‘uf 7 E . = n’ E - -l __ 5

zn2 (2n-1}2n+1) " n-1,r (2n-1)(2n+1) n-1, 8
2

= [ (n+1) - +7 [ (n+2)(n+1) B

‘ (2n+1){(2n+3) “nt+l,r (2n+1)(2n+3) n+l, 6
N2 7 Hynz = qu)n
E. The Eigenfunction Method of Solution

Comparing Egs. (8) with Eq. (2) and using the relation

Y (6,8 = (-DY (8, 9 ,
n, m n, ~m A

3 3

it is found that for Ex and H
y

= A = Ofor | m | + 1
n,m, X n,m,y
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and for E
4

A = Oform#0
nmsz

The relations between the coeffibients are

o0
N (1) -igt
Ean (r,t) = 2 g An, 1, % hn (kr) e dw
-0
o0
_ (1) =it
Ezn2 (r, t) = S’ n, 0,z hn (kr} e dw
=00
o0
_ (1) -ipt
Hynz (r,t) = 2 S' An,l,yh (kr) duw
=00
Thus the coefficients are given by
. 00
1 it
A (W) = —5—F— S‘E (r,t) e dt
n,1l,x 4 h(1) (kr) T xn2
n 0
o]
1 ipt
A (w) = S E (r,t)e” dt
n,0,z (1) zn2 :
e hn {(kr) 0
o0
1 iwt
A (w) gH (r,t)e™ dt
n Ly a7 21 (k) S yn2 |

-10-
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- Thus, given the fields at a particular r, one can obtain all the coefficients

in Eq. (2) for each of the three variables. The rectangular components of

the fields at Q (r', 8', ¢') are then given by

0 o0
E = — S‘ (A -A ) pid) (kr') P (cos 6') cos ¢! e ¥ qu
x! 5= n,1,x "mn,-1,x "n n
21 % fh
n even
0 o0
) o —iwt
Ezi = Z (kr'") P (cos 6') e dw (10)
-C0 n=
n even
0 @ ©
H, = 1 S Z (A 1 v B, 1 )h(l)(kr) Pl(cos ') cos (b'e—lwtdw
: y 1\12 T n, ., y n,-1, y n n
-0 n=1
n odd

Application of Eqs. (4) completes the problem.

If the frequency spectrum of the signal at P (r', 6, ¢') is the
desired answer, then the integration of Egs. (10) need not be performed,
and the eigenfunction method is probably the best method of obtaining
answers. However, if the desired answers are time histories of the field
components,there are two aliernative methods that will be developed in the
next two sections thz_it-look more attractive. These methods solve the
problem in the time domain, while keeping part, but not all, of the
eigenfunction formalism. In that 'they use a spherical harmonic expansion
and the scalar wave equation, they require the expansion of the rectangular

components introduced above.

-11 -
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Basically, they are thought to be better for generating time histori'es
because they require only one numerical integration (over retarded time) in
addition fo the summation over the index n. Equations (9) and (10) really
represent a double numerical integration and a summation. Also, the fact
that each of these integrals is highly periodic indicat.es that there may be
serious numerical analysis difficulties connected wifh their evaluation.

One important consequence of the above eigenfunction theory is that
- it demonstrates, by the uniqueness of the coefficients An, m’ that the values
of the fields on the surface of the sphere are necessary and sufficien£ to

determine the \fields outside the sphere. That is, they constitute a proper

set of boundary conditions for the wave equation.

~-12-
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‘_ : II. ~ THE HANKEL OPERATOR METHOD

- A. General Theory

In this section the starting point will be Eq. (2) of the pre-
ceding section. The goal is to obtain a form of the general solution of the
scaler wave equation for ou‘;going waves which is equivalent to Eq. (2) but
does not contain an integral over w. Thatis, a solution which does not
explicitly contain the frequency spectrum of the waves is sought. This will
be accomplished by expressing the spherical Hankel function hl(.’ll) (kr) in a
particular form which allows one to remove its r-dependent part from under
the integral sign in Eq. (2). When this has been accomplished, one finds
that the retarded time, ¥ = t-r/c, has replaced t in the integrand of
: ‘ Eq. (2) and the integral becomes simply the Fourier transform of the arbi-

trary functions Anm'(m) (times -i/kn+1) from the frequency domain to the
retarded time domain, Since the functions Anm (w) are arbitrary,. the func-
tions of retarded time resulting from the Fourier transform are also arbitrary.
Hence, the desired form of the general solution in the time domain is found. '
The arbitrary functions of retarded time can be interpreted physically as
répresenting multipole sources at the origin.
The general method used here was brought to the attention of the
" authors by a report by John S. WicklundB. He used it to develop a technique

- to extrapolate the spherical field components using a dipole approximation.

8 Wicklund, John S., Extrapolation of the Electromagnetic Field, TR-~-1058,
~ Diamond Ordnance Fuze Laboratories, 2 July 1962,

-13-



WL, TR-64-179

The spherical Hankel function of the first kind cah be written

_antl ip
ht (o) = L [PM%(pm Qn_l_%(p)] | | (11)

n/2, n even
(n-1)/2, n odd

P_s(p) = 1+ Z (-1)} n(n’-1)n’-4). .- [nz*(2j~1)2] (n+23)
ntg : 2 ooni 2]
27°(23) p

J=1

(n-2)/2, n even
(n-1)/2, n odd
Q _,1{p) = notl) Z (-1)3 n(nz-l)(nz—_‘l)'“ [nz—(Zj.)zl (n+2j+1)
n+z 2p 2.‘2,]+1 (25+1)! sz+1

j=1

By_ combining the expansions for Pn+ 1 and i Qn+ 1

(1) )

, and bringing the factor

(-1)%into the br.éckets, hn can be written
h(l)( ) = (-i) eip (_i)n+(_.)n—1 n{n+1) (_i)n-z n(nz—l)(n+2) 4
n P P * 2. 11 p 22 21 2 (12)
21 p
P G uls V Al PORRY e B M 5
23 51 ol
, n’-1m?-4)- - [n®- @-1)%1 (2n)
2™ n! pn

Substituting (kr) for p in Eq. (12) and introducing t as a dummy variable,

(1) ..

one can write hn (kr) as
n n-1 2 - n-2
hl(’ll)-(kr) - exp (iwt) 1 d*n + n(n:{i > d*n_1 + ;(n ~~'11)1(f'12-!—2:)3 d*n-z Fooen
‘ crdt 2-1lc "r7dt 27-2t¢c “rdt )

-14-
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AP 1w%4) - (0710 (s _d™ |
- REEE (13)
o) ji P I a
N n(nz—l)(n2—4,) ceeof n2 - (n-l)z] (2n) exp [ -ilw £+ 7 /2)]
n n+1 n+1

2 n!r .k
% ' '
where t =t-r/c.

For brevity, the symbol Eln(r) will henceforth be used to represent

the 0perator in the braces of Eq. (13). Using this shorthand notation, h ( )(kr)
can be written simply as
1 )2 + ' '
b (ke = exp (o) = (o170 FHT 2 (14)
Equation (2) can now be written
- oo @ . —-1(|,.)t*+7r/2)
VG, 0= f > Z A to)= (r)[ — ]
k
n=0 m%-n
X P (cos 8) I g W . (15)

Since the operatorE.‘n(r) does not involve w it can be removed from under

the ihtegral sign (assuming, of course, that A (w) is sufficiently well-

m¢

behavéd). The functions Pn (cos 8) and e’ can likewise be taken from

under the integral sign. Thus one is allowed to write Eq. (15) in the form

o n 1(wt a1 /2)
- - 1 N —
l!l(x,t) T Z Z\_\ {r) S‘ =] d w
n=0 m=-n
x Ejln(cos 6) eimd) . (16)

-15-
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Equation (16) can be rewritten with (cosm¢ +i sinm ¢ ) substituted for

eim¢ as follows
0
- 1 — k o— .
Yix,t) = z —_(r) A' ()P (cos9) (17)
n no n
N27 n=0
n
1 * * . —_m
+ Z [Anm(t Ycos m¢ +B1'qm(t )sinmg ] P s
m=1
o e-i(..,t*+1r/2)
wy - n0 :
where A;IO (t*) = S e dw
k
=00
%
+00 -i{wt +7/2)
Al (t*) = L, W2y (0] d
nm T 1 ‘ W
=00
&
+o0 it +7/2)
B! (t*)= 5 S d
nm - At “dw .
- .

Since the functions Anm(w) are arbitrary complex functions of w, they can

be chosen such as to make A;lm(t*) and B;]m(t*) any functions of t* desired.

Thus Eq. (17) is the general solution of the scaler wave equation for outgoing

waves containing the arbitrary functions A' _and B! . The operator=_(r)
nm nm - n

will be referred to as the Hankel operator.

B. The Boundary Value Problem - Method of Solution

Now that the general solution has been obtained in the time

domain, the problem of def‘ermining the arbitrary functions A'nrn and B;un

~16-
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for given field values on the surface of a sphere will be attacked. Suppose
that on the surface of a sphere of radius TS the field ¢ has the spheriecal

harmonic expansion

Q0
1 —_—
v(e, ¢, t) = a' . (t*) P_{(cos 8)
m ZO no n
n
+ Z { a'nrn (t*) cos m¢ +B'nm (t*) sinm¢ | 1_3:1(005 8)), (18)
m=1

C where t* =t-r0/c .

Then by equating coefficients in Eq. (17) and Eq. (18) one has

—— 1 %k 1 %
= )AL = ol (%)

B (t*¥),n=0,1, ....,00;, m=0, ...., N (19)

and = (r )B' (t*)
n o Tnm ' nm

n

The problem becbﬁes that of solving the 6rdinary differential equations of
Eq. (19). |

In solving Eqs. (19) it is convenient to define a dimensionless retarded
‘time by the formula 7 = t¥efr. It must‘be> remembered that 7~ oﬁly has
g meaning at radius r. At aﬁother radius, 7' = t*¥ c¢/r' = 7 r/r'. Interms

. of the dimensionless retarded time, the Hankel operator can be written

—-17.-
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= (r) = 1 cln Jrn(n+1) dn_1 + n(nz—l)(n+2) dn_2 +
Ll - . . 1 B — ¢ o0
n rn+1 d‘Tn 2.-1! dTn 1 22. 91 dTn 2 .
2 2 2 2, .2 o .n-j
2l j a7
, a1 -4)e®-9) - [n®-(a-1)"] (2n)
2n n!
The equations to be solved can now be written
".:.‘n(ro)Anm ('ro) =a (1)
and ~n (ro)Bnm (To) g Bnm (To) 3 “{21)
where r o=tfe/r A (v )=A'  @H=A'"_(r.r [c)
o o nm: o nm nm: o o

. = 1 = T
Bnm('ro) Bnm.(Toro/ c), anm('ro) anm(to rO/ c), .and

Bnm('ro) =B _ ({r r [c)

nm o O

To solve Egs. {21), Green's functions will be found that satisfy the '
equations

= )= - = ' ' .
-——-n(I‘O)Gn('TO, TQ)—ES(TO 'Té)), n=0, ...., © , - (22)

with the initial conditions, G_{0,7') = G(l-) 0, 7.)=...= G(n_l'),(AO,'r': ).=0, -
. : n o n 0 n : 0

-18-
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where G(J) 0, ') = e (v ,71") /dfrJ l _ .. 'The source functions
n 0 n o o o] To = 0
A and B will then be given by
nim nm

T
o]

Anm('ro) = S Gn('ro, 'r:)) anm('r:)) d'r(') (23)
0

and

T
(o]

Bnm(To) - 5 Gn(’ro’ 'ré)) Bnm(TB) dT;)
' 0

To solve Egs. (22) the homogeneous equations must first be solved. Since
the equations are linear with constant coefficients, this is merely a matter

of finding the roots of the auxiliary equation which, for Eq. (22}, is

' 2
Zn_'_nz(n-li.ll) Zn-l +n(n -1)(n+2) Zn-2

+ .. (24)
2. 21

.\ n(n2-1)(n2-4)(n2-9)_....[nz-(j-l)zl () n-j,

23 51
+n(n2—1)(n2—4)(n2-9) ....In%-(m-1)%] (2n) =F (z)=0 .
on. n! g
(1) (1)

The roots of Fn(z) are the roots of H ', (iz), where H_ ', (iz) is the

n+s; n+3

half-odd-integer order Hankel function of the first kind. This can be

seen by identifying the Pri+l(p) and the Qn+l(p) following Eq. (11) with
2 2

the similar functions in Jahnke and Emde4 using the relations on page 358

4 Jahnke, E., and Emde, F., Tables of Functions (Dover Publications,
1945), pp. 136, 137,

-19-
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of Stratton5. In Jahnke and Emde's notation, Fn(z) = ann+i(2z) = z"'N irz
2

+
w3 /2 HS!-)I (iz). Note that Hil::_)l (iz) has a singular pointatz = 0
1 1 ,

2

exp (z) (i)

which annihilates the zero and branch point in its coefficient; thus Fn(z)'is

H( i_)% (iz)

analytic and nonzero at z = 0. The general behavior of the roots of
can be deduced from the graph on page 243 of Jahnke and Emde (Ref. 4). It
is found that for n odd, Fn(Z) has one real negative root and (n-1) complex
roots which appear in complex conjugate paifs and have negative real parts.
For n even, all of the n roots of Fn (z) are complex (appearing, of course, in‘
complex conjugate pairs) and have negafive real parts. It is significant to
note that all the roots are distinct. Thus, the solution 6f the homogeneous
equation can now be written explicitly. Let Dn ('ro) satisfy the equation

= =
=\, (ro) Dn('ro) 0, then
n/2, n even
(n-1)/2, n odd’
= 1 ai + q! '
Dn(-ro) Z exp (pnjvro) c sin qm. LN d.'i cos qnj LN (25)
=1 '

+f1' exp (pn n+1 -ro) ;
2
where f' = 0 if n is even; cJ'.,_ d:'i, and f' are arbitrary constants; the
. Lq - ¢
complex roots of Fn(z) are given by Ppj + 1an ; the real root of Fn(Z)
(if n is odd) is Pontl To find the Green's functions, the arbitrary

2

/

° Stratton, J. A., Electromagnetic Theory, McGraw Hill, New York (1941).

-920-
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constants in Eq. (25) must be evaluated such that the resulting expression

‘satisfies Egs. (22) with their initial conditions. To facilitate this operation

it is convenierif to define the constants slightly differently. Let the Green's

function be given by

n/2,n even
(n-1)/2,n odd

Ty = n+l | - ! i |
Gn('ro ’ To) ro Z exp [pnj (To 70) cnj sin qnj (70 To)
j=1

(26)
- 1 3 -
+ dnj cos qnj (70 70)] + fn exp [pn n+l (,TO - .Troi ,
2
where, again, 'fn=0 if n is even. The derivatives of this expression for

G {r_, 7') can be written
n'o’ ‘o

n/2,n even
(n-1)/2, n odd

_rn+1 rk e (7 -71)
k “%o E nj P |Pni‘Te 7o
T .

o) j=1

] jp— |
[(dnj cos kenj+cnj sin k an) cos qnj (rro To)'
(27)

+(c_.cosk@ .-d . sinkf .)sing . (7 —-;-')]
nj nj nj nj nj ‘o o

n+1  *P [pn&l (To“ré))] !
2

h ‘ . i J=p . +i . initi iti .
where rnJ exp (i BnJ) an i qnj The initial condlthns below Eq. (22)
state that, if two sets of constants an . dnj , and fn are defined, the first

-21-
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applying for 0< 7 _< 7' and another for 0< 7' <1 , then the first set is
PP = 0 o o o

given by

n/2,n even
{n-1)/2,n odd

k 1 > - I
Z rnj exp ( pnj'To) [(dnj cosk enj + cnj sink enj) cos{ qn:i -ro) )
i=1

- 1 i - I
+ (cn:i cosk an dnj sink an) sin( qnj -ro)] (28)
£ p~ 7!
+{ P n+1 exp (—pn n+l 70) =0, k=0, 1,...., n-1
2

for all TE) (>0). Thus, for 1—0< TE, >, all the constants are zero and the
Green's function is zero. Integration of both sides of Eq. {22) from
'r(') -¢ to 'ré)+ € and taking the limit as € —> 0 reveals that dn-1 Gn(q-o , 'rl))/

+
d'rz must have a positive discontinuous jump of magnitude rro1 1 at the

point v =7', Thus
o ‘o

1T

1| n+l
To*Tote ©

. -1 -
lim d- Gn('ro . 'r:))/ d'ri)1
ce—=>0

Since the lower order derivatives must be continuous at To® -ré) to satisfy
Eq. (22), the equations determining the constants in the Green's function for
T _>7! are

o” ‘o

n/2,n even
(n-1)/2,n odd
k . - k.
Z rnj (dnj cosk Onj + cnj sink enj)+fnpn n+1 = 61{, n-1"'
j=1
= (29)

ksog 1,‘....,1’1‘1 ] : -

where § ij is the Kronecker delta.
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Now that the Green's functions are determined, the next step will

-t

be to find explicit expressions for = (r) Anm (70) apd = (r) B ('ro).

Terms of the form Kk
1 d A (7))
nimm Q

r?l+1 - d 'Tk

, k=1,2,....,n

must be evaluated. By succeeding differentiations of Egs. (23) one obtains

k To
d Anm(To) (k) '
—x = S. G Yt ,1" ) {(+')d+' , k=1, ....,n-1 (30)
n o’'o  nm o 0
dr
0 -0
n 7o
d°A__ (1) : L
nm: o (n) . . , ntl
d'rn } S\ Gn (To'To)anm(To)dTo+ro Cgm:n('ro) ’
o 0

(i) j j .
where Grf (70, 7;) =d G (70, 'rg)/d 71) . Noting that = =17 r/ r_ and hence that

dk r k dk : .
& "r_ K , one can write
dr o) dr ’
! dkAmﬁ 1 i (k) '
1 1 1
n+1 k ® Th-k+l k S CTn (Tr/ro’ TO)Qnm(To)dTO (31)
dr r r
o) 0
n+1
+6kn0 nm('T) ,k=1a2: » I -
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To obtain the final expression for the terms of En(r)Anm, the expression

for Gl(lk) 'giveh by Eq. (27) is substituted in Eq. (31) which yields

t* —
r_c ' n/2,n even
k ‘ n-k+1 o (n-1)/2,n odd
d A r ,
1 nm . _ (_9_ S Z oK
n+1 k T nj
r dr 0 j=1

% e -ing._ '
Xp pnjl_ o T

(d .coskf .+c .sinké ) cosq_n.
o nj nj nj nj J
tfe | . : t* ¢
X - + (c_.cosk6 .-d .sink .)sing . -7 (32)
r, 0 nj nj nj . nj nj r, o
. k t*:c - 1 1 1
+ fnpn p;—_l exp [pnn;-_l T 70] a'nm('ro) d'ro

e
*

: %
t7 e
+ (Sknanm( ro]

The identical steps [ Egs. (30), (31), and (32)] can be performed
with B in place of A and £ in place of « . Note that the integral
nm nm nm nm
in Eq. (32) is independent of r , that is, independent of the radius of
observation of the field. Hence, for a given source, the integration need

orily be performed once to give field values everywhere outside the sphere.

c. The Boundary Value Problem - Solution Applied to Present Problem

The coefficients E , E , and H
xn n

N2 of Egs. (7) are the

2 zn2

functions represented by @ . in Eq. (32). The integrals, appearing in

Eq. (32), needed to extrapolate the field are
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t ¢
r
o
= sin t—'-g - 1"
xsnj qnj r, o
0
%
t ¢
r
© %
S‘ (t c ,)
= cosq - -
xcnj j r o
0
sk
t ¢
r
o *
S’- ) (t c .
= sSing —_— -
ZSnj j ro 0
0
%
t ¢
r
o *
§ e
= cosq —_— -
zcnj
0 To
%
t ¢
r
° ¢
y sin I_.E - 1
ysnj q J ro 70)
0 .
%
t ¢
r
P
S‘ {t c ,)
cosq —— -7
yan ro, o
0

k¢
exp |p._. te (r1)d7)
nj\r, o xn2
f e
—_— !
exp lan (ro 70)] | Exn2 (7 )d'r
t*
L
o¥ [pnj To] B ng (T )dT
t*
L Co
exp [an T TO]] E ('r )d’r

. A
e ' '
exp [pn:l ( ] 'r')] Hynz ('TO)d‘TO

o [prg 5

where j=1, 2, ....,n/2if n is even; if n isodd j=1, 2, ...., (n+1)/2

and qn n+1
2

Fn(z)=0 (Eq. (24) ).

is taken to be zero (pn

n+1
2
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is, of course, the real root of

]

(33)

(34)

(35)

(36)

(37)

(38)



Let Mo be the coefficients of the derivatives in Eq. (20) so that

the Hankel opérator can be written

n n-m
=_(r) = T S .
n n+l nm n-m (39)
r dey
- m=0

The general expressions for the coefficients of the expansion of the fields at

a new radius r, expanded in the form of Eq. (7), Section I, are

n/2,n even
: I‘o {n-m)
Ean (r) = z Moo T < z rnj [(dnj cos (n~-m) an . -
ms=0 j=1

n m+1 | (n-1)/2, n odd
\ ’,.

+ in (n- - B in {n~ .
¢, Sin (n-m) an) Excnj+-(cnj cos (n-m) an dnj sin (n-m) enj)Exsnj] (40)
(n-m) o
P ni1 Byenntl + T E )
2 "2

E quations for the Ez and Hy components are identical to Eq., (40) except
for the substitution of the gquantities pertaining to those components. The

fields at radius r can then be written

o0
1 =1 -
B () = — - DZZ | E__, (r) P! (cos 6) cos ¢ (41) ,

(even values)

-26 -
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® , =

_ B_(r) = - HZO E_,(r) P, (coso) (42)
(even values)
oo
1 —t
H (r) = H (r) P (cos6) cosd . (43)
v, NZ7 nZl ynd = om

(odd values)

Only even order terms of the E components and odd order terms of Hy are

non-zero due to the image symmetry of the problem,

-27-
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II1, THE KIRCHHOFF INTEGRAL METHOD

A, General Considerations

The method starts with the Kirchhoff integral representation
in terms of the values and the derivatives of a function ¢ that satisfies the
scalar wave equation given on a boundary surface S. The integral is expressed
in terms of the distance, R, shown in Fig, 1, between the point where field
values are desired (a point inside the volume V) and an arbitf'ary point on the
surface S, the surface enclosing V, It also involves the derivatives with
respect to the outward normal denoted by 'aa_n , relative té the volume V,
If there are no sources within V the function ¢ at point P(r', ', ¢') of Fig, 1 B

can be expressed in terms of the values of ¢ on the surface at a retarded

time, T = t- —f:' . The expression as given by Strattons, p. 427, is .
1 . 1 9 .0 1
1 1 1 - — —— - —— —
v (!, 6 ¢, 1) 47 S‘ |:R on v (. 9,9, T)] [3 n (R)] (44)

S

o

2
| ®

y(r, 6,4, T) +

= [wr, 0, , T)] da -

®
©
H

I
For the present problem, the volume V is the space outside the sphere
surrounding the source, the surface S is the spherical surface, and the
outward normal derivative -5% is -% .

The logical way to set up the surface integral is to integrate first over.
the variable that is orthogonal to the time retardation, represented by the dis-
tancé R as shown in Fig, 2, This implies setting up a new spherical coordinate
system with the z axis along r' for defining the positions on the sphere, This 'v‘vill
bevtﬁe (r, v, B) system referred tb the x", y", z" set of axes as shown in Fig, 3. -

S Did, o , .

-928-




Integration path on the
surface of the sphere

Fig. 2 - The Integration Path of Constant Retarded Time

‘iz
\Z

’

Fig. 3 - The Rotated Coordinate System
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The element of area is

d:sm=r2 sinydfB dv

but R2=r'2+r2—2rr' cosy
S0 ZRi—R = 2r r' sinvy
R dR
or dy= T35 =
rr' siny
da= rr—f,{deﬁ -

This allows one to write Eq. (44) in the form

r'+r
r
v, 0,0, 1) = i S I(r, R, )dR
r'-r
27
where ' r, R, T)= R 5 IB (r, R, B3, T)dB (45)
0

and IB is the integrand of Eq. (44). If IB can be put in the form of a
spherical harmonic expansion of the angles v and B8, then each term will
" have a B8 dependence of the form elmB and the B integration can be performed

analytically, and all the terms for m # 0 will disappear. This is the

approach that will be followed. -
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It should be noted that, provided the radial derivative and the values
of the field are specified as a function of time on the sphere as input data,
what has been presented thus far constitutes a method of solution, regardless
of the form of the input data. What ft;llows will merely be a method of
simplifying the numerical work when the input data is supplied in the form
of a Legendre expansion.

The first step is to separate the three terms of the integrand by the

set of definitions

I)3 = IB1 + IB2 + I63 ,
where
I, =-4 2—y(r,RB T)
B1 R or |6 p
-2 1
___1 38R _3
Ig3="cRa r a1 VEBRAET
and to confine attention to one term, say IB2 . The factor
3 1 _rlcosy-r
or R R3

is independent of B. Thus it is sufficient for purposes of the B integration

to expand ¥ in spherical harmonicg. Since ¢ is Ex’ Ez’ or Hy" Egs. (7)

and (8) give the spherical harmonic expansion of the ¥ functions in the angles
@ and ¢, The problem ié to find the expansion in a coordinate system rotated

through an angle ',
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B. Rotation of the Expansion

The terms of the (9, ¢) expansion of ¢ have either the form
5n (cos @) or Yn 1 (6,9). The standard form of the addition theorem for
spherical harmonics suffices to convert P[1 (cos §) to a series of spherical

harmonics of the anglés v and B. (cf. Jackson7, p. 68)

n
Pn(cos 9) = 2‘:1:1 z Y:lm(e', T-9") Ynm(’}’:ﬁ) . (47)
m=-n

An extension of the addition theorem is necessary to convert Yn 1 (6, 9).
2
This expansion will now be derived.

The components of the angular momentum operator L can con-

veniently be written in the form (cf. Jackson, p. 542)

=
]

L +iL
+ X v

-
]l

L -ils
- X y
LI| = L|| + j_ L”

+ X v

LII = L” _ i L”
- X y

for the two coordinate systems under consideration. The L+ operator

applied to the left side of Eq. (47) will yield

'L+ Fn (cos 9) = Nn{ntl) 27 Yﬁ, 1 (6,¢) . | (48)

7
Jackson, J. D., Classical FEléctrodynamics, Wiley, New York (1962),
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Before applying it to the right side of the equation it is desirable to express

it in terms of the operators L_';

» L", and L; . The components tranform

as the components of an ordinary vector; thus,one obtains

I, =cos@ L'+ sing L"
pYs x z

2

y

,l_ 1 no_
L, =5 [(1+cosB)L+

=< cos #' (L_'l: + L'_') + sin & L;

(49)

n__,_l o "
L =L =3; (L) - L)

(1-cos6') L"] + siné’ L'Z'

The operators L_'I_' , L', and L'ZT have the following effect on the terms of

the right side of Eq. (47):

LYY (.= N(n-m}{n+m+1) Yn, 1 (VB

n, m+1

+
(50)
LY, (,8) = Niotm)a-mtD) Y, (v) |
L)Y (vB)=m Y m (A .
Combining Eqgs. (49) and (50)
L, Y__(v8) =3} [(1 +cos 6) Nlo-mNmrm+l) ¥

(v,8)

-{1-cos 6')'\Rn+m)(n—m+1)Yn m-1 (7,[3)] (51)

+ sin @' '
sin @ mYnm('Y,B) .
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Using the factor for normalizing the Legendre polynomial of Eq. (47),

one obtains

Y, ol ¢)--\/2n+1 Z Yo (6L -0, (v, B, (52)

m=-n

Applying Eq. (48) to Eq. (52), the desired expansion is

Y (6 4) - —V(2n+1)n(n+l) z Y PRCESD [L+_Yn,m“f’3)] . (53)

m=-n

Equations (51), (52), and (53) define the necessary transformations.

By using the definitions

* . |
- Y ooa(0h e [LY Gy, B)]
v - n, m L + n,m J
n,m, 1 _\/(2n+1)n(n+1) 2
’ & (54)
Y(0!, 7- ¢ [L+Ynm(y, Bﬂ
+
VA U B
n,m,0 2n+1 Yn,m(e » 7= 8') Yn,m(\{’ A) ?
| equations (7) can be written in the foi'rh
: 0 n . 7 .
-Ex - z z Exnzyn,m,_l
- n=0 m= ~-n

{even values)
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00 n
= 55
Ez Z Z Eznz Yn, m, 0 (55)
n=0 ms-n

(even values)

© n
H.Y = z Z I—Iyn2 Yn, m, 1
nxl m=-n

{odd values)

Evaluation of the § Integral

Since the coefficients are independent of 8, the problem of

evaluating the f integral, I{r, R, T') of Eq. (44), reduces to the evaluation

of the integrals defined as follows:

27
IyO"= 5 Yn,m,OdB
0

(56)

Taking them in order, one obtains

27

o = Vs Yo, 0@ 74" S ™ ap |—= P (cosm)
) '\1-2—7}-

0
‘\‘47]' ‘\Izﬂ' % ' n o .
Npresi 'Yn,O(e ,w‘-(b)Pn(cos'y) ifm=20

Oifm¢g 0
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47 = "o -
:\/2n+1 Pn (cos ') Pn(cos'y)ﬁm,o , Y (57)

where § m. 0 is the Kronecker delta function.

The integral Iyl is defined in terms of a simpler integral, Iy2 N

. _ v _ ' £
Y (6', = ¢')Iy2+Yn m(G, T-¢ )Iyz

I - 47 n, m y
y1l (2n+1)n (n+1) 2 !
where 9 N
1, = S [L_l_Yn,m('y,B)] ag . (58)
0 . .

Inserting Eq. (51) into Eq. (58) one obtains

1 i
_Iy2 =3 {(1 +cos 0') N{(n-m}{n+m+1) Iy, bl

- (1 -cos 0') N{n+tm)}n-m+1) Iy, m—l] {(59)

+sinf@' m1l

3

where

27

Iy,m+1 - S Yn,m+1dB =_ am Pn(cos'y)am
0

, -1

27

Iy,m-l = 5 Yn,m.-ldﬁgz N2T Pn (cosy)ém
0 _

1 (60)

27

Iy,‘m_ = f Yn,mdB = 27 Pn(cos'y)ﬁm;O‘ . , .
0 .
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Equations (56) through (60) define a method for evaluating the j

integral of the expansion defined by Eqs. (54) and (55). This enables
27
evaluation of f I
5§ B

must now show that the terms resulting from IB1 and I‘33 can be handled

o d B that occurs if Eq. (46) is inserted in Eq. (45). One

in a similar fashion. To evaluate IBI, one must have the radial derivatives
of the Legendre expansion coefficients of the fields on the sphere. One can

then write the Legendre expansion of the radial derivatives of the field in

the following fashion

3E9 = aEi 51 {cos 8)
ar or n

n=1
9E. & O0E__ _
5 = Z By P (cos 6) (61)
. n=1
5H X oH
9 —¢n 31

= P " (cos 0) .

or o r n A

n=1

The analysis for the siaherical harmonic expansion of the rectangular compo-
nents of the radial derivatives in terms of 4 and g will then proceéd in the
same way as for the components themselves, as described in Section I and
in E'qs. (54) and (55), above. The same is true for the T derivatives that

The r and T derivativesof E. , E , and

occur in considering I,,.
: B3". 8,n r,n

H é.n can be obtained from finite difference approximations to the input data.
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Thus, one knows how to find the coefficients in the following six

equations, analogous to Eqs. (55): ‘ :
PE_ o0 n
or = Z Z Ean Yn,'m,l
n=Q m=-n

(even values)

00 n
o EZ ) Z o v
dr ‘ zn3 “n,m, 0
n=0 m=-n
(even values)
5 H 0 n
—X = - _
dr z Z Hyn3 Yn, m, 1 (62)
n=] m=-n
{odd values)
8 E 00 n
X
3T Z Z Eina Yn, m, 1
n=0 m=-n
{even values)
5 E © n ' ' :
Z : N - -
T z Z - ‘Yn, m, 0
: n=0 m=-n .
{even values) : _ R
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o H © 0
—_‘X: . Z »
8T yn4: n m, 1

n=l m=-n

{odd values)

The additional factor in I is

B3

8R=r—r’ cosS vy
dr R

which again is independent of 8. Thus the 8 integration will follow the
same pattern. One now has all the formalism necessary to solve the problem.
The results will now be pulled together into the simplest possible expression

for the field components.

D. Summary

Assume that E___, E__., and Hynj for j=2 to 4 have

xnj’ = znj
' been determ_lned For the sake of definiteness, let ¢ = E T Applying
Egs. (57) through (60) to the evaluation of the 8 integral of IBl yields
27 00 5
S IBl dp = ;1:1?' Z EanV;n+1§ Z(n+1) Fn )
0 n=0

- {even values)

j}[('1+cos 6') Yn(n+l) {Y:,—l(ei’ 1r—d:')+YnJ_1(9’,7r-¢')}

-(1- cos@')\/n(n+1){ 0 1(9' T ¢')+Y 1(9',7T-¢')}] P

where the f’_n (v) is written as shorthand for Fn (cos ),
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but

This yields

Y: NOEETIS N T-¢') = —2— Flll(ewcos(w-qb-)

1 N27n

3

* - 1 — .
=-Y _I(G,ﬂ-fb')-Yn,_l(e,vr ') .

L]

Thus the integral can be written
27 0
.1 - 41 =1, 5 e
.S‘ IBl df= . R Z 2n+1 Ean in )Pn('y)cos (m-¢')
n=0

(even values)

0

But cos(r-¢') = -1 due to the choice of coordinate systems. The result is "

oo
1 47
I ‘\/
B1 dp R Z 2n+1
n=0

(even values)

21

-—-1 ' —
[Exns Bl (o )] B . (63)

Likewise

27 - 0
_ r'cosy-r ~/ 4T Sl =
-y 132 dB RS z 2n+1 [Exnz Pn (6 )] 1:1)1 )
0 n=0 , :

(even values)

¥

271' on -
- !
D) ir 5oy B
S B3 g ch 2n+1 Exn4 in') P (%)
0 n=0

(even values)
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One now considers the R integration of Eq. (45). 6 is a function of
R, but 8' is not. The coefficients E . are functions of 8' and T, where

T=t _Bc » and are therefore functions of R as far as the integration on R

is concerned. t, r, r', 8', and ¢ are regarded as constants. Thus after

writing
r'+r 00
ot S I | reesrxly 5,
EX (I‘ . 0,0, t) 471 1! S R Z, 2n+1 R3 Ean :Pl'l(6
r'-r n=0

{even values)

1 =1,
B ﬁ [EanPn(e)]

.1 r-r'cosy =1, =
R R [Exn4Pn(9)] Pn('y)dR s

one defines the R integral as follows:

r'+r . E
. r' cosy-r _"xn3
pxn(r , 0, 1) = S R{ 3 Exn2 R
r'-r R

1 r-r'cosy =
cR R E}cntlc Pn (v dR

Then the field component is given by

0
t pt N a /_4_"7_ vt Bl ¢a
Ex(r,B,O,t) 47 r! z 2n+1 [pxn(r’ 9’t)Pn G '
n=2

(even values)

_41-
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Likewise, for the othef electric field components

: 0
1 1 r \ 47 Wt 1 D 1
Ez(r,G,O, 1:)’I"4:irr' Z V 2n+1 [pzn(r’e’t)inil !
n=1 :

(even values)

where
r'4+r 7 E
o (', 6, t) = r{flcosy-r . __zn3
zn - 3 zn2 R
ri-r R

1 r-r'cosy =
cR R Ezn4 in)dR ‘

For Hy , -one obtains a form

o0 .
1 gt = —L 4n ‘ 1 ot Bl g
H (', 6, 0,8) = 7 zvzml NN G
n=1

(odd values)

where
r'+r _ H ~
! At r' cosy-r _ _yn3
P (e’ 6 1) = y R 3 H oo™ "R
r'-r R

cR R yn4 Fa (v)dR '

Since no generalizations can be made about the coefficients Ean s Eznj
and Hynj s other than the method of calculating them described above,

one knows that the P 's cannot be analytically evaluated. All that can be
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done now is to show how to obtain ~13—’n(6), ?n(e'), and PII1 (0') for use in
the above sums and integrals. Note that by -]E-’n (v) one means Eﬁ(cos'y).

-f;n (cosvy) and —ﬁn (cos 8') can be obtained from the recurrence formula,

(2n+1)x Pn (x) - nPn (x)

-1

Pn+1 (x) = n+l

starting with P0 (x)=1 and P1 (x) = x and normalizing using

g 2n+1 |
Pn(x) B 2

P (x)

For Pn (cos 8') the argument is an input constant. For Pn(cos'y ), cos v is

giveh by
r'2 + {r! )2 - R2

2rr'

cos v =

The 5111 (cos 8') can be obtained from the following formulae

d Pn (x)

dzx !

1 2
Pn(X)= -\/1-x

where the derivatives can be obtained from the recurrence formula

d Pn(x) - n Pn-l (x)-nx Pn(x)
dx -

(1 - %)

The normalization is accomplished using

=1 2n+1 1
Pp & =V onm+n Fa™
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IV. CONCLUSIONS AND PLANS‘- .
| In this report two mathematical tools have been developed which

can be used to extrapolate to arbitrary radii outgoing waves which are

known on the surface of a sphere., An infinitely-conducting infinite ground

plane that bisects the sphere has been assumed. FORTRAN programs have

been written to evaluate extrapolated fields by both the Kirchhoff integral

method and the Hankel operator method. Computer results using each of

the methods have been compared to each other and with results obtained from

Lt. Graham's computer solution of Maxwell's equations. Output from the

program utilizing the Hankel operator method has been compared to the

'resuIt of a test problem which was solve»d analytically. All of these cress- ' .

checks irdicate that the methods are proper and their associated computer

programs are working correctiy. The results of the test program are given
in ;:he apoendix. A later classified report, to be written in collaboration
with AFWL personnel, will discuss the numerical results of efforts to inter-
pret weapon test data using these methods along with the oolutions of l\ﬁlax—
well's equations.

Each method has certain advantages and limitations relative to the
other method. The Kirchhoff integral method is faster if it irs desired to
e;;trapol'ate to only one distant point, but it must treat each receiver point
as an essentially separate problem. On the other hand, the time-consuming .
p'art of the Hankel operator method is the calculation of the expansion coeff-
cients. Once this is done, answers may be obtained very rapidly for several ‘

@
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receiver points. It is harder to obtain answers for very high orders of
Legendre polynomials using the Hankel operator method because of dif-
ficulty in evaluating the roots of the Hankel function for high orders. A
double-precision program for evaluating these roots with an IBM 7044
computer was only capable of obtaining usefully accurate roots to the six-
teenth order due to a very high degree of cancellation between the terms

of the polynomial that defines the Hankel function.
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APPENDIX

A sample problem was devised to serve two pﬁrposes. It was to
serve as a check on the correctness of the Hankel -operaj:or method com-
puter code and to supi:ly an illustrative example that lcould be used in an
unclassified report. In order to serve as a éomputer—code check a prob-
lem was chosen that couldvbe solved analytically. The éxpressions repre-
senting the analytic solution are fairly complicateci and a sei)arate computer
.cor;le was written to evaluate them. The same problem was then supplied
numerically to the more general code and the results were compared and
found to agree.

The field used in the test problem corresponds to Bd’ with fhe sym-
metfy assumed in the first section of this report. For the sake of gener-
ality, the dimensionless retarded time 7 = ct*/ r, and dimensionless radius

U = r/ r, will be used in presenting the test problem. On the sphere

u=1, qu test was assumed to be
B¢ test = £(r) Pi (cosg) + P; (cos8) ,
\‘E T

0, 0>+ and .1923< =
where f(r) =

sin{rT/.1923), 0<e < .1923
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The appropriate convolution integrals of f(r) were performed analytically
and algebraic expressions were obfained for qu for arbitrary . Four
curves are plotted in Fig. 4; two curves are the radiation (1/r) terms at
u =1 and 2, 9 = 7/2 and two are the total field curves at the same loca-
rtions. As u increases to larger values, the total field approaches the
radiation field and decreases in magnitude inversely with 4. The curves
plotted in Fig. 4 were calculated for values of 7 to 9.5; no second

crossover point was found; the curves asymptotically approach zero.
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